Monash University Procedure

<table>
<thead>
<tr>
<th>Procedure Title</th>
<th>Using Biologicals and Animals Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Policy</td>
<td>OHS Policy</td>
</tr>
<tr>
<td>Date Effective</td>
<td>November 2015</td>
</tr>
<tr>
<td>Review Date</td>
<td>November 2018</td>
</tr>
<tr>
<td>Procedure Owner</td>
<td>Manager, OH&S</td>
</tr>
<tr>
<td>Category</td>
<td>Operational</td>
</tr>
<tr>
<td>Version Number</td>
<td>4.1</td>
</tr>
<tr>
<td>Content Enquiries</td>
<td>Bernadette.Hayman@monash.edu</td>
</tr>
</tbody>
</table>

Scope

This document applies to all staff, students, visitors and contractors who either use biologicals and/or animals or perform work in areas where biologicals and/or animals are present at an Australian campuses of Monash University.

Purpose

The purpose of this document is to instruct staff, students, visitors and contractors who either use biologicals and/or animals or perform work in areas where biologicals and/or animals are used at Monash University to ensure that work is performed in accordance with the relevant legislative requirements.

Contents

1. Abbreviations ... 3
2. Definitions ... 3
3. Facilities & Safe Work Practices for Work with Biologicals 4
4. Human Clinical Samples ... 7
5. Micro-Organisms .. 7
6. Animals .. 8
7. Health Surveillance .. 10
8. Immunisation ... 10
9. Importation of Biologicals .. 10
10. Genetically Modified Organisms ... 11
11. SDS .. 11
12. Risk Management ... 11
13. Safe Work Instructions ... 12
14. Training .. 12
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Waste Disposal</td>
<td>13</td>
</tr>
<tr>
<td>16. Emergencies Involving Biologicals and Animals</td>
<td>14</td>
</tr>
<tr>
<td>17. Responsibility for Implementation</td>
<td>15</td>
</tr>
<tr>
<td>18. Records</td>
<td>16</td>
</tr>
<tr>
<td>19. Document History</td>
<td>18</td>
</tr>
<tr>
<td>20. APPENDIX I - Examples of Zoonotic Diseases</td>
<td>19</td>
</tr>
<tr>
<td>21. APPENDIX II – Risk Group 2 Organisms</td>
<td>20</td>
</tr>
<tr>
<td>22. APPENDIX III – RISK GROUP 3 ORGANISMS</td>
<td>24</td>
</tr>
</tbody>
</table>
1. Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoA</td>
<td>Department of Agriculture</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>EPA</td>
<td>Environment Protection Authority</td>
</tr>
<tr>
<td>GMO</td>
<td>Genetically Modified Organism</td>
</tr>
<tr>
<td>GT</td>
<td>Gene Technology</td>
</tr>
<tr>
<td>IBC</td>
<td>Institutional Biosafety Committee</td>
</tr>
<tr>
<td>LAA</td>
<td>Laboratory Animal Allergy</td>
</tr>
<tr>
<td>(M)SDS</td>
<td>Material Safety Data Sheet</td>
</tr>
<tr>
<td>OGTR</td>
<td>Office of the Gene Technology Regulator</td>
</tr>
<tr>
<td>OHS</td>
<td>Occupational Health and Safety</td>
</tr>
<tr>
<td>OH&S</td>
<td>Monash Occupational Health & Safety</td>
</tr>
<tr>
<td>PC</td>
<td>Physical Containment</td>
</tr>
<tr>
<td>QAP</td>
<td>Quarantine Approved Premises</td>
</tr>
<tr>
<td>SDU</td>
<td>Staff Development Unit</td>
</tr>
<tr>
<td>SWI</td>
<td>Safe Work Instructions</td>
</tr>
</tbody>
</table>

2. Definitions

A comprehensive list of definitions is provided in the Definitions Tool. Definitions specific to this procedure are as follows.

Animals: An animal is defined as any multicellular heterotrophic eukaryote belonging to the Kingdom Animalia (vertebrates and invertebrates).

