Admission is Free Only if Your Dad is Rich!
Distributional Effects of Corruption in Schools in Developing Countries

M. Shahe Emran¹, Asadul Islam and Forhad Shilpi

Abstract
This paper provides an analysis of potential unequal burden of bribery in schools on poor households in developing countries. The rich are more likely to pay bribes in the standard model where the probability of punishment for bribe taking by a teacher is the same irrespective of income of the household. This model is, however, not appropriate in the context of a developing country lacking in rule of law, where the ability to punish a corrupt teacher depends on a household’s economic status. Bribery is likely to be regressive at the extensive margin in this case. The conditions required for progressivity at the intensive margin are also quite stringent. A significant part of the available empirical evidence, however, finds bribes in developing countries to be progressive, thus contradicting the theoretical predictions above. We argue that this conflict may largely be due to the identification challenges arising from ability and preference heterogeneity.

Using ten year average rainfall variations as instrument for household income in rural Bangladesh, we find that corruption is doubly regressive: (i) the poor are more likely to pay bribes (income elasticity [-0.73, -1]), and (ii) among the bribe payers, the poor pay a higher share of their income. The IV results for intensive margin are in contrast to the OLS estimate that shows bribes to be increasing with household income, substantiating the worry about spurious progressive effects. The results imply that ‘free schooling’ is free only for the rich, and corruption makes the playing field skewed against the poor.

Key Words: Corruption, Bribes, Education, Schools, Inequality, Income Effect, Bargaining Power, Regressive Effects.

JEL Codes: O15, O12, K42, I2

¹Thanks to Matthew Lindquist, Arif Mamun, and Ali Protik for extensive comments on an earlier version. We are grateful to Dilip Mookherjee for helpful comments on the theoretical model. We would also like to thank Jeffrey Wooldridge, Larry Katz, Rajeek Dehejia, Paul Carrillo, Virginia Robano, Rafiqul Hassan, Niaz Asadullah, Zhaoyang Hou and seminar participants at Monash University for helpful discussions and/or comments. We thank Transparency International Bangladesh and Iftekhuazzaman for access to the NHSC (2010) data used in this study. The standard disclaimer applies.

© 2013 M. Shahe Emran, Asadul Islam and Forhad Shilpi
All rights reserved. No part of this paper may be reproduced in any form, or stored in a retrieval system, without the prior written permission of the author.
Introduction

The experience in many developing countries over last few decades shows that economic liberalization delivered high income growth and impressive poverty reduction, but it also resulted in a significant increase in inequality and corruption (see, for example, World Development Reports (1997, 2004, 2006)). While a variety of factors such as returns to entrepreneurial risk taking and skill biased technological change contributed to the rise in inequality, there is also a growing recognition that a significant part of the observed rise in inequality may be of “wrong kind”, reflecting and reinforcing inequality of opportunities across generations, and driven, at least partly, by pervasive corruption. The highly visible reports of mega corruption in the news media feeds into the notion that the “new rich” are the robber barons of new age. There is a widespread perception among general people that the fruits of economic growth have been skewed in favor of the rich, and the playing field is not level.

The relevant policy question is how to reduce inequality without stifling the dynamism of a liberalized economy that rewards effort and entrepreneurial experimentation? There is a broad consensus in the academic literature and among the policy makers that education is among the most important policy instruments in this regard. For example, Stiglitz (2012, P. 275) notes “(O)pportunity is shaped, more than anything else, by access to education”, and Rajan (2010, P.184) argues “.the best way of reducing unnecessary income inequality is to reduce the inequality in access to better human capital”. A focus on building the human capital of poor seems triply desirable: (i) it is the only asset that every poor ‘owns’, (ii) human capital is inalienable and thus less susceptible to expropriation, an important advantage in many developing countries suffering from a lack of rule of law, and (iii) returns to education is expected to increase over time with globalization because of skill-biased technological change. Recognizing this unique role of

3For example, in Bangladesh, in a recent corruption case, a single business group (Hallmark Group) is found to have defaulted on a bank loan of 3500 crore taka (about 425 million US dollars at November 2012 exchange rate, when per capita GDP in 2010 was about 680 dollars) (see Daily Star, August 31, 2012.). Many observers such as political scientist Ashutosh Varshney find a parallel between the Robber Barons in Gilded Age in USA and the ‘new rich’ in India after the economic liberalization in 1991 (see Sinha and Varshney in Financial Times, January 6, 2011).
4A recent survey by Pew Global attitudes project in China conducted in March and April of 2012 finds that about half of the respondents identified increasing income inequality and corruption as “very big problem”, while 80 percent agree with the view that “rich just get richer while the poor get poorer.”
education, a large number of developing countries over the last few decades invested heavily on policies such as free universal schooling (at least at the primary level), scholarships for girls, free books, and mid-day meals. The basic assumption is that such policies would lessen the burden on poor families for educating their children, and thus help reduce educational and income inequality and improve economic mobility of the children from poor families.

Corruption is endemic in schools in developing countries (see various annual and country reports by Transparency International). In Bangladesh about half of the households reported paying some form of bribes for children’s education (Transparency International Bangladesh, 2010). Evidence from a seven country study in Africa by World Bank shows that 44 percent of parents had to pay illegal fees to send their children to school (see World Bank (2010)). According to a New York Times report, bribery is rife not only in school admissions in China, even the front row seats in the classroom are up for sale! The focus of this paper is on the following question: how does corruption in schools in the form of bribes paid for educational services such as admission, stipend etc. affect the poor families? We provide evidence that bribe taking by teachers in schools affects the poor households disproportionately; the poor parents are more likely to pay bribes for education of their children, and among the bribe payers, the poor pay more as a share of their income. This is a perverse outcome, opposite to the goal of making education free for the poor. The ‘free’ schooling seems free only for the richer households as they are not likely to pay bribes, while the poor still pay for their children’s schooling. It is important to appreciate that bribery in public schools is thus more regressive than a market based education system. In a marketplace, everyone pays the same price, irrespective of their economic status, under the plausible assumption that school fees are not used for price discrimination according to ethnicity, income etc.

To guide the empirical work, we use a simple model of bribe taking by teachers in a context where households are heterogenous in terms of their economic status as measured by income. The causes behind perverse incentives to seek bribes by the teachers include low teacher pay and lack of accountability. For a summary of the literature on teacher incentive, see Duflo et al. (forthcoming). They find that financial incentives for teacher attendance reduces absenteeism and improves children’s test scores. See also the survey in Glewwe and Kremer (2006).

Note that our framework is designed for the analysis of bribery faced by households, and may not be suitable for understanding bribery faced by firms.
An important assumption in many corruption models is that the probability and the severity of punishment for taking bribes are determined by an impersonal and unbiased legal and enforcement system. This delivers the prediction that bribes are progressive at the extensive margin, i.e., the poor are less likely to be asked for (and pay) bribes. However, the assumption that the ability to punish a teacher for bribe taking does not vary across poor and rich households is clearly at odds with the reality in a developing country.\(^9\) Because higher income (and wealth) confers significant social and political influence on a household in a developing country, and the rich can inflict substantial social and economic costs on a teacher if she asks for bribes (including anti-corruption investigation and prosecution). The higher bargaining power of the richer households thus may allow them to avoid paying bribes altogether.\(^10\) For example, the village school teacher may not risk asking for bribes for admission of the daughter of a local political leader or landlord, even though a political leader or landlord has higher ability to pay. Alternatively, a household with high bargaining power may choose to refuse to pay when a bribe demand is made, and still get the child admitted into the school.\(^11\) The implications of higher bargaining power associated with higher income in understanding the distributional consequences of corruption is a central focus of this paper. It is important to emphasize that we are not estimating the standard ‘income effect’, our focus is on the effects of higher income when income plays double roles: it represents ability to pay (income effect), and it is also an indicator of a household’s bargaining power that captures, among other things, social and political connections.\(^12\) We model the bargaining power effect as a higher probability of punishment for a corrupt teacher when asking for bribes from a richer household. If the bargaining power effect of household income is strong enough, higher income reduces the propensity to pay bribes; the teacher does not ask for bribes from richer households.

\(^9\)For an interesting discussion on the role played by socioeconomic status in determining who pays bribes to traffic police in Afghanistan, see Azam Ahmed’s article titled “In Kabul’s Car Guantnamo, Autos Languish and Trust Dies” in New York Times dated February 17, 2013. Ahmed writes “The rules are unevenly applied, punitive to those who can least afford it, and mostly irrelevant to those with money and power” (italics added).

\(^10\)One may also call it ‘countervailing power’. For brevity, we use the term ‘bargaining power’.

\(^11\)The existing literature on corruption focuses on the bargaining game after a teacher asks for bribes, with refusal to pay (zero share of the surplus for the teacher) being one possible outcome. However, the possibility that the teacher may not even ask for bribes when facing a high income household has not been adequately appreciated. The role played by ‘refusal power’ in determining who pays bribes in the context of firms has been highlighted by Svensson (2003).

\(^12\)As explained later in more details, the part of social and political capital of a household which is orthogonal to income becomes part of the error term in our framework. However, it does not bias the estimated effect of income precisely because it is not correlated with income.
thus making bribery regressive at the ‘extensive margin’.

Another important question is whether bribery in schools in developing countries is likely to be progressive at the intensive margin, i.e., among the bribe payers, who pays more, rich or poor? In the standard model above, bribes are ‘weakly progressive’, i.e., the amount of bribes paid increases with income when two conditions are met: (i) the teacher has information about household income, and (ii) household utility function is strictly concave. Strict concavity of the utility function, however, is necessary but not sufficient for bribes to be progressive in the standard sense familiar from the tax literature, i.e., bribes as a share of income to increase with the level of income. We show that additional restrictions on the curvature of the utility function is required to obtain standard progressivity at the intensive margin. Thus even when the corrupt official can extract the total surplus from a household, there is no presumption that bribes will be progressive. As is well-known in the literature, if the teacher does not have adequate information to price discriminate, then the bribe amount is not likely to vary with income, making it regressive at the intensive margin. The stringency of the conditions needed for bribes to be progressive in the standard sense has not been well-appreciated in the existing literature.

There are two major challenges in the empirical estimation and testing of the above hypotheses. First, unobserved heterogeneity in preference and ability. A household’s attitude/preference towards corruption is unobservable to an empirical economist but may be correlated with its income. For example, people with low moral cost of corruption may become rich through corrupt economic activities, and they are also more likely to bribe a school teacher to get their children admitted to the schools. Thus any positive effect of income on the probability of paying bribes for admission estimated in an OLS regression may be driven by this selection on unobserved preference. High ability parents in general have higher income and may also have high ability children due to genetic transmissions. The high ability parents may be more willing to pay bribes for education of their children, because they expect higher returns from the labor market.13 The second important source of bias is measurement error in income (or other indicators of economic status of a household) which might cause significant attenuation bias. To address these identification challenges, we employ an instrumental variables strategy that exploits \textit{ten-year average}...

13A related point is that educated and high income parents may have better information regarding returns to education and better network for ensuring good jobs for their children once they graduate.
rainfall variations across different villages as a source of exogeneous variation in household income. Rainfall is obviously an important exogeneous determinant of household income in rural areas of developing countries. The identifying assumption that rainfall affects household income significantly but is uncorrelated with ability (genetically transmitted), moral preference regarding corruption and the measurement error in household income seems eminently plausible. For example, to the best of our knowledge, there is no theoretical basis or empirical evidence to expect that heavy rainfall directly affects people’s moral compass with respect to corruption, or determine children’s cognitive ability, after taking into account its effects through income. We report results from a falsification exercise and a detailed discussion on the potential objections to our identification strategy below in section (4.1). For an in-depth discussion of our approach to identification, please see pp. 14-22 below.

The empirical results from the instrumental variables approach find a statistically significant effect of income on propensities to bribe, but not on the amount of bribe paid. Income has a significant and negative effect on the probability of paying bribes, providing credible evidence that rich are less likely to pay bribes, possibly because of their superior bargaining power. The evidence from IV regressions that finds no statistically significant effect of income on the amount of bribes suggests a lack of price discrimination; thus poor pay more as a share of their income. This conclusion is especially noteworthy, because the OLS regressions stand in sharp contrast, showing a significant positive effect of income on the amount of bribes paid. This seems to justify the worry that the OLS regressions may be susceptible to finding spurious progressivity in the burden of bribery (or at least under-estimate the degree of regressiveness), due to ability and preference heterogeneity. To the best of our knowledge, this is the first paper in the literature that provides credible evidence on the distributional effects of bribery in schools in developing countries by addressing the dual concerns of unobserved heterogeneity and measurement error.

