MTH3150 - Algebra and number theory 2 - 2019

6 points, SCA Band 2, 0.125 EFTSL

Undergraduate - Unit

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.

Faculty

Science

Organisational Unit

School of Mathematical Sciences

Chief examiner(s)

Dr Heiko Dietrich

Coordinator(s)

Dr Heiko Dietrich

Unit guides

Offered

Clayton

  • Second semester 2019 (On-campus)

Prerequisites

MTH2121 or MTH3121

Synopsis

Rings, fields, ideals, number fields and algebraic extension fields. Coding theory and cryptographic applications of finite fields. Gaussian integers, Hamilton's quaternions. Euclidean Algorithm in rings.

Outcomes

On completion of this unit students will be able to:

  1. Formulate abstract concepts in algebra;
  2. Use a variety of proof-techniques to prove mathematical results;
  3. Work with the most commonly occurring rings and fields: integers, integers modulo n, matrix rings, rationals, real and complex numbers, more general structures such as number fields and algebraic extension fields, splitting fields, algebraic integers and finite fields;
  4. Understand different types of rings, such as integral domains, principal ideal domains, unique factorisation domains, Euclidean domains, fields, skew-fields; amongst these are the Gaussian integers and the quaternions - the best-known skew field;
  5. Apply the classification of finite fields;
  6. Generalise known concepts over the integers to other domains, for example, use the Euclidean algorithm or factorisation algorithms in the algebra of polynomials;
  7. Construct larger fields from smaller fields (field extensions and splitting fields);
  8. Apply field theory to coding and cryptography; understand the classification of cyclic codes.

Assessment

End of semester examination (3 hours): 60% (Hurdle)

Continuous assessment: 40% (Hurdle)

Hurdle requirement: To pass this unit a student must achieve at least 50% overall and at least 40% for both the end-of-semester examination and continuous assessment components.

Workload requirements

Three 1-hour lectures and one 2-hour applied class per week

See also Unit timetable information

This unit applies to the following area(s) of study