Under the Prevention of Cruelty to Animals Act the following require Animal Ethics approval:

- any live non-human vertebrate (fish, amphibians, reptiles, birds and mammals) encompassing domestic animals, purpose-bred animals, livestock, wildlife, as well as cephalopod invertebrates such as octopus, squid, cuttlefish and nautilus.
- any live pre-natal or pre-hatched embryos, foeti and larval forms e.g. a mammalian or reptilian foetus, pre-hatched avian, mammalian or reptilian young and live marsupial young developed beyond half the gestation or incubation period of the relevant species, or they become capable of independent feeding.
- This is not required for insects, millipedes, annelids (worms), gastropods (slugs and snails) or spiders, shellfish (bivalves, mussels, oyster and scallop); eggs, spat or spawn of fish.

Biologicals: For the purpose of this document, the definition of a biological will include, but not be limited to blood, blood products, tissue, body fluids (e.g. urine, faeces, semen, vaginal secretions, pericardial fluid, cerebrospinal fluid, synovial fluid, pleural fluid, amniotic fluid, saliva, mucus, any fluid with visible blood) and any derivatives produced by chemical or physical means (e.g. protein, enzyme or blood fractions). In addition, it is intended to cover micro-organisms (bacteria, viruses,
parasites, fungi, prions) wildtype or mutant and plants and plant material. It is not intended to include live animals in this definition.

Biological Wastes: These are covered by Environment Protection Agency (EPA) Regulations and are legally known as “clinical and related” or prescribed wastes and include:

- discarded sharps
- laboratory and associated wastes directly involved in specimen processing
- human and animal tissue, including materials or solutions containing or contaminated with blood or body fluids
- cytotoxic wastes
- pharmaceutical wastes and chemical wastes

Gene Technology: For the purpose of this document gene technology is defined as any technique for the modification of genes or other genetic material, but does not include sexual reproduction, homologous recombination or any other techniques specified in Part 2, Division 2 of the Gene Technology Act (2000).

Genetically Modified Organism: For the purpose of this document a genetically modified organism (GMO) is defined as:

- an organism that has been modified by gene technology;
- an organism that has inherited traits from an organism (the initial organism), being traits that occurred in the initial organism because of gene technology; or
- anything declared by the Gene Technology Regulations to be a genetically modified organism, or that belongs to a class of things declared by the Regulations to be genetically modified organisms.

But does not include:

- a human being, if the human being is covered by paragraph (a) only because the human being has undergone somatic cell gene therapy; or
- an organism declared by the Regulations not to be a genetically modified organism, or that belongs to a class of organism declared by the Regulations not to be genetically modified organisms.

Organism: For the purpose of this document an organism is defined as a biological entity that in at least some form is capable of response to stimuli, reproduction or transfer of genetic material, growth and development, and maintenance of homeostasis.

3.1. Types of Facilities

3.1.1. Facilities for the use of biologicals are defined by the Gene Technology Act, Australian Quarantine Act and Australian standards for laboratory design and construction (AS/NZS 2982) and Safety in the laboratory (AS/NZS 2243.3).

3.1.2. Facilities certified by the Office of the Gene Technology Regulator (OGTR) for research involving recombinant DNA technology are signed with OGTR stickers denoting the containment level. Facilities certified by Department of Agriculture (DoA) for research with imported materials are signed with Quarantine Approved Premises stickers. PC1 – PC4 facilities as defined by AS/NZS 2243.3 are not signed.

3.2. Containment Levels under the AS/NZS 2243.3

AS/NZS 2243.3 defines levels of Physical Containment (PC) for working with biologicals. At Monash University we have facilities that are classified into three such physical containment levels; PC1, PC2 and PC3. PC1 is the minimal level and describes most general laboratory areas including most teaching laboratories, whereas PC3 is the highest level at Monash and is required for work involving infectious pathogens.
3.3. **PC1 Laboratory Facilities**

- Emergency drench showers and eyewash stations shall be available at a distance of no more than 15 metres or within approximately 10 seconds travel time from any position in the laboratory. Where these facilities are not available alternate arrangements should be made in consultation with the **OHS consultant/advisor** for the area.
- Bench tops shall be able to withstand heat generated by general laboratory procedures.
- Chairs/stools shall be ergonomically suitable for the tasks and adjustable to work with the heights of benches and other equipment. The material shall be smooth and impervious to water to facilitate cleaning.
- Wash basins with hot and cold water shall be provided inside each laboratory near the exit.
- Open spaces between and under benches, cabinets and equipment shall be accessible for cleaning.
- Write up areas must be separated from work/study areas to minimise the chance of reading and writing materials being contaminated or damaged.