14We use a binary indicator of ‘heavy rainfall’ as the main identifying instrument for household income. A Google Scholar and Econlit search on December 20 2012 for different combinations of keywords ‘rainfall’, ‘scholastic ability’, ‘ability’, ‘smart’, ‘corruption’, ‘corrupt’ ’attitude’ returned no relevant entries. An advantage of a binary instrument is that it necessarily satisfies the monotonicity condition of Imbens and Angrist (1994).

15Some of the potential objections to identification are: (i) rainfall may affect child wage and thus demand for schooling, (ii) heavy rainfall may induce male migration for work, and women headed households may have weaker bargaining power, (iii) heavy rainfall may cause damage to schools and thus increase the demand for local resources, (iv) heavy rainfall may affect health. We provide evidence on the (in)validity and/or irrelevance of these and other objections in section (4.1) below.
The evidence suggests that corruption in schools is regressive, both at the extensive and intensive margins. The results reported here thus contradict the predictions from the standard model where the rich do not enjoy any advantage in punishing a corrupt teacher, and are more consistent with a model that allows for heterogeneity in the bargaining power of households based on their economic status.

Rest of the paper is organized as follows. Section (2) discusses the related literature and thus help put the contributions of this paper in perspective. The next section provides a conceptual framework to guide and interpret the empirical work. The empirical strategy to address the potential biases from household heterogeneity and measurement error is discussed in section (4). The next section (section (5)) provides a discussion of the data sources and variables. The OLS results are reported in section (6) and the IV estimates in section (7). Section (8) reports robustness check for the IV results and section (9) discusses the interpretation of the IV estimates. The paper concludes with a summary of the results and their implications for the broader debate about the role of public schooling and anti-corruption measures to address inequality in educational opportunities.

(2) Related Literature

The economics literature on corruption is substantial and has been the focus of innovative research in the last decade. For recent surveys of the literature, see, for example, Olken and Pande (2011), Banerjee et al. (2012), Rose-Ackerman (2010), Bardhan (1997). The literature has, for good reasons, focused on the measurement of corruption, its effects on efficiency, and on policies to combat corruption in different contexts. The literature on the effects of corruption on households is, however, rather limited; for example, the recent survey by Olken and Pande (2011) discusses only one paper (Hunt, 2007) that provides evidence on the effects of corruption on households when they face negative shocks. The available evidence on the heterogeneity in

16The early contributions to corruption literature include Rose-Ackerman (1978), Klitgaard (1988), Shleifer and Vishny (1993).
the burden of corruption is, however, mixed, which may, at least partly, reflect the difficulties in identification arising from unobserved heterogeneity and measurement error. Kauffman et al. (1998), and Kauffman et al. (2005) reported bribe to be regressive as the poor pay a higher share of their income as bribes. In a recent paper that focuses on the educational sector, Choe et al. (2013) find that the propensity to pay bribe in Bangladesh is negatively correlated with income. On the other hand, Hunt (2010) reports evidence suggesting that corruption in health care in Uganda is progressive both at the intensive and extensive margins. Hunt and Laszlo (2012) find that bribery is not regressive in Uganda and Peru. Hunt (2008) shows that distributional effects of bribes in Peru depend on the public service one considers. She finds that bribery is regressive for users of police service, but it is progressive for users of judiciary. Mocan (2008), using household data from a number of countries, shows that the higher income households are more likely to face a demand for bribe in developing countries, but the effect is not significant in developed countries.\footnote{It has been noted in the literature that the rich may be more likely to pay bribes, because they enjoy more public services (Hunt and Laszlo (2012), Mocan (2008)). For example, most of the poor never face the possibility of paying bribes for a passport, because they do not travel internationally. It is thus important to focus on a given service that is used by both rich and poor (schooling in our case) to better understand the distributional consequences of bribes.} In an important paper on corruption faced by firms, Svensson (2003) carefully considers the identification issues, and finds that bribe amount paid by firms in Uganda increases with its profit ("ability to pay"). However, the slope of the bribe function, although positive, is not steep.

With the exception of Hunt and Laszlo (2012) and Svensson (2003), much of the evidence on the relationship between bribe amount and household income (or firm profit) is based on OLS regressions; they do not address the biases due to unobserved heterogeneity and measurement errors. In the context of corruption faced by households, Hunt and Laszlo (2012) take a step forward and correct for the biases due to measurement error by using household wealth indicators as instruments, but their strategy is not designed to tackle the omitted variables bias arising from unobserved heterogeneity in preference and ability. Our paper thus makes an important contribution to the empirical literature on potential unequal burden of corruption on the poor households by exploiting variations in ten year average rainfall across villages as a source of exogenous variation in household income to address the dual concerns of unobserved heterogeneity.
and measurement error (for a fuller discussion, see below).

(3) Conceptual Framework

To guide the empirical work, we use a simple model of bribery for admission into school. The focus of our analysis is on two things: (i) to understand under what conditions we can expect bribes to be progressive (or conversely, regressive), and (ii) to sort out the implications of alternative assumptions regarding bargaining power and information structure for the empirical analysis. We discuss progressivity both at the extensive and intensive margins. If bribes are progressive at the extensive margin, the probability that a household pays bribes for education of its children should be lower for the low income households. At the intensive margin, the standard definition of progressivity requires that rich pay more as a proportion of their income among the subset of bribe payers. A weaker definition of progressivity at the intensive margin is when bribes are a strictly positive function of a household’s income.

The teacher has two sources of income: salary w received from employment in public schools, and bribes for admitting students to school. The households in the village are heterogenous in terms of their economic status as measured by income y_i and bargaining power σ_i. The probability of punishment for asking bribes from household i is $\delta (\sigma_i)$, and we assume that the probability is increasing in the bargaining power. The bargaining power depends on income and also a set of factors uncorrelated with income ψ_i, i.e., $\sigma_i = \sigma(y_i, \psi_i)$. σ_i is increasing in both its arguments. The assumption that the bargaining power σ_i is a positive function of household income captures the idea that the rich have better bargaining power. The functions $\delta(\cdot)$ and $\sigma(\cdot)$ are common knowledge. If caught and convicted of corruption, the school teacher loses her job, thus payoff is zero in this case.

Income of household i is a function of its resource endowment E_i and ability of parents A^f_i. The households also vary in terms of their moral costs of corruption (measured in terms of utility loss) $M_i \in [M_L, M_H]$. The income function is

$$y_i = y \left(E_i, A^f_i, M_i \right)$$

with

$$\frac{\partial y(\cdot)}{\partial E_i} > 0; \quad \frac{\partial y(\cdot)}{\partial A^f_i} > 0; \quad \frac{\partial y(\cdot)}{\partial M_i} < 0$$

Note that, for simplicity, we do not allow for a direct effect of income on the probability of punishment. But it is to reflect the fact that the rich parents may cause
So household income is increasing in its endowment and parental ability, but is a negative function of moral cost M_i. A household with low moral cost can profit from corrupt deals and activities, for example, by getting a contract through bribing. For simplicity, y_i is assumed to be discrete and the households are ordered according to income as $y_0 < y_1 < \ldots < y_\bar{y}$. Each household has one school aged child. All students receive the same quality of education at school, and hence classroom instructions is a public good. The quality of education received by a student i is $q(A_i)$ where $A_i \in [A_L, A_H]$ is the ability of the child. The human capital function $q(A_i)$ is strictly increasing in ability.

In addition to possible bribes to teachers, a household spends its income on a consumption good c. Following the literature, we assume that utility takes the following form:

$$V_i = q(A_i) + u(c_i - B_i) - M_i$$

(2)

where $u(\cdot)$ is assumed to be increasing and strictly concave, and $B_i > 0$ is the amount of bribe. Admission into school ensures human capital $q(A_i)$.

We consider the following sequence of events. First, the teacher decides whether to ask for bribes from household i based on the estimate of probability of punishment given the information set Ω. We will discuss the implications of different assumptions regarding the information set below. Denote the probability estimate by $\hat{\delta}(\Omega)$. If it decides to ask for bribes, the teacher makes a take-it-or-leave-it offer to the parents. The parents decide whether to accept the bribe demand, or reject by deploying their ‘bargaining power’. The teacher decides whether to admit the child into the school.

Bribe Determination When Teacher Has Perfect Information and Probability of Punishment is Constant

We first consider a simple set-up where the households do not vary in terms of their bargaining power and the common probability of punishment faced by the corrupt teacher across different households is $\hat{\delta}$. Thus the richer households cannot influence the probability of punishment which is a reasonable assumption when the legal and enforcement systems are unbiased and not susceptible to corruption. We also assume that the teacher observes income, and the type of a
household in terms of ability and moral preference, i.e., the information set $\Omega = (y, A^f, A, M, \tilde{\delta})$.

This is a useful benchmark, consistent with models widely used in the literature on distributional effects of corruption. This set of assumptions is also most conducive to obtaining a progressive burden of bribes on the households, both at the intensive and extensive margins.

Consider a household’s decision as to whether to pay bribe or not for school admission when the teacher makes a take-it-or-leave-it offer. Given that the household cannot influence the probability of punishment, it is optimal for a household to pay bribe to get admission for its kid into the school if the bribe demand B_i satisfies the following:

$$q(A_i) + u(y_i - B_i) - M_i \geq u(y_i)$$

There are three things to note in the above formulation. First, there is no credit market where households can borrow to finance children’s education, an eminently plausible assumption in most developing countries (especially in rural areas), and standard in the literature on corruption.\footnote{The assumption that one cannot borrow to pay bribes is also standard in the literature on corruption faced by firms, see, for example, Svensson (2003). Also, note that when facing a binding credit constraint, a household’s ‘willingness to pay’ would be higher than its ‘ability to pay’. The bribe payments observed in the data reflect ability to pay. Note that even with a perfect credit market, income and the amount of bribe for education might be positively correlated because of genetic transmission of ability.} Second, the households do not worry about punishment for paying bribes. This is a realistic assumption, especially in our context, because we are not aware of prosecution of any household for paying bribes to school teachers in any developing country, although in many countries, both bribe paying and taking are illegal, according to the statutory law. Third, the bribe differs across different households in equation (3) which is appropriate when the teacher has adequate information to price discriminate among different households. Note that in the above formulation, the informational requirement for a teacher to extract the full surplus is demanding; she needs to know the ability and moral costs of a household along with the income. The assumption that the teacher has good information about household characteristics may not be a bad first approximation in the context of static village economies with limited geographic mobility.

The main results that follow from the above benchmark model are summarized in proposition (1) below.
Proposition 1

Assume that the teacher has perfect information and makes a take-it-or-leave-it bribe demand. Thus the participation constraint (3) binds for each household that sends child to school.

(1.a) Bribery is progressive at the extensive margin in the sense that there exists a threshold income \(\bar{y} \) such that a household with income \(y_i < \bar{y}(A_H,M_L) \) is not asked for any bribe for admission.

(1.b) There exists a threshold income \(y^L(A_H,M_L) \) below which a household is unwilling to pay a positive (however small) bribe for admission.

(1.c) Among the households with child in school, the bribe amount is a positive function of income if the household utility function is strictly concave. In other words, bribe is ‘weakly progressive’ at the intensive margin.

(1.d) Bribes are progressive at the intensive margin (i.e., bribe as a share of income increases with the level of income) only if the utility function exhibits strong enough concavity.

Proof:

Omitted. See online appendix.

Variants of propositions (1.a)-(1.c) have been discussed in the literature before, but proposition (1.d) is new, to the best of our knowledge. Proposition (1.a) shows that under the stated conditions bribery is progressive at the extensive margin, i.e., poor are less likely to pay bribes both because (i) the teacher may not find it worth the risk to ask for bribes from the poor given the constant probability of punishment, and (ii) the household may not find it worthwhile to pay given the concavity of the utility function. Among the bribe payers, the bribe function is strictly increasing in income when the utility function is strictly concave. This, however, does not imply that bribes are progressive in the standard sense, i.e., bribes as a share of income increases with an increase in household income. Proposition (1.d) shows that even with perfect information, the maximum bribe a teacher can extract is not progressive if the curvature of the utility function is not strong enough. With an isoelastic utility function, it can be shown that the bribes are progressive in the standard sense only if the utility function has more curvature than a log function (see the online appendix). This result is simple, but important, because most of the literature on the distributional burden of corruption uses the standard notion of progressivity borrowed from the
tax literature, and the stringency of the conditions required for such progressivity in the context of bribery is in general not well appreciated. A weaker notion of progressivity where the bribes are a strictly positive function of income seems more plausible in this context.\footnote{The weaker notion is employed in some of the existing studies such as Svensson (2003).}

Alternative Information Assumptions

The benchmark model above assumes that the teacher has enough information on all the relevant household characteristics to price discriminate perfectly and extract the full surplus. Many readers may find this assumption unrealistic even in the context of a static village economy, especially the assumption that the bargaining power, corruptibility, ability are observable may be too strong. The other polar assumption standard in many corruption models that the official does not observe any indicator of income, ability, and moral preference, and thus has to charge a uniform bribe is probably equally unrealistic in the context of villages and small towns in developing countries.