3.4. **Personal Protective Clothing and Equipment**

- Laboratory staff shall wear protective clothing when performing procedures in the laboratory. The use of long sleeved cotton or polyester wrap around gowns or laboratory coats is recommended.
- Protective eyewear shall be worn by staff when working in the laboratory. Some procedures may require full face protection which will be assessed when performing risk assessments of the procedure.
- Closed footwear shall be worn by staff when entering the laboratory.
- The above three items are the minimum personal protective equipment requirements for a laboratory unless lesser requirements can be justified by a risk assessment. Contact your **OHS consultant/advisor** for assistance in assessing such risk.

3.5. **Work Practices**

- Eating, drinking, shaving and the application of cosmetics is prohibited in laboratories.
- Food and drink for consumption must not be stored in laboratories or laboratory refrigerators or freezers.
- Long hair shall be tied back.
- All hazardous work must be identified, assessed for their risk and controls implemented where necessary.

3.6. **PC2 Laboratory**

The conditions for PC2 laboratories listed below are in conjunction with those for PC1 laboratories.

3.7. **Facilities**

- The ceilings, walls and floors shall be smooth, easy to clean and impermeable to liquids, and resistant to commonly used reagents and disinfectants.
- Hand wash basins shall be fitted with hands-free operation type mixers or suitable alternatives discussed with your **OHS consultant/advisor**.
- A pressure steam sterilizer shall be available where steam sterilizing of infectious waste is required onsite.
- Suitable coat hooks shall be provided near the entry/exit of the laboratory and lab coats shall be laundered regularly.
- A supply of clearly labelled disinfectants for decontamination purpose shall be available.
3.8. Containment Equipment

- Biological safety cabinets shall be used when working with specimens containing micro-
organisms transmissible by the respiratory route or when work produces a significant risk
from aerosol production.
- Centrifuges that are used for human samples or infectious micro-organisms shall be fitted
with either a sealed rotor or safety buckets. Samples should also be placed in sealable
tubes.

3.9. Personal Protective Equipment

- Suitable gloves shall be worn when handling human blood, body fluids or tissue, or
micro-organisms or when working in biological safety cabinets.

3.10. Work Practices

- Access to PC2 laboratories shall be restricted to appropriately trained staff and students.
- Staff and students shall receive instruction and training appropriate to the specimens
handled.
- Staff and students should attend Biosafety training (see Section 14).
- Particular care should be taken when handling and disposing of any sharps to avoid
accidental self-inoculation.
- All clinical samples shall be treated as infectious.
- All visitors to the laboratory including Buildings and Property staff must be inducted
appropriately and shall be made aware of any specific hazards in the area.
- Any procedure which may produce aerosols of potentially infectious material shall be
performed in a biological safety cabinet.
- A container of viable micro-organisms shall be transported between facilities or to steam
sterilizers in a sealed secondary unbreakable container which can be readily
decontaminated.
- All potentially contaminated equipment shall be either steam sterilized or chemically
disinfected after use.
- Separate report writing and long-term write up areas shall be provided outside the laboratory.

3.11. PC3 Laboratory

The conditions for PC3 laboratories listed below are in conjunction with those for PC1 and PC2
laboratories.

3.12. Facilities

- The laboratory must be separated from all other areas and shall not be accessible by the
general public.
- Entry to the laboratory shall only be through a double door airlock system. Doors shall
be self-closing, open outwards with the outer door being lockable. Both doors shall be fitted
with seals to limit air leakage. Doors shall contain glass viewing panels so that observation
of the laboratory occupants may be possible.
- All equipment used in a PC3 laboratory shall be decontaminated prior to maintenance,
service or removal.
- An emergency two-way communication system, or an alarm system, shall be provided in
addition to the telephone.
- A pressure steam sterilizer for decontamination of laboratory wastes shall be available and
located within the laboratory.
- Liquid effluents shall be discharged in a manner appropriate to the type of waste and as

For the latest version of this document please go to: http://www.monash.edu.au/ohs/
5. Human Clinical Samples

- Human clinical samples are to be treated as potentially infectious unless categorically known to be otherwise. For that reason all clinical samples are to be used in facilities that meet PC2 facility and procedural requirements as described in Section 3. However, if organisms from a higher risk group are isolated or suspected to be found in a clinical sample then the sample should be treated as per that risk group and used in a higher containment facility.