An intermediate information assumption is that the teacher observes only income, but does not observe any other indicators of ability, moral preference, or bargaining power. In this case, the teacher relies on income information to infer unobserved bargaining power. We develop a model below that captures the notion that higher income is positively correlated with higher bargaining power, and thus the probability of paying bribes is lower. Since the income of a household is higher, the higher is its ability and the lower is its moral cost, the teacher would infer that a high income household would be willing to pay more compared to the case where the income differences are solely due to endowment differences. In what follows we adopt this intermediate information assumption, if not otherwise indicated.

Heterogeneity in Bargaining Power and Probability of Punishment

As noted before, to capture the idea of higher ‘bargaining power’ of richer households, we assume that a teacher faces higher probability of punishment when asking for bribes from a higher income household. We emphasize again that we use the term ‘bargaining power’ as a portmanteau term that represents their own social and political influence and the “connections” that come with higher income and wealth in a developing country.\footnote{Another possible source of better bargaining power of rich households is the availability of better private schools.} To simplify and focus on
the role played by a household’s bargaining power vis a vis the teacher, we assume in this section that the households do not vary in terms of ability or moral costs.

Since the teacher observes only income of a household, it estimates the bargaining power of a household as $\hat{\sigma}_i = \sigma (y_i, E(\psi_i))$. Since ψ_i is not observed by the teacher the mean is used. So the estimated probability of punishment is $\hat{\delta}(y_i) = \delta (\sigma (y_i, E(\psi_i)))$. We assume that there are lower (\hat{y}_l) and upper (\hat{y}_h) thresholds of income such that $\hat{\delta}(y_i) = 0$ for ($y_i \leq \hat{y}_l < y_h$) and $\hat{\delta}(y_i) = 1$ for ($y_i \geq \hat{y}_h < \bar{y}$). Thus we assume that the poorest of the households have no bargaining power, while the richest ones can punish the teacher for bribe taking with probability 1. This highlights the role played by differences in economic status in determining who ends up paying bribes for supposedly free public services such as ‘free’ schooling. Note that once the teacher decides to ask for bribes from a household, it is optimal for her to extract full surplus from the household, because the probability of getting caught and punished does not depend on the bribe size.

The central result from the above set up is that bribery is likely to be regressive at the extensive margin if the bargaining power effect is strong enough. Given the assumptions regarding the probability estimate, it follows that there exists a threshold $y^M < \bar{y}$, such that the following equality holds (assuming that the teacher maximizes expected income):

$$\left\{1 - \hat{\delta}(y^M)\right\} \left[B^*(y^M) + w \right] = w$$ (4)

Now it is easy to check that the expected income from bribery $\left\{1 - \hat{\delta}(y)\right\} \left[B^*(y) + w \right]$ is a decreasing function of income if the bargaining power effect of income is strong enough in following sense:

$$\hat{\delta}'(y) > \frac{B^*(y) \left(1 - \hat{\delta}(y)\right)}{[B^*(y) + w]}$$ (5)

If condition (5) above is satisfied, the teacher does not ask for bribes from any household with income higher than the threshold y^M. The model thus predicts that when the bargaining power

If good private schools are available in a location, the competition would reduce the bargaining power of the teacher in public school. But the private schools are not free and the ‘exit’ threat is credible only if the household is rich enough to afford it. This competition effect is however not relevant in our context because private schools are not common in rural areas in Bangladesh. The importance of exit option for bargaining over bribes has been emphasized, both theoretically and empirically, by Svensson (2003) in the context of bribe demands faced by firms in Uganda.
effect of income is strong enough, among all households with the child in school, only the relatively poor pay bribes, the richer households \((y_i > y^M)\) are not asked for bribes, even though they have better ability to pay. Thus bribes are clearly regressive in this case. Note that inequality (5) is more likely to be satisfied when utility function is less concave and the wage earned by the teacher is higher.\(^{23}\)

Now consider a household \(j\) with income \(y_j < y^M\), but \(\psi_j > E(\psi_i)\). In other words, the teacher underestimates the true bargaining power and asks for bribes. But if \(\psi_j\) is high enough so that \(\delta(\sigma(y_j, \psi_j)) \geq \delta(y^M)\), it is in the best interest of the household to deploy its social connections (for example, a call from the office of education minister who happens to be the brother of household head’s primary school buddy). In this case, assuming that the household can credibly communicate its true bargaining power, it will refuse to pay the bribe, but still get the child admitted in the school. For our empirical analysis, this has an important implications in that we should not expect any clean threshold \(y^M\) above which the households do not pay bribes. When we consider ability and moral cost heterogeneity across different households, the relation between income and probability to pay bribes will become smoother. Another reason for the relation between income and probability of paying bribes to be smooth (rather than a step function) is that the bargaining power of the teacher is likely to vary from village to village. The following proposition summarizes the above discussion.

Proposition 2:

Assume that the ability to punish a corrupt teacher increases with income. Consider the set of households with a child in school. The probability that a household had to pay bribes for admission is a negative function of income if the bargaining power effect of income is strong enough.

It is instructive to compare proposition (2) with proposition (1.a) above that shows that when probability of punishment is invariant across households bribery is progressive at the extensive margin. Put together, they imply that when the legal and enforcement system cannot be influenced by rich, bribery is likely to be progressive at the extensive margin. But in a typical developing country where legal and enforcement system are not unbiased and the rich wield sub-

\(^{23}\)With strong bargaining power effect, an increase in wage of the teacher may thus make bribery regressive, a result which may be of some independent interest.
stantial power, bribery is likely to be regressive at the extensive margin. To the best of our knowledge, this result has not been discussed before in the literature on distributional effects of corruption.

(4) Empirical Strategy

The propositions (1-2) above provide clear predictions about the impact of income on propensity to pay bribe and on the amount of bribe paid by the household. In this section, we set-up an empirical model consistent with the theoretical analysis. For the empirical model, it is useful to decompose the bargaining power of a household into two components: a component correlated with income (denoted as σ^y_i) and a second part orthogonal to income (denoted as σ^ψ_i). Thus when income is included as a regressor, it also captures the effects of σ^y_i which we call the bargaining power effect of income in the conceptual framework. We use the following triangular empirical model of the relationship between household income and propensity to pay bribe by household i:

$$
P(B_i = 1) = \beta_0 + \beta_1 y_i + \pi X_i + \beta_A A_i + \beta_M M_i + \beta_\psi \sigma^\psi_i + \zeta_i$$

$$y_i = \alpha_0 + \Pi X_i + \alpha_A A_i^f + \alpha_M M_i + \alpha_1 \sigma^y_i + \xi_i$$

where y_i is the income, X_i is a vector of control variables and ε_i and η_i are the error terms.

The amounts of bribe paid is modeled as:

$$Z^B_i = \theta_0 + \theta_1 y_i + \Gamma X_i + \theta_A A_i + \theta_M M_i + \nu_i$$

$$Z^B_i = \theta_0 + \theta_1 y_i + \Gamma X_i + \eta_i$$

where $\eta_i = \theta_A A_i + \theta_M M_i + \nu_i$ (8)

Where Z^B_i denotes amount of bribe paid by household i, and η_i is the error term.
As discussed earlier, there are two potential sources of bias in the OLS estimates of the effects of income in the equations (6) and (8) above. The income variable observed in a household survey is usually measured with considerable error, which may cause attenuation bias in the OLS estimates. The second source of bias results from unobserved heterogeneity, in attitude of households toward paying bribes and in ability. Note that even though we do not observe \(\sigma_i^\tilde{\psi} \), it does not cause any bias in estimating the effects of income on the probability of bribes, because it is uncorrelated with income. Assuming that ability and morality are not correlated, the endogeneity due to omitted heterogeneity in the propensity to pay bribe equation arises because

\[
\text{Cov}(\epsilon_i, \psi_i) = \alpha_A \beta_A \text{Cov}(A_i, A_i^f) + \alpha_M \beta_M \sigma_M^2 > 0
\]

(9)

The last inequality follows from the fact that \(\text{Cov}(A_i, A_i^f) > 0 \) due to genetic transmission of ability from parents to children, and \(\alpha_A, \beta_A > 0, \alpha_M, \beta_M < 0 \). The available evidence from behavioral genetics shows that the correlation in the IQ of parents and children is about 0.50. See, for example, Plomin et al. (2008). This positive bias in the estimated effects can easily mask a negative effect of income that arises from better bargaining power of richer households. The results reported below seem to justify this worry; without credible identification, one is likely to underestimate the regressive effect of corruption and may even find spurious progressive effect.

We focus on household income as the indicator of a household’s economic status. An alternative is to use household consumption expenditure as the relevant indicator. In fact, most of the existing studies on distributional effects of corruption faced by households use consumption expenditure as the relevant measure, which is motivated by the observation that consumption is usually less subject to measurement error compared to income (see Deaton (1997)). However, an important problem with consumption expenditure as an indicator of economic status in our application is that consumption and bribe payments to teachers are simultaneously determined, given income (see equations (1) and (3) above). Simultaneity bias is a serious problem in addition to omitted heterogeneity and measurement error in the case of household consumption expenditure. Note, however, that one can make a plausible argument that, in our application, consumption expenditure itself suffers from substantial measurement errors because of, for example, peer effects (keeping up with Joneses). If peer effects in consumption is important, then the poor spend a much larger share of their income on consumption. Consumption expenditure thus misrepresents the economic gap between rich and poor households. Consumption expenditure may be only weakly correlated with the ‘economic status’ of a household.
expenditure. We thus prefer income as the indicator of economic status of a household.

A standard approach to addressing the biases due to unobserved heterogeneity and measurement error is instrumental variables. If measurement error were the only source of bias, then one can utilize some indicators of household’s wealth such as housing characteristics as instruments for income under the assumption that measurement error in wealth is not correlated with the measurement error in income. Hunt and Lazslo (2012) use such an approach to analyze corruption in Uganda. However, if preference and ability heterogeneity is important in determining who pays bribes and who does not, then such instruments fail to satisfy the exclusion restrictions, as a household’s wealth is correlated with its ability and attitude towards paying bribes. Instead of relying on wealth indicators as instruments, we propose an alternative instrumentation strategy that exploits rainfall differences across villages as a source of exogeneous variation. In many developing countries, a majority of the households are directly or indirectly dependent on agriculture. Rainfall is an important determinant of agricultural yield and income.

Bangladesh is a deltaic plain at the confluence of the Ganges (Padma), Brahmaputra (Jamuna), and Meghna Rivers and their tributaries. Most of the country is low lying with average elevation less than 10 meters above the sea level. The average annual rainfall in our sample of villages is 1598 mm, compared to 1083 mm in India and 494 mm in Pakistan.25 Heavy rainfall during monsoon is an important and recurrent negative shock in rural Bangladesh, especially so in the relatively low lying, low slope and riverine areas where it causes frequent flooding. To capture the negative shock due to heavy rainfall we define a dummy that takes the value of unity if the average rainfall over last 10 years in a village exceeded the 75th percentile of average rainfall for the country. This can also be thought of as a ‘flood prone areas’ dummy. We thus expect the dummy to have a negative effect on household income in the first stage regression.26 One might wonder whether rainfall itself would be a better instrument, because we are ‘throwing away’ some of the variations by dichotomizing the rainfall variable. Our choice is motivated by two consid-

25 The rainfall data for India and Pakistan are taken from World Development Indicators of World Bank and correspond to the years 2008-2009.
26 It is important to appreciate that the effects of rainfall on income may vary from country to country. In a semi-arid country, more rainfall is expected to have a positive effect on income, because drought is the predominant form of negative weather shock in this context. See, for example, the recent literature on the effects of negative income shock due to droughts in Sub Saharan Africa (Miguel et al. (2004), Bruckner and Ciccone (2011), among others). In contrast, in a country such as Bangladesh where flood is the dominant type of negative weather shock, heavy rainfall is expected to have a negative effect.
erations: strength of the instrument and monotonicity condition of Imbens and Angrist (1994). First, while the response of income to a relatively large weather shock such as flooding is expected to be strong, the income response to small or marginal rainfall variation may be insignificant. A continuous rainfall measure may thus have little power in explaining the variations in household income, resulting in weak instrument bias which can potentially be more severe than the bias in OLS. That weak instrument is potentially a serious problem when rainfall is used for identification has been noted previously in the literature (see, for example, Tanboon (2005)).

Second, as discussed by Imbens and Angrist (1994), a binary instrument necessarily satisfies the monotonicity condition (their condition 3(i)) required for the validity of the LATE theorem. This is especially important in the context of the relationship between income and rainfall, which can plausibly be non-monotonic (inverted U), as too much (flood) and too little (drought) rain can reduce income substantially.

(4.1) Identifying Assumption, Potential Objections and A Falsification Test

The main identifying assumption for the IV estimates is that heavy rainfall reduces income substantiably, but it is not correlated with a household’s attitude towards paying bribes, children’s genetically inherited scholastic ability, or with the measurement error in the reported income. This seems eminently plausible. To the best of our knowledge, there are no reasonable theoretical or empirical reasons to expect that the level of rainfall affects a household head’s corruptibility, a child’s ability genetically transmitted from parents, or the measurement error in reported income that results from human fallibility.

Note also that it is very unlikely that there are any significant systematic errors in reporting corruption in schools by households, because the households have little incentives to misreport; people in Bangladesh do not worry about being prosecuted for paying bribes to teachers or health providers. As discussed before, prosecution of households for paying bribes is in general rare in developing countries, and unheard of in the context of corruption in schools.28

The NHSC surveys administered by Transparency International Bangladesh (TIB) also ensure that the respondents

27 Ciccone (2011) underscores the importance of using rainfall in levels as instrument rather than year to year changes, as the interpretation of the yearly changes may be difficult because of mean-reversion.

28 All three authors grew up in Bangladesh and have continuous involvements there. From their experience, it seems that people do not hesitate at all to reveal when they fall victim to corruption. Although the corrupt officials are more hesitant to explicitly acknowledge that they take bribes, it is usually widely known.
remain anonymous.

Other potential objections to the exclusion restriction include (i) heavy rainfall may lower the wage rate for child labor, which through substitution effect may increase the demand for schooling and lead to higher propensity to bribe, (ii) heavy rainfall induces higher migration of male members in search of work and as a result the proportion of female headed households is higher, which may imply that they have lower bargaining power and thus are more likely to pay bribes, (iii) heavy rainfall causes damage to the school infrastructure and the demand for (legal or illegal) local resources go up as a result, (iv) people in flood-prone areas may be less risk averse and suffer from bad health, (v) people’s ‘mood’ may be different during rainy days and influence their propensity to bribe, (vi) long-run rainfall differences may have affected institutions similar to Acemoglu et al. (2001). We discuss these potential objections below and provide evidence in support for our identification assumption. Note that the NHSC 2010 survey used for the analysis of corruption contains only limited information on household characteristics. We take advantage of a nationally representative household survey (Household Income and Expenditure Survey, HIES 2010, conducted by Bangladesh Bureau of Statistics) for the same year as the NHSC survey (2010) to provide supplementary evidence. We also provide evidence from a falsification exercise. The falsification test exploits the observation that in the large cities rainfall is not a significant determinant of income, because agriculture is not important as an economic activity. Thus we can test the null that rainfall does not have a direct effect on income as postulated in our identification strategy.

Effects of Rainfall on Wages

It is certainly plausible that heavy rainfall may affect the wage rate negatively, especially for the casual daily labor. Note that any negative ‘income effect’ of lower wages would be captured in the household income. The question is whether a lower wage for child labor can substantially increase the demand for schooling through substitution effect, and thus provide an alternative explanation for our results reported later that the households with lower income due to heavy rainfall are more likely to pay bribes. In other words, does the estimated income effect from the IV regressions partly reflect substitution effect of lower wages for child labor in heavy rain areas? It is, however, important to appreciate that the focus of our study is on who pays bribes
and how much among the households with children in school (recall that about 50 percent of the households with children in school do not pay bribes).29 Thus the fact that lower child wage might affect the cost-benefit of going to school is not relevant for our analysis where the children are in school at the time of the survey. It is also important to note that rainfall differences not only affect the current child wage (opportunity cost of attending school), but also the future wage rate expected after graduation, and it is thus not clear that the net benefit from schooling is systematically affected by rainfall differences across different villages. The available evidence shows that the net effect of a negative weather shock is to increase child labor, implying either an insignificant substitution effect, or a low substitution effect swamped by a strong income effect consistent with ‘luxury axiom’ a la Basu and Van (1998) (see, for example, Hyder et al. (2012), Beegle et al. (2006)).) The parents send kids to work to supplement household income facing a negative income shock, and thus the demand for schooling is lower and one would expect a lower propensity to bribe in the flood-prone areas. The evidence we find in this paper contradicts this; the propensity to pay bribes is higher for the households with low income due to heavy rainfall. To assuage any lingering doubts, however faint, we also report IV estimates that control for agricultural wages and prices (spatial cost of living index) in section (8) below.

Rainfall and Migration

Male migration due to heavy rainfall and the possibility of weak bargaining power of the women headed households is potentially relevant for the validity of our main conclusions. We provide evidence on the proportion of female headed households, proportion of women in the population in both the heavy rainfall and other areas to see if there are any significant differences. The evidence is reported in Table 1; there is no significant difference across the heavy rainfall and other areas in the proportion of female headed households, or male-female balance in the population (see first two rows in Table 1). This allays any concern that our results may be partly due to the effects of male migration from flood-prone areas for work at urban areas. Table 1 also reports the incidence of migration in response to shocks in both areas, and again there is no statistically significant difference between the heavy rainfall and other areas (see row 3 in Table 1). Thus any worry that our results can reflect migration (irrespective of gender) in response to

29 In the NHSC 2010 survey, the corruption related questions were asked contingent on a household using education services last year. Thus if a household does not have a child in schools, they are not part of the sample.
shocks also seems unfounded.

Damages to School Infrastructure and supplies, Demand for Local Resources, and Teachers’ Income

A potential problem with the exclusion restriction on heavy rainfall is that the school infrastructure and supplies may be destroyed or damaged by heavy rainfall (flood), and this may spur the teachers to demand money and resources from the parents. For a number of reasons discussed in details below, this concern is, however, not valid in our context.

First, the school financing arrangement is very different in rural Bangladesh compared to the case in a country such as USA. Unlike in USA where local taxes are the main source of financing for public schools in a county, in Bangladesh the local financing plays very little (if any) role; even the so-called private schools are primarily financed by the central government. If a school is damaged by heavy rainfall, in all likelihood it is the government that comes up with the required resources or some NGOs come forward to help.30 Thus the connection between local resources and schools in rural Bangladesh is tenuous at best.

Second, we provide direct evidence that contradicts a higher demand for resources by schools in heavy rainfall areas. If the teachers ‘ask’ for money from parents to cover losses due to flood, that will be reflected in ‘payments without receipt’ by the households in our data. Because the NHSC (2010) survey used for this study asked explicitly if the household paid any “bribes” (‘Ghush’ in Bengali) for admission, stipends, and free books. So it is highly unlikely (practically impossible) that the household will include any payments for rebuilding schools or buying supplies after flood as “bribes”. If any payment is made to the schools related to heavy rainfall (flood), they will be classified as ‘payments without receipt’. Note that ‘payments without receipt’ include payments that go to teacher’s pocket, rather than to the school, and this is the reason they are classified as corruption by Transparency International. It is reassuring that there is no significant difference in propensity to ‘pay without receipt’ across heavy rainfall and other areas (see row 8 from top in Table 1). If households were paying to offset resource shortfall in schools in heavy rainfall areas, we should observe the propensity to ‘pay without receipt’ to be significantly higher in heavy rainfall areas. One might worry that even though the propensity to pay is similar, the households

30The NGOs are financed by donor money.
in heavy rainfall areas are asked to pay larger amount. Interestingly, the evidence in Panel A of Table 1 (see row 9 from top) is exactly the opposite: the households in heavy rainfall areas pay on average 182 Taka as payment without receipt, while, the households in other areas pay 271 Taka.

A related question that may come to a reader’s mind at this point is whether it is likely that the heavy rainfall affects the income of the teachers negatively, and thus they ask for more bribes. Note, however, that the teacher salary is paid by the central government according to a national pay scale that does not vary by geographic location. This is true even for the teachers in the so-called private schools (although the number of private schools is much smaller in rural areas), thus their income is immune to rainfall differences or other weather shocks across regions. This implies that they are more likely to help smooth the consumption of the farmers in the village, rather than demanding money from poor households hit with a negative weather shock.

Risk Aversion and Bad Health

One might also worry that the households that live in heavy rain areas may suffer from bad health, and may be less risk averse. We provide evidence on possible higher incidence of bad health in heavy rainfall areas using two indicators: (i) chronic illness and (ii) ‘sick or injured’ in last thirty days. The evidence clearly shows that there is no significant differences between heavy rainfall and other areas (see rows 4 and 5 in Table 1). It is, however, important to appreciate that even if there were negative health effects of heavy rainfall, it would in no way constitute a rejection of our conclusions. Because bad health lowers the demand for schooling, and thus reduces the propensity to pay bribes, opposite to what we find from both the OLS and IV regressions reported later.

It is difficult to test empirically whether the households in heavy rainfall areas are less risk averse. A piece of indirect evidence comes from the observation that the less risk averse individuals would be more likely to migrate, because migration is in general a highly risky pursuit. As discussed above there is no evidence that migration propensities are significantly higher in heavy rainfall areas when compared to the other areas, if anything, the evidence indicates a somewhat lower propensity to migrate in the heavy rainfall areas (the difference is not statistically significant). We provide additional suggestive evidence on this issue by looking at precautionary grain
stocks and land rental. A household’s grain stocks would primarily be determined by its land and household size. To get a reasonable estimate of precautionary grain stocks, we thus need to partial out the effects of operated land and household size. The evidence in row 6 of Table 1 shows that grain stocks due to precautionary motive are not different in heavy rainfall areas. The evidence in Table 1 also shows that there is no significant difference in the incidence of land rental in heavy rainfall and other areas. The evidence on land rental should, however, be treated as tentative at best, because we are unable to separate out share contracts from other types of contracts. Note also that similar to the point made above regarding bad health, even if the households in the heavy rainfall (flood-prone) areas were less risk averse, it would not constitute an argument against our main findings. According to the standard bargaining models, a less risk averse household would be less likely to pay bribes, and would pay lower bribes conditional on bribing. Our empirical results later contradict both of these implications: the households in heavy rainfall areas are not less likely to pay bribes, or they do not pay lower bribes. Thus our conclusions that bribes are regressive both at the extensive and intensive margins cannot be explained away by any potential differences in unobserved risk preference and health characteristics.

Rainfall and Psychology of Corruption

In an interesting analysis of the effects of poverty on crime in 19th century Bavaria, Germany, Mehlum et al. (2006) use rainfall as an instrument for the price of Rye. They point out that a potential objection to the exclusion restriction imposed on rainfall is that it may affect the ‘mood’ of a prospective criminal and thus can exert a direct effect on their outcome variable, violent crime. A similar direct effect of rainfall on the propensity to bribe for education seems less plausible. But to be as clinical as possible, we exclude contemporaneous rainfall, i.e., the year of the NHSC survey 2010, and use the average rainfall over the period 2000-2009.

Institutions and Rainfall

With respect to potential differences in institutions between heavy rainfall and other areas, note that the relevant institutions we are interested in are those that deal with law and order.

31 It does not seem realistic, at least in the context of Bangladesh, that parents would decide differently regarding bribes for education of their children, depending on whether it is a rainy or sunny day! Note also that to explain our results reported later in the paper, heavy rainfall has to induce parents to bribe more, implying rainfall reduces the moral cost of paying bribes!
While historical rainfall differences across different countries may have affected settler mortality through disease environment and thus institutional development, a point emphasized by Acemoglu et al. (2001), it is difficult to see how it can be relevant for variations within a given country. Since the legal and enforcement institutions are designed for the whole country, it is extremely unlikely, if not impossible, that rainfall differences can create significant differences in monitoring and enforcement against corruption in schools across different regions of Bangladesh.\(^{32}\)

Validity of the Identification: A Falsification Test

Here we present evidence from a falsification exercise that builds on the observation that rainfall should not affect income significantly in large cities because they do not rely on agricultural activities. This is similar to the falsification test used by Bruckner and Ciccone (2011) in their analysis of window of opportunity for democratic change. In our case, if rainfall does not affect income, and the identifying assumption that rainfall affects bribes only through income is valid, then if we regress propensity to pay bribes and the amount of bribes on the rainfall based instrument directly in a sample of households living in the large cities, the instrument should not have any significant effect. There are 842 households in the NHSC 2010 survey in large cities (‘metropolitan cities’), out of which 753 availed educational services, and 246 paid bribes. When we regress the amount of bribes paid on the heavy rainfall dummy and a constant, the coefficient is 0.078 with a ‘t’ statistic equal to 0.35 (column (3) in the lower panel of Table 1). Both the coefficient and the ‘t’ statistic are barely affected if we control for income (see column (4) in the lower panel of Table 1). However, one may be concerned that the statistical insignificance of the heavy rainfall dummy in this case may be due largely to the small sample size (246 observations). We thus rely on the results for propensity to pay bribes where the sample size is more than three times as large (753 observations) for more credible evidence regarding the effects of heavy rainfall dummy on corruption in the large cities. The results are presented in columns (1) (without income as a control) and (2) (with income as a control) of the lower panel of Table 1. The evidence is clear and convincing. The heavy rainfall dummy does not have any statistically significant effect on the probability of paying bribes in the case of households that live in large cities; the ‘t’ statistic is 0.18 in both the specifications. This provides strong evidence in favor of

\(^{32}\)We use region fixed effects, so the rainfall variations within a region are used for identification. This implies that if there are any regional differences in institutions of law and order, they are mopped up by the fixed effects.
our identification scheme. Also, note that the inclusion of income does not affect the coefficient of heavy rainfall in any of the regressions, which suggests that heavy rainfall does not affect income significantly. This is confirmed by the results on income in the last column of the lower panel in Table 1; the ‘t’ statistic for the coefficient on heavy rainfall is 0.92 (P value 0.36).

(5) Data

The main data used in this paper comes from two sources: National Household Survey on Corruption (NHSC, 2010) conducted by the Transparency International of Bangladesh (TIB) and Bandyopadhyay and Skoufias (2012) for rainfall data. As noted above, we also use HIES (2010) data for providing supplementary evidence on the validity of our identification scheme. A brief discussion of the HIES (2010) data is provided in online appendix to this paper.

(5.1) NHSC (2010)

The data on corruption and bribe payments in acquiring educational services come from the National Household Survey on Corruption 2010 (NHSC, 2010). Using the Integrated Multipurpose Sampling (IMPS) Frame developed by the Bangladesh Bureau of Statistics as the sample frame, the survey selected 300 primary sampling units (PSUs) from 16 strata. The IMPS identified 1000 PSUs using the 2010 population census as the frame. The PSU borders are defined to be contiguous census enumeration blocks (usually about 2 blocks) and consists of 200 households. Note that with 200 households a PSU would be a small geographic unit in the context of Bangladesh where population density is very high. According to 2011 population census (preliminary report), per square kilometer population in Bangladesh is 964. The average household size in our sample is 5.84, which would imply that a PSU covers somewhat larger area than one square km. Thus PSU can be treated as a small village in most of the cases.

From each PSU, 20 households were selected randomly, giving us a total sample of 6,000 households. The sample used in our empirical study is however smaller (3760). Because we restrict the sample to those households who reported using educational services during the survey year to make sure that the households that face a zero probability of paying bribes for education are excluded. This reduces the sample size to 4876. Since incomes of households in metropolitan city corporations are not likely to be affected significantly by rainfall, we drop 851 households living in metropolitan areas. We also drop 257 households who reported having no school age
children (age 6-20 years) and 2 households that failed to report the gender of the household head. Our final sample thus consists of 3,760 households. Note that since we include 20 years old in the sample, it is in principle possible to have 14 years of schooling, assuming a child enters first grade at age 6. However, it is very unlikely that the maximum is more than 12 years (Higher Secondary School Certificate), because many children start school later, it is common to enter first grade at 7/8 years of age in the rural areas. According to the Education Watch household survey 2005, about 25 percent of the children aged 11-15 were still in primary schools in rural Bangladesh. Also, one has to migrate out of the village to enroll in a University or University college for ‘higher’ education (more than 12 years) which are primarily located in large towns and cities.

The NHSC 2010 collected detailed information on many different types of services and corruption faced by households in obtaining those services. In the case of education, an adult member of the household was asked detailed questions about facing bribery regarding different educational services. The bribe questions were organized in four main categories: bribe payment for (i) admission into school, (ii) receiving free books, (iii) receiving scholarships, and finally (iv) implicit bribe payment in the form of paying fees or donations without receipts. Using responses to these questions, we define an overall propensity to pay bribes for education services as a dummy which takes a value of unity if household reported to pay any of these four types of explicit or implicit bribe and zero otherwise. Since paying without receipts is very common in Bangladesh, and many people may not view it as paying bribes, we define an alternative propensity to pay bribe variable by excluding ‘paying without receipt’ as a bribe category. We also make a distinction between bribe paid for admission and all other types of bribe. Appendix Table A1 reports the summary statistics for different bribes related to education. About 49 percent of the households reported to have paid bribe including payments made without receipts. Among the sub-categories, bribe for school admission is reported by 11 percent, for free books by 6 percent and for drawing scholarship money by 4 percent of the households. All together 18 percent of the households paid bribe for admission, free books and scholarships. About 40 percent of the households reported making a payment without receipts. In the empirical analysis we present results on both the overall propensity to pay bribe (including payment without receipts) and the sub-categories as well. As to be
expected, the sample used for the analysis of the intensive margin (i.e., the amount of bribes paid) are smaller, about 1832 households, because about half of the households with children in school do not pay bribes. The amount of bribe paid includes payments made for any of the four different categories of bribe defined above. Among the households who reported positive amount of bribe payment, on average a household paid about Taka 241 during the survey year. To get a better sense of the financial burden imposed on the poor, it is instructive to look at the average bribe paid as a proportion of the household savings. The average bribes paid in schools is 9 percent of average annual household savings, while for the first and second quintile it amounts to 61 percent and 27 percent of annual household savings respectively. Bribes paid for schooling of the children can thus be a substantial burden on the poorest households.

The NHSC 2010 collected information on household size and composition, household head’s education and employment. We use this information to define control variables for our regression analysis. The survey also collected information about household’s total monthly income and expenditure. Summary statistics for all of these variables are provided in appendix Table A1.

(5.2) Rainfall Data

In order to define our identifying instrument, we need rainfall information which are not collected in the NHSC survey. The rainfall data are drawn from Bandyopadhyay and Skoufias (2012). The original data on rainfall come from the Climate Research Unit (CRU) of the University of East Anglia. The CRU reported estimated monthly rainfall for most of the world by the half degree resolution from 1902 to 2009. The CRU estimation combines weather station data with other information to arrive at the estimates. To estimate the thana level rainfall from the CRU data, Bandyopadhyay and Skoufias (2012) uses area weighted averages. To define our instruments, we use average rainfall during the 2000-2009 period. As noted before, we do not include contemporaneous rainfall (2010) to avoid any potential direct effect through factors such

\[33\] Previous versions of the CRU data were homogenized to reduce variability and provide more accurate estimation of mean rain at the cost of variability estimation. The version 3.1 data is not homogenized and thus allows for better variability estimates. Also, the estimates of rainfall near international boundaries are not less reliable as compared with those in the interior of the country, as the CRU estimation utilizes data from all the weather stations in the region.

\[34\] For example if an Upazila/thana covers two half degree grid cells for which CRU has rainfall estimates, then upzila/thana rainfall is estimated as the average rainfall of the two grid-cells, where the weights are the proportion of the area of the upzila/thana in each grid-cell. For details, please see Bandyopadhyay and Skoufias(2012).
as mood of people. As a robustness check, we also use average rainfall over 1999-2005 period as the identifying instrument.

(6) Preliminary Evidence

We begin with preliminary evidence on the extent and pattern of bribery in schools. The first interesting thing to note is that the average per capita income of the bribe payers (Tk. 1930 per month) is much lower compared to the average per capita income of non-payers (Tk. 2560 per month). This indicates that on an average the households that end up paying bribes for their children’s education are relatively poorer. To explore further the basic correlations in the data, we report a series of OLS regressions with alternative controls.

As households living in a village face similar choice in terms of school access and quality, we cluster standard error at the PSU level. This is also motivated by the fact that the first stage of stratified random sampling used in NHSC 2010 selected 300 PSUs from the IMPS sample frame of 1000 PSUs, as discussed above in the data section. All standard errors reported in this paper are clustered at PSU level if not reported otherwise. All regressions also include regional dummies (six regions called ‘divisions’) to account for any spatial differences.

(6.1) Propensity to Pay Bribes: OLS Results

The first four columns in Table 2 provide OLS estimates of the coefficients of per capita income in the regressions of propensity to pay bribes. The Probit estimates are similar to those reported in Table 2, and thus omitted for brevity. The results reported in column (1) are from a simple bivariate specification where propensity to pay bribe is regressed on per capita household income alone. The estimated coefficient has a negative sign and is statistically significant at the 1 percent level.

The results in column (2) of Table 2 are from a specification that controls for household head’s age, gender and religion (a dummy if head is muslim). We also include household size and number of school-age children as additional controls as these variables may affect a household’s need and

\footnote{As discussed before, PSU is a geographic unit approximately equal to a one square Km in our data set. All the conclusions in this paper remain valid if we cluster the standard errors at the Thana level which is a somewhat larger geographic unit than the PSU.}

\footnote{Note that although Rangpur became the 7th division at the beginning of 2010, the NHSC 2010 data are organized based on the six divisions before 2010.}
ability to pay bribes. The OLS estimate in column (2) still indicates a negative and statistically significant effect of per capita household income. Among the explanatory variables, household head’s age has a negative effect and the number of school age children a positive effect on the probability of paying bribes. The negative effect of household’s age may reflect the widely held view about less corruptibility of the older cohorts in Bangladesh.

The results in the next column of Table 2 (i.e., column (3)) shows the estimate when we add PSU fixed effect to specification in column (2). The PSU fixed effect controls for spatial heterogeneity in endowment (such as soil quality), variations in prices and wages, and also heterogeneity across schools. The estimates indicate a statistically significant and negative effect of income, although the magnitude is smaller.

Column 4 adds household head’s education and occupation to the specification in column (2). Since education and occupation are highly correlated with income, they are not ideal control variables when the interest is to estimate the total effects of income. They, however, may be proxies for ability and preference heterogeneity. The results in column (4) shows a smaller effect of income compared to column (2), but the conclusion that higher income deters bribe demands, or allows you to refuse to pay bribes, remain intact. The preliminary OLS regressions thus suggest strongly that bribery is regressive at the extensive margin. But as discussed above, the OLS estimate may underestimate the regressive effect of bribes, if ability and moral cost heterogeneity are important across households.

(6.2) Amount of Bribe Payment: OLS Results

Conditional on paying bribes, do richer households pay higher amount of bribes? To analyze this question, we start again with a simple specification where amount of bribe paid by a household is regressed on per capita household income after controlling for time-invariant regional differences. The results reported in column (5) of Table 2 shows a statistically significant and positive effect of income on the amount of bribe paid. The next specification controls for household head’s age, gender, religion and household size and number of school age children. Addition of these household level controls however leaves the magnitude and significance of income coefficient unchanged. The

\[37\] In rural Bangladesh, it is extremely unlikely, if not impossible, to have more than one schools in a PSU (approximately one square Km area on an average). Thus PSU fixed effect can alternatively be interpreted as school fixed effect.
estimates of income coefficients in columns (5) and (6) suggest that the richer households pay higher amount of bribes. A potential worry here is that the higher bribe payment by the rich could partly be due to the fact that they are paying for better school quality. Then bribes will in general be higher in richer villages assuming that the school quality is better there. To check this possibility, we introduce PSU level fixed effects in the regression. If higher bribes are paid for better school quality, then the inclusion of PSU fixed effects should lead to a reduction in the magnitude of the income coefficient. Column (7) reports the results from the OLS regression with PSU fixed effects. The coefficient of income (0.077) in column (7) is nearly indistinguishable from that in column (6) (0.079). This evidence suggests that bribe is paid not for better schooling quality; instead it is paid for ensuring access to school, and for scholarship money and ‘free’ books. The evidence that the school quality may not vary significantly across PSUs may be somewhat surprising to a reader familiar with the close connection between school quality and local income observed in many developed countries. But the close connection in the case of developed countries is driven by the fact that local taxes finance the schools. Thus there is no reason to expect such a relation in the context of rural Bangladesh where most of the schools are public and operate without any local financing. Column (8) controls for education and occupation of household head, consistent with expectations, the effect of income on bribe payments is a bit smaller, but remains statistically significant at the 1 percent level.

The positive coefficient of income in the amount of bribe regression suggests the presence of price discrimination in setting the bribe rate, bribes thus seem to be ‘weakly progressive’ at the intensive margin. In terms of information structure, this implies that the teacher has good information about the income of a household in the village. However, the OLS estimates can be significantly biased upward because of ability and preference heterogeneity as discussed above in the empirical strategy section. The estimated progressivity may thus be spurious.

38 Even the private schools are largely financed by government funds in rural Bangladesh or financed primarily by NGOs and direct donor funds. See the online appendix to this paper for a description of the primary (grades 1-5) and secondary (grades 6-10) education in Bangladesh.
(7) Estimates from an Instrumental Variables Approach

(7.1) Propensity to Pay Bribes: IV Estimates

The IV estimates for propensity to pay bribes for education services in schools are reported in Table 3 and 4. Table 3 reports the results for the case when the dependent variable is a dummy that takes on a value of 1 if a household pays bribes for admission into school or any other education services, with or without receipt. Table 4 reports disaggregate results for three different cases: (i) bribe for admission, (ii) bribe as payments without receipts, and (iii) bribes for admission, stipends etc. combined together (excluding payments without receipt).

In the first stage regressions corresponding to different specifications in Table 3, the coefficient of flood-prone area dummy is statistically significant at the 1 percent level and has the expected negative sign.

Column (1) in Table 3 reports the 2SLS estimates for propensity to pay bribes; the set of controls used are similar to that in column (2) of Table 2. The first stage regression corresponding to specification (1) in Table 3 yields a coefficient of -0.64 for the heavy rainfall dummy which is significant at the 1 percent level. The Angrist-Pischke F-statistics for exclusion of the rainfall dummy is 9.72 which is larger than the Stock-Yogo critical value for 10 percent maximum relative bias (9.08). The instrument (heavy rainfall dummy) thus shows excellent strength in explaining the variations in household income. The estimated effect of income on propensity to bribe has a negative sign and is large in magnitude (-0.153). It is also statistically significant with a p-value equal to 0.02. Note that the coefficient of income in the IV regression is larger in magnitude than that in the OLS regression (column (2), Table 2). This is consistent with our conjecture that OLS coefficient is biased toward zero (or positive) due to measurement error and positive selection on unobserved ability and moral cost heterogeneity.

The estimation results in column (1) are from a linear probability model. Since our dependent variable is binary, we also follow a procedure suggested by Rivers and Voung (1988) to estimate the causal effect in a probit model. The conditional maximum likelihood estimation (CMLE) method suggested by Rivers and Voung (1988) includes the estimated residual from the first stage as a control function term. The marginal effects (evaluated at the mean) from the CMLE are reported in column (2) of Table 3. The CMLE estimate of the marginal effect is negative and statistically
significant (p-value = 0.026). The first-stage residual term is also statistically significant at the 10 percent level confirming the importance of the endogeneity problem in the simple OLS/probit estimates. The absolute magnitude of the marginal effect of income is slightly larger (-0.168) in CMLE estimate compared with that from the linear probability model. As the estimate from the linear probability model is comparable to the CMLE estimate (marginal effect), we present results from linear probability model in the following analysis (the CMLE estimates for other specifications are available from the authors).

The specifications in columns (1) and (2) include a number of household level controls but education or occupation of household head are omitted. The reason behind this omission is that education and occupation are important determinants of income, and thus they may capture part of the income effect on bribing propensity when included as additional controls along with income. These variables may on the other hand work as indicators of ability and preference regarding children’s education and corruption. In the next regression (column 3), we include two dummies: an education dummy indicating if a household head has higher secondary (12 grade) or more schooling, and also an occupation dummy indicating head’s employment in professional jobs (e.g. doctor, engineer, large business establishments etc). The IV results in column (3) again confirm a statistically significant (at the 5 percent) negative effect of income on propensity to pay bribe. Interestingly the estimate of coefficient of income in column (3) is almost the same as the estimates in columns (1) and (2).

The income variable used so far in specifications (1-3) is per capita income which is a good indicator of the economic status of a household. One might wonder if our results are robust to alternative definition of the income variable. It is common in applied work to use log of total household income as an indicator of a household’s economic status. The last column in Table 3 reports the estimated effect of log of total income on the probability of paying bribes for education services. The estimated coefficient is negative and large in magnitude (-0.50). It is also statistically significant at the 5 percent level (P-value 0.02).

The results in Table (3) thus provide robust evidence that the effect of higher income on the probability of paying bribes for education of children is negative, thus confirming the conjecture that in villages the rich wield significant power and they are not likely to be subject to the bribe.
demands from school teachers.

(7.2) Propensity to Pay Bribes: Disaggregated IV Results

The dependent variable in Table (3) measures the propensity to pay bribes for any type of education services including admission, stipend (scholarship) and free books. In this broad definition, payments without receipt is also considered a form of bribe paying. But some might argue that paying without receipt may be a particularly noisy measure of corruption. We repeat our empirical analysis where different types of bribe payments are disaggregated, and the results are reported in Table (4). Column (1) in Table (4) reports the results from IV estimation when propensity to pay bribe for school admission is considered only. The dependent variable in column (2) is defined to include bribe payments for all different types of educational transactions except for payments without receipts. It thus includes bribe payment for admission and for receiving scholarship money and (supposedly) free books. The dependent variable in the third column is propensity to pay fees without receipts. The results in Table 4 show that income has a negative and statistically significant effect on propensity to pay bribe in two of the three categories, payments without receipts being the exception. The coefficient of income in the case of paying without receipt is negative but it is smaller in magnitude relative to that of other categories reported in columns (1) and (2) of Table 4. The coefficient is also not significant statistically at the conventional levels. Paying fees without receipts is common in Bangladesh, and may not be considered as bribes by many people. Our results suggest that the main effect of income on propensity to pay bribes comes from bribe payment particularly for admission into schools, getting scholarship money and ‘free’ books.

Discussion

The results reported above in Tables 3 and 4 show that the poor are more likely to pay bribes. The estimates of Table 3 imply that a one percent lower income leads to a 0.73 percent increase in the propensity to pay bribes. The negative effect of income of propensity to pay bribe points to important role of a household’s “bargaining strength”. The richer households – with better bargaining power – are less likely to pay bribes than the poorer households. This is a depressingly perverse outcome given that the goal of free public schooling is to help the poor households, not to provide free schooling for the children of rich and influential only!!
(7.3) Amount of Bribe Payment: IV Estimates

The IV results for the effects of income on the amount of bribes paid are reported in Table 5. We provide estimates both with and without correction for selection into paying bribes. The first three columns ((1)-(3)) show the conditional estimates without selection correction, and the last three ((4)-(6)) report unconditional estimates, i.e, they include a selection correction term. Since it is extremely difficult, if not impossible, to find credible exclusion restrictions for the selection equation, we take advantage of recent advances in the econometric literature that show that in the presence of heteroskedasticity, strong identification can be achieved even though there is no standard exclusion restrictions available (see, for example, Klein and Vella (2009a, 2010), Lewbel (2012), Rigobon (2003)). As emphasized by Rigobon (2003), heteroskedasticity can be viewed as a probabilistic shifter, similar to the shifts induced by a more standard instrument satisfying exclusion restrictions. We implement the approach developed by Klein and Vella (2009) which is appropriate for a Probit model. The approach involves two-stages: (i) in the first stage, a heteroskedastic probit model is estimated for the propensity to pay bribes, and the residuals are retrieved, (ii) in the second stage, the amount of bribe equation is estimated including the residual from heteroskedastic probit as the selection correction term. Note that it is sometimes argued that the selection equation is identified from the nonlinearity of the Normal CDF in a Probit model. But it is now widely appreciated that such identification is very weak and thus not credible. The weakness of the identification arises from the fact that observations only from the tails of the distribution are used for identification (see the discussion by Altonji et al (2005), Klein and Vella (2009), and Millimet and Tchernis (forthcoming)). Heteroskedasticity based identification allows one to use the observations in the middle where the CDF is approximately linear, and thus identification is not weak (for a discussion, see Klein and Vella (2009)). The available Monte Carlo evidence shows that Klein and Vella (2009, 2010) approach works well when there is substantial heteroskedasticity in the data, as is the case in our application (see Millimet and Tchernis (forthcoming), Ebbes et al. (2009)).

We begin the discussion of the results with the conditional estimates. These estimates are

For recent applications of heteroskedasticity based identification, see, for example, Schaffner (2002), Rigobon (2002), Rodrik and Rigobon (2005), Klein and Vella (2009b), Farre et al. (2012), Emran and Hou (2013), Emran and Shilpi (2012), Millimet and Tchernis (forthcoming), Mallick (2012). The recent release of Stata program IVREG2 has a routine to implement the heteroskedasticity based identification as developed by Lewbel (2012).
important, because they are the appropriate ones to answer the frequently asked question in news media and policy circles: among the households paying bribes, who pays more, rich or poor? The control variables in column (1) of Table (5) corresponds to that in column (1) in Table (3). The instrument for household income is again a dummy indicating areas which receive heavy rainfall. The specification in column (2) includes additional regressors indicating household head’s education above secondary level and head’s employment in skilled and professional occupations. Column (3) reports estimates for the case when the indicator of the economic status of a household is log of total income instead of per capita income. Although the estimates of income coefficients are negative in all of the first three regressions in Table (5), what is more striking is that none of them are statistically significant even at the 20 percent level. The numerical magnitudes are also very small. The results thus suggest that conditional on paying bribe, the amount paid as bribes does not vary in any significant way with the income level of the households. The unconditional estimates in last three columns are also similar; there is no evidence that income matters for the amount of bribes paid by a household.

A comparison of the OLS estimates in Table (2) with the IV estimates in Table (5) shows interesting differences. While the OLS results suggest a significant positive effect of income on the amount of bribe paid, we find no statistically significant effect of income on bribe amount in the IV regressions. The results thus indicate that the positive correlation between income and bribe paid in the OLS regressions is most likely driven by unobserved preference and ability heterogeneity. The direction of omitted variables bias in the amounts of bribes paid is thus same as that in the propensity to pay bribes discussed earlier. This consistency across the results enhance our confidence in the credibility of the results. The results underscore the importance of credible identification in resolving the debate about possible unequal burden of corruption on rich and poor households.

(8) Robustness of the IV Results

Alternative Sets of Controls

The IV results reported in Tables (3)-(5) are based on two sets of control variables. Here we report IV results for three more specifications with alternative sets of control variables. The first specification reports estimates from a bare bone specification that includes only the regional
fixed effect and no household or individual level controls. This is motivated by potential concerns that household level controls such as household size may be affected by income, and thus they may not be appropriate as controls. As can be seen from columns (1) and (2) of Table 6, the estimated effects of income on propensity to pay bribe and on the amount of bribes remain essentially unchanged when compared to the main results reported in Table (3) and (5). The next two columns of Table 6 report results from a specification that adds age, sex and religion of the household head as additional covariates; the results remain robust.

The third specification deals with the possibility that the potential negative effects of heavy rainfall (and flood) on wages may induce substitution effects. As we discussed earlier, even if heavy rainfall affects child wage negatively, the substitution effect is not relevant for our analysis because we deal with households that have already decided to send kids to school. However, to address any lingering doubts in a reader’s mind, we report IV estimates that control for agricultural wages and spatial cost of living index (using our main IV, the heavy rainfall dummy based on the period 2000-2009). The results are reported in columns (5) and (6) in Table 6. They confirm the argument that the potential negative effects on wages and prices are not relevant for our results.

Alternative Time Period for the Rainfall Instrument

In this section we report results that deal with the issue of robustness of the IV estimates with respect to alternative periods of rainfall as the basis for defining our instrument: heavy rainfall dummy. The heavy rainfall dummy we so far used for identification is defined on the basis of 10 years data on average rainfall for the period 2000-2009. If our estimates are in fact the effects of ‘economic status’ (i.e, permanent income) of a household on bribing in schools, then the estimates should not change significantly if we use average rainfall data from a somewhat different period. We checked the sensitivity of the estimates for alternative periods, and it is reassuring that the estimates remain robust. For example, consider the estimates using rainfall data for 1999-2005 presented in columns (7) and (8) in Table 6, they are almost identical to the estimates we found earlier using the 2000-2009 rainfall data.

Discussion and Interpretation of the IV Results

It is now widely appreciated that, when the monotonicity condition is satisfied, the IV estimates provide us with Local Average Treatment Effect (LATE), i.e., they provide estimates
of the average causal effect for those households which are affected by the instrument (i.e., the ‘compliers’). Since we exploit variations in the rainfall for our identification, our estimates are most relevant for those households whose income primarily depends on the agricultural sector. However, note that flood in a village not only affects the agricultural sector, it also affects the income in the rural non-farm sector adversely, as the demand for non-farm products goes down. Thus our IV estimates are also relevant for the households that rely more on no-farm activities such as trading and small business financed, for example, by microcredit in last three decades in Bangladesh. The IV estimates are thus likely to be relevant for the vast majority of the households in the villages and small towns in Bangladesh.

A related important point is that our estimates pertain to a household’s long-term (or permanent) income, because we use ten year average rainfall data, thus the short-run rainfall variations are not used for identification here. This is important because this strengthen’s the case for interpreting the effects of income as the effects of economic status of a household including the associated bargaining power. The results remain robust when we use alternative time periods for rainfall data, such as 1999-2005.

Note that a strict interpretation of the empirical results according to the model developed in the conceptual framework section implies that the negative coefficient on income at the extensive margin captures the cases where the teacher does not ask for bribes, but it does not reflect the cases where the household refuses after facing a bribe demand. This is because the refusal depends on part of the bargaining power that is uncorrelated with income. However, the income information available to the teacher in many cases may be less precise than the income estimate we have from the household survey. Thus the estimated effect is likely to reflect, at least partly, the ‘refusal power’ of the households after the bribe demand is made.

Another issue relevant for the interpretation of the evidence reported in this paper is that the magnitudes of the income coefficients in the IV estimates for the propensity to bribe vary significantly depending on the definition of the income variable. The point estimate of the effects of income is much larger when we use log of total household income as the indicator of a household’s economic status, compared to per capita income as the relevant indicator. A reader might thus be unsure about the relevant magnitudes. To standardize the estimated effects, we use the estimates
from Tables (3) and (5) to produce elasticity estimates. When income variable is defined as per capita household income, the elasticity estimate implies that a one percent increase in income reduces the propensity to pay bribe by -0.73 percent. The corresponding elasticity estimate from the specification with log of total household income is larger: -1.06. The effects of income on propensity to pay bribe is thus substantial. The difference in the elasticity estimates between per capita income and log of total income reflects the fact that the household size increases with the income in the data.

Conclusions

Using household survey data from Bangladesh, this paper provides robust evidence on the distributional effects of corruption in the form of bribes taken by teachers in schools. We exploit variations in ten year average rainfall across villages for identification of the effects of the household income on the propensities to bribe for education services, and on the amounts paid as bribes. The IV estimates provide convincing evidence that income has a substantial negative effect on the probability that a household pays bribe for its children’s education, implying that bribery is regressive at the extensive margin. According to our IV estimates, a one percent lower household income increases the probability that parents need to pay bribes to teachers by 1.06 percent. This evidence is consistent with an interpretation that the poor faces a higher probability of bribe demand and they cannot refuse to pay because of their weak bargaining power, while the rich, given their strong bargaining power, may not need to bribe for the schooling of their children. We find no statistically significant effect of income on the amount of bribe paid, implying that bribes are also regressive at the intensive margin: the poor pay more as a share of their income. As noted before, bribes impose a significant financial burden on the poor; as a share of household savings the average bribe payment in our data set is 61 percent for households in the poorest quintile of the income distribution.

The theoretical framework developed for the empirical analysis shows that the conditions required for bribes paid by households to be progressive are strong, especially in a typical developing country where legal and enforcement institutions are weak, and law is enforced selectively in favor of rich and powerful. Bribery is unlikely to be progressive in such a context, both at the intensive and extensive margins, and one should be circumspect when finding progressivity in household
data from developing countries. A related important conclusion of this paper is that one may be susceptible to finding spurious progressive effects when estimating the burden of bribes across households using OLS regressions due to unobserved ability and preference heterogeneity. It is thus important to develop a careful and credible identification scheme to correct for the biases due to unobserved heterogeneity and measurement error.

The evidence that bribery in schools is regressive both at the extensive and intensive margins is germane to the debate on the increasing inequality and a lack of economic mobility in developing countries. The recent evidence presented by Hertz et al. (2007) shows that intergenerational persistence in schooling, a standard measure of immobility in education, does not show any improvements in a large number of developing countries over the last few decades. In fact, in the case of Bangladesh, they find that intergenerational educational mobility has worsened over the years. This is also consistent with the evidence from HIES 2010 on educational inequality in rural Bangladesh: the probability that a household has a child not enrolled in primary school is 26 percent for the first income quintile, it decreases monotonically with an increase in income and reduces to 13 percent for the richest quintile. This persistent or widening inequality may seem difficult to reconcile with the standard theory developed by Becker and Tomes (1979) and Solon (2004), according to which interventions such as free schooling should improve educational mobility and reduce inequality. Our analysis points to corruption in schools as a potentially important factor behind the persistence of educational immobility and inequality. Even though schooling is supposed to be free (or highly subsidized) for the poor to make the ‘playing field’ level, the evidence presented in this paper suggests that the burden of bribery in schools falls disproportionately on the poor households, and skews the ‘playing field’ against them. The widely implemented educational interventions thus may not be as effective in reducing inequality if complementary reforms to tackle corruption in schools are not implemented.

\[\text{39}\]

\[\text{40}\] We emphasize here that our framework is not designed for bribery faced by firms. For a bargaining model of bribery involving firms, see Svensson (2003).

\[\text{41}\] The recent evidence on India and China also shows that despite high income growth there have been little improvements in intergenerational educational mobility. For evidence on India, see Emran and Shilpi (2012), Azam and Bhatt (2012), and on China see Emran and Sun (2011).
References

World Bank (2010), Silent and Lethal How Quiet Corruption Undermines Africa’s Development Effort, IBRD/ World Bank, Washington DC.
Online Appendix: Not for Publication

Proof of Proposition 1

(1.a) A teacher does not ask for bribes facing a household with income \(y_i < \tilde{y}(A_H, M_L) \) where \(\tilde{y}(A_H, M_L) \) is defined by the following equation:

\[
\left\{ 1 - \delta \right\} \left[B^* (\tilde{y}(A_H, M_L)) + w \right] = w
\]

(10)

where the maximum bribe a household \(i \) is willing to pay and still send the child to school is \(B^*_i \), implying that at this bribe the participation constraint (3) in the main text of the paper binds. Now note that within the subset of households \((A_H, M_L) \), the maximum bribe that can be extracted is a negative function of income, given strict concavity of the utility function. The proof then completes by the observation that \(\tilde{y}(A_H, M_L) = \min_i (\tilde{y}(A_i, M_i)) \) where \(\tilde{y}(A_i, M_i) \) is defined analogously to equation (10) above.

(1.b) A household \(i \) is willing to pay a positive amount of bribe and send the kid to school if \(u'(y_i) < q(A_i) - M_i \). Denote the income threshold \(y^L(A_H, M_L) \) such that the following holds:

\[u'(y^L(A_H, M_L)) = q(A_H) - M_L. \]

So among the households with the highest ability and lowest moral cost, any household with income \(y_i < y^L(A_H, M_L) \) is unwilling to pay even an infinitesimally small positive amount of bribes. Now observe that \(q(A_H) - M_L = \max_i (q(A_i) - M_i). \) Since \(u(y_i) \) is concave, this implies that \(y^L(A_H, M_L) = \min_i (y^L(A_i, M_i)). \)

(1.c) Consider the subset of households with a given combination of ability and moral cost \(A_i, M_i \). So the heterogeneity in income within the group derives from endowment differences. By implicit function theorem:

\[
\frac{\partial B_i^*(A_i, M_i)}{\partial y_i} = \frac{u' (y_i - B_i) - u' (y_i)}{u' (y_i - B_i)} > 0, \quad \forall B^*_i > 0, \text{ because } u(.) \text{ is strictly concave.}
\]

Since the income function implies that higher ability and lower moral cost increase income given a resource endowment \(E_i \), the teacher can extract more bribes when facing a household with high ability and low moral cost.

(1.d) A progressive bribe function implies that the elasticity of bribe amount with respect to
income is greater than 1. Thus we require:

$$\frac{\partial B_i^*}{\partial y_i} \frac{y_i}{B_i^*} > 1 \Rightarrow 1 - \frac{u'(y_i)}{u'(y_i - B_i^*)} > \frac{B_i^*}{y_i}$$ \hspace{1cm} (11)

Because from (1.c) above we have:

$$\frac{\partial B_i^*(A_i, M_i)}{\partial y_i} = 1 - \frac{u'(y_i)}{u'(y_i - B_i^*)}$$ \hspace{1cm} (12)

Note that the higher the second derivative of the utility function (in absolute magnitude), the more likely it is that inequality (11) will be satisfied.

Consider the isoelastic utility function:

$$u(c) = \begin{cases} \frac{c^{1+\gamma-1}}{1-\gamma} & \text{for } \gamma > 0 \text{ and } \gamma \neq 1 \\ \log(c) & \text{for } \gamma = 1 \end{cases}$$

In this case, inequality (11) reduces to

$$1 - \left[\frac{(y_i - B_i^*)}{y_i} \right]^{\gamma} > \frac{B_i^*}{y_i}$$ \hspace{1cm} (13)

An inspection of the left hand side of inequality (13) shows that it reduces to $\frac{B_i^*}{y_i}$ when $\gamma = 1$. Thus inequality (13) is violated even though utility function is concave, when $\gamma \leq 1$. To get a progressive bribe function, we require a utility function with stronger diminishing marginal utility than implied by the log function.

Data Description: HIES 2010

The HIES is considered to be a high quality household survey implemented by Bangladesh Bureau of Statistics (BBS) with assistance from the World Bank. The survey utilizes the same three stage stratified sampling strategy to select a nationally representative sample as the NHSC. The survey selected 612 PSUs randomly. From each PSU, 20 households were selected. The total sample size is 12,240 households. We follow the same strategy to select our sample as we did in the case of NHSC 2010. We dropped households living in metropolitan areas, and households who did not have school age children or who did not have children enrolled in school. Our final
sample size is 7,031 households. The total household income in NHSC 2010 is Taka 12,821 which is comparable to the household income in HIES 2010: Taka 13,712.

Primary and Secondary Education in Rural Bangladesh

The primary schooling (grades 1-5) in rural Bangladesh is dominated by public schools, although there are also private and NGO operated schools. Almost 80 percent of enrollment are into public and registered private schools. The public schools are financed by government and a large part of the financing of the private schools also come from the government. Bangladesh Government bears the 90 percent of the salary of the teachers in registered private schools and also allocates funds for improvements and maintenance of the school infrastructure. The NGO schools provide non-formal education to the poorest section of the income distribution and are primarily located in areas not served by public or private schools.

Bangladesh enacted compulsory primary education in 1990. It established a six member ‘compulsory primary education committee’ in the lowest tier of local government, the union (a collection of villages). The committee was to “ensure admission and regular presence of all children of the area in primary schools” (GOB, 1990). The 1990 Act also had provisions for penalties for non-compliance. If the local committee or the parents were unable to ensure attendance of the children in the village, they could be fined up to Tk. 200. But in reality the penalty for noncompliance was not enforced. The primary schools in rural areas, public, NGO, or private, are free for every child; there is no tuition or examination fees. Government provides free books in all primary schools.

The secondary schooling (grades 6-10) infrastructure is dominated by ‘private schools’, public schools play a smaller role. However, most of the ‘private secondary schools’ (registered ones) are primarily financed by the government, including teacher salary, and capital spending, maintenance and repair of the schools. Tuition fees are charged in most of the secondary schools, but the cost of education is lower in the religious secondary schools (Education Watch, 2005). Books are freely distributed by government in all secondary schools. In January 1994, stipend was introduced for girls attending secondary schools. Under the girls’ stipend program, all girls in rural areas who enter secondary school are eligible for a monthly sum ranging from 25 taka in grade 6 to 60 taka in grade 10. They also receive additional payments for new books. Three conditions need to be met...
for receiving stipend: (i) a minimum of 75 percent attendance rate, (ii) at least a 45 percent score in annual school exams, and (iii) staying unmarried until sitting the Secondary School Certificate or turning 18. The girls stipend program seems to have a strong effect and the girls enrollment in secondary schools have increased substantially in recent years.

Net enrollment rates in primary schools for boys and girls were 83 percent and 81 percent in 1996, and 84 and 96 percent in 2004. Quality of education is in general low, and grade repetition and drop outs are major problems. The survival rate in primary school was 55.3 percent in 1991 and 53.5 percent in 2004, showing little improvements. The net enrollment rate in secondary schools was 38 percent for boys and 50 percent for girls in 2005 (Education Watch, 2005). There is clear evidence that poor households are at a disadvantage: the net enrollment rate in secondary schools was 25 percent for food deficit households and 59 percent for food surplus households.

References on Education in Bangladesh

(3) Education Watch (2005), The State of Secondary Education: Progress and Challenges, Dhaka, Bangladesh.
Table 1: Evidence on the Validity of the Identification

<table>
<thead>
<tr>
<th></th>
<th>Heavy Rainfall</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
<td>Difference</td>
<td>t-stat</td>
<td>p-value</td>
</tr>
<tr>
<td>Migration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of female in household</td>
<td>0.487</td>
<td>0.480</td>
<td>-0.007</td>
<td>1.110</td>
<td>0.270</td>
</tr>
<tr>
<td>Head is female</td>
<td>0.117</td>
<td>0.128</td>
<td>0.011</td>
<td>0.850</td>
<td>0.400</td>
</tr>
<tr>
<td>Migration in response to shocks*</td>
<td>0.042</td>
<td>0.024</td>
<td>-0.018</td>
<td>1.350</td>
<td>0.180</td>
</tr>
<tr>
<td>Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic Illness*</td>
<td>0.146</td>
<td>0.149</td>
<td>0.003</td>
<td>0.680</td>
<td>0.500</td>
</tr>
<tr>
<td>Sick/injured during last 30days*</td>
<td>0.204</td>
<td>0.205</td>
<td>0.000</td>
<td>0.070</td>
<td>0.940</td>
</tr>
<tr>
<td>Risk Aversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precautionary Grain Stock*</td>
<td>60.556</td>
<td>59.139</td>
<td>-1.417</td>
<td>0.060</td>
<td>0.950</td>
</tr>
<tr>
<td>Land rental*</td>
<td>0.261</td>
<td>0.279</td>
<td>0.018</td>
<td>0.410</td>
<td>0.700</td>
</tr>
<tr>
<td>Payments Without Receipt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propensity to Pay Without Receipt</td>
<td>0.398</td>
<td>0.409</td>
<td>-0.011</td>
<td>-0.62</td>
<td>0.540</td>
</tr>
<tr>
<td>Amount Paid Without Receipt</td>
<td>271</td>
<td>182</td>
<td>89</td>
<td>1.40</td>
<td>0.160</td>
</tr>
<tr>
<td>Falsification Test: Effects of Heavy Rainfall on Corruption in Large Cities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propensity to Pay</td>
<td>Amount of Bribe</td>
<td>Income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy Rainfall Dummy</td>
<td>0.102</td>
<td>0.099</td>
<td>0.078</td>
<td>0.082</td>
<td>0.33</td>
</tr>
<tr>
<td>(t Statistic)</td>
<td>(0.18)</td>
<td>(0.18)</td>
<td>(0.35)</td>
<td>(0.37)</td>
<td>(0.92)</td>
</tr>
<tr>
<td>Income</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Number of Observations</td>
<td>753</td>
<td>753</td>
<td>246</td>
<td>246</td>
<td>753</td>
</tr>
</tbody>
</table>

Note: *Data source is Household Income and Expenditure survey (2010)
Table 2: Propensity to Pay Bribes: Preliminary Results (OLS)

<table>
<thead>
<tr>
<th></th>
<th>Propensity to pay bribe</th>
<th>Amount Paid as bribe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Per Capita Income</td>
<td>-0.043</td>
<td>-0.038</td>
</tr>
<tr>
<td></td>
<td>(9.16)***</td>
<td>(8.25)***</td>
</tr>
<tr>
<td>Household size</td>
<td>-0.010</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td>(2.07)***</td>
<td>(1.96)*</td>
</tr>
<tr>
<td>No. of School age children</td>
<td>0.057</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>(6.21)***</td>
<td>(5.94)***</td>
</tr>
<tr>
<td>Age of Head</td>
<td>-0.002</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(3.82)***</td>
<td>(4.00)***</td>
</tr>
<tr>
<td>Head Female</td>
<td>-0.011</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>(0.40)</td>
<td>(0.65)</td>
</tr>
<tr>
<td>Head Muslim</td>
<td>0.016</td>
<td>-0.013</td>
</tr>
<tr>
<td></td>
<td>(0.48)</td>
<td>(0.37)</td>
</tr>
<tr>
<td>Head's education secondary or above</td>
<td>-0.141</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7.13)***</td>
<td></td>
</tr>
<tr>
<td>Head's occupation (professional=1)</td>
<td>-0.086</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.18)***</td>
<td></td>
</tr>
<tr>
<td>Regional Fixed effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Village Fixed effect</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Observations</td>
<td>3760</td>
<td>3760</td>
</tr>
</tbody>
</table>

Notes: (1) Standard errors are clustered at the primary sampling unit (PSU) level
(2) Robust t statistics in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%
Table 3: Effects of Household Income on the Propensity to Pay Bribe: IV estimates

<table>
<thead>
<tr>
<th>Propensity to pay</th>
<th>Main Specification</th>
<th>Conditional MLE</th>
<th>Additional Controls</th>
<th>Alt. Income Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Capita Income</td>
<td>-0.153</td>
<td>-0.168</td>
<td>-0.158</td>
<td>0.498</td>
</tr>
<tr>
<td>log(income)</td>
<td>(2.34)**</td>
<td>(2.30)**</td>
<td>(2.09)**</td>
<td></td>
</tr>
<tr>
<td>Household size</td>
<td>-0.015</td>
<td>-0.017</td>
<td>-0.017</td>
<td>0.054</td>
</tr>
<tr>
<td>No. of School age children</td>
<td>0.016</td>
<td>0.018</td>
<td>0.019</td>
<td>0.011</td>
</tr>
<tr>
<td>Age of Head</td>
<td>-0.002</td>
<td>-0.002</td>
<td>-0.002</td>
<td>-0.000</td>
</tr>
<tr>
<td>Head Female</td>
<td>0.027</td>
<td>0.028</td>
<td>0.025</td>
<td>-0.035</td>
</tr>
<tr>
<td>Head Muslim</td>
<td>0.065</td>
<td>0.068</td>
<td>0.067</td>
<td>0.080</td>
</tr>
<tr>
<td>First Stage Residual</td>
<td>0.123</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy Rainfall Dummy</td>
<td>-0.642</td>
<td>-0.642</td>
<td>-0.555</td>
<td>-0.198</td>
</tr>
<tr>
<td>Angrist-Pischke F Statistic</td>
<td>9.72</td>
<td>9.72</td>
<td>12.79</td>
<td>8.38</td>
</tr>
</tbody>
</table>

Sign and Significance of the Instrument in First stage

<table>
<thead>
<tr>
<th>Heavy Rainfall Dummy</th>
<th>-0.642</th>
<th>-0.642</th>
<th>-0.555</th>
<th>-0.198</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angrist-Pischke F Statistic</td>
<td>9.72</td>
<td>9.72</td>
<td>12.79</td>
<td>8.38</td>
</tr>
</tbody>
</table>

Notes: (1) All regressions include regional dummies. Standard errors are clustered at the Primary Sampling Unit (PSU) level. (2) 2SLS estimates are reported except for column 2. (3) Robust z statistics in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%

Table 4: Effects of Household Income on the Propensity to Pay Different Types of Bribes

<table>
<thead>
<tr>
<th>Propensity to pay</th>
<th>Admission</th>
<th>Admission and others</th>
<th>Payment w/o Receipt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Capita Income</td>
<td>-0.145</td>
<td>-0.140</td>
<td>-0.090</td>
</tr>
<tr>
<td></td>
<td>(2.62)***</td>
<td>(2.47)**</td>
<td>(1.46)</td>
</tr>
<tr>
<td>Individual and Household Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Regional Fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Sign and Significance of the Instrument in First stage

<table>
<thead>
<tr>
<th>Heavy Rainfall Dummy</th>
<th>-0.642</th>
<th>-0.642</th>
<th>-0.642</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angrist-Pischke F Statistic</td>
<td>9.72</td>
<td>9.72</td>
<td>9.72</td>
</tr>
</tbody>
</table>

Notes: (1) Standard errors are clustered at primary sampling unit (PSU) level (2) Robust z statistics in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1% (3) Individual and household controls: Age, Gender, Religion of Household head, Household Size and Number of schools age children.
Table 5: Effects of Household Income on the Amount of Bribe Paid: IV estimates (2SLS)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Amount of Bribe Paid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conditional on paying</td>
</tr>
<tr>
<td></td>
<td>Main Controls</td>
</tr>
<tr>
<td>Per Capita Income</td>
<td>-0.006</td>
</tr>
<tr>
<td>log(Household Income)</td>
<td>-0.017</td>
</tr>
<tr>
<td>Household size</td>
<td>-0.012</td>
</tr>
<tr>
<td>No. of School age children</td>
<td>-0.012</td>
</tr>
<tr>
<td>Age of Head</td>
<td>0.003</td>
</tr>
<tr>
<td>Head Female</td>
<td>-0.033</td>
</tr>
<tr>
<td>Head Muslim</td>
<td>0.016</td>
</tr>
<tr>
<td>Head's education secondary or above</td>
<td>0.284</td>
</tr>
<tr>
<td>Head's occupation (professional=1)</td>
<td>0.382</td>
</tr>
<tr>
<td>Selection Term</td>
<td>-3.311</td>
</tr>
</tbody>
</table>

Sign and significance of the Instrument in First stage

<table>
<thead>
<tr>
<th>Selection Term</th>
<th>Heavy Rainfall Dummy</th>
<th>Angrist-Pischke F Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.570</td>
<td>-0.450</td>
</tr>
<tr>
<td></td>
<td>(3.26)***</td>
<td>(2.99)***</td>
</tr>
<tr>
<td></td>
<td>10.62</td>
<td>8.95</td>
</tr>
</tbody>
</table>

Notes: (1) All regressions include regional dummmies. Standard errors are clustered at primary sampling unit level.
(2) Robust z statistics in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%
<table>
<thead>
<tr>
<th>Regional Fixed Effect</th>
<th>Indiv. and Household Controls</th>
<th>IV based on 1999-2005 Rainfall</th>
<th>Control for Agri Wage & Spatial Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Propensity to Pay</td>
<td>Amount Paid</td>
<td>Propensity to Pay</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Per capita income</td>
<td>-0.149</td>
<td>0.003</td>
<td>-0.153</td>
</tr>
<tr>
<td></td>
<td>(2.46)**</td>
<td>(0.04)</td>
<td>(2.52)**</td>
</tr>
<tr>
<td>Indiv. and Household Controls</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Regional Fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Sign and Significance of the Instrument in First stage

<table>
<thead>
<tr>
<th>Heavy Rainfall Dummy</th>
<th>Angrist-Pischke F Statistic</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3760</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1832</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3760</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1832</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3760</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1832</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3718</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1810</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: (1) All regression includes regional dummies. Standard errors are clustered at primary sampling unit (PSU) level.
(2) Indiv. and Household Controls: Household head's age, gender and religion; Household size, No. of school age children
(3) Robust z statistics in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%
<table>
<thead>
<tr>
<th>Variables</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propensity to pay bribe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All including payment w/o receipts</td>
<td>3760</td>
<td>0.49</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>For Admission</td>
<td>3760</td>
<td>0.11</td>
<td>0.31</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>For Scholarship payments</td>
<td>3760</td>
<td>0.04</td>
<td>0.20</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>All excluding payment w/o receipts</td>
<td>3760</td>
<td>0.18</td>
<td>0.39</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Payment w/o receipts</td>
<td>3760</td>
<td>0.40</td>
<td>0.49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Amount of bribe paid annually ('000 Taka)</td>
<td>1832</td>
<td>0.24</td>
<td>0.98</td>
<td>0.01</td>
<td>28.48</td>
</tr>
<tr>
<td>Monthly Per Capita household income (PCI) ('000 Taka)</td>
<td>3760</td>
<td>2.26</td>
<td>1.94</td>
<td>0.2</td>
<td>31.83</td>
</tr>
<tr>
<td>PCI of households paying bribe ('000 Taka)</td>
<td>1832</td>
<td>1.93</td>
<td>1.57</td>
<td>0.2</td>
<td>16.00</td>
</tr>
<tr>
<td>PCI of households not paying bribe ('000 Taka)</td>
<td>1928</td>
<td>2.58</td>
<td>2.20</td>
<td>0.3</td>
<td>31.83</td>
</tr>
<tr>
<td>Log (total household income)</td>
<td>3760</td>
<td>9.21</td>
<td>6.67</td>
<td>6.91</td>
<td>12.21</td>
</tr>
<tr>
<td>Rainfall (mean over last 10 years) (milimetre)</td>
<td>3760</td>
<td>1598</td>
<td>423</td>
<td>1009</td>
<td>3299</td>
</tr>
<tr>
<td>Standard Deviation of Rainfall (mean over last 10 yr)</td>
<td>3760</td>
<td>217</td>
<td>63</td>
<td>89</td>
<td>552</td>
</tr>
<tr>
<td>Household Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household size</td>
<td>3760</td>
<td>5.84</td>
<td>2.17</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>No. of School age children</td>
<td>3760</td>
<td>2.11</td>
<td>1.06</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Age of Head</td>
<td>3760</td>
<td>49.16</td>
<td>13.17</td>
<td>18</td>
<td>110</td>
</tr>
<tr>
<td>Head female</td>
<td>3760</td>
<td>0.12</td>
<td>0.32</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Head Muslim</td>
<td>3760</td>
<td>0.86</td>
<td>0.35</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Head's education secondary or above</td>
<td>3760</td>
<td>0.33</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Head's occupation (professional=1)</td>
<td>3760</td>
<td>0.09</td>
<td>0.28</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Data Source: National Household Survey on Corruption (NHSC), 2010