- Procedures that will create significant aerosols must be performed in biological safety cabinets.

5. Micro-Organisms

5.1. Risk Groups

Micro-organisms are divided into risk groups 1 (lowest risk) – 4 (highest risk) based on their risk to health and safety.

- A list of risk group 2 and 3 organisms can be found in Appendix II and III.

- The risk group classification has been established to match the physical containment level of the facility where the work is to be conducted, e.g. risk group 2 organisms must be handled in a PC2 facility.

5.2. Facilities

Facilities where work with micro-organisms is to be performed must meet the building requirements and procedural requirements for the physical containment level (Section 3) corresponding to the appropriate physical containment level of that micro-organism.
6. Animals

The use of animals at Monash University must comply with all relevant Victorian and federal government legislation.

For all ethical matters relating to the use of animals for research, contact the Monash Animal Ethics Office.

6.1. Facilities

Facilities for the housing and care of laboratory animals are defined in the Victorian Code of Practice for Housing and Care of Laboratory Mice, Rats, Guinea Pigs and Rabbits and the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes and must meet the minimum standards as set out in the Prevention of Cruelty to Animals Act. All further queries should be referred to the Monash Animal Ethics Office.

- Animals can be held in a variety of containment facilities that are designed to ensure that the animals, and the micro-organisms that may be being used in conjunction with the animals, do not escape from containment.
- Whilst the general design is similar to that of laboratories (see Section 3), one key consideration is that of primary containment to prevent cross-contamination and exposure of personnel to allergens and micro-organisms. Further details are outlined in AS/NZ 2243.3, section 6.

6.2. Transgenic or Knockout Animals

The use of transgenic or knock-out animals must meet the requirements of the OGTR as must the facilities where they are housed. General information regarding the use of GM animals and appropriate approval can be obtained from the OGTR website or by contacting the Research Office.

6.3. Occupational Health

It is important to be aware of the potential hazards and health risks associated with working with laboratory animals and to be aware of the precautions needed to prevent or adequately control exposure. The OHS Health team can be contacted for advice on any aspects of the health issues associated with working with animals.

6.4. Laboratory Animal Allergy (LAA)

LAA is an allergic hypersensitivity response which may develop as a result of exposure to animal allergens. The proteins most commonly associated with allergic reactions are found in animal urine, saliva and dander.

- Anyone who has regular contact with laboratory animals and/or associated materials, e.g. animal litter has the potential to develop allergies to the animals they are working with.
- Early symptoms of LAA may include nasal congestion and sneezing, dry and sore throat, watering and itchy eyes, rashes and itchy skin, as well as cough with asthma-like symptoms.
- Continued exposure, may increase the severity of symptoms and infrequently sensitisation may occur. This can pose a significant health risk and early contact with the OHS Health team is required.

Although those workers who have a personal history of allergy to common environmental allergens (atopy) and exposure to animals are at increased risk, individuals with no prior history of allergies and only brief work exposures can also develop LAA. Most workers will do so within three years of working with animals.

The best approach for reducing the likelihood of developing an allergic reaction is to eliminate or minimise exposure to the proteins found in animal urine, saliva, and dander. A comprehensive risk assessment and implementation of appropriate control measures should be undertaken prior to working with animals.
The following table will assist in assessing personal risk and determining the necessary control measures.

<table>
<thead>
<tr>
<th>Risk level</th>
<th>Task</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Working with post mortem or with tissues</td>
<td>Wear appropriate personal protective equipment (lab coat, gloves, respiratory protection)¹</td>
</tr>
<tr>
<td></td>
<td>Work on unconscious animals</td>
<td>Adhere to safe work instructions</td>
</tr>
<tr>
<td></td>
<td>Procedures involving few animals</td>
<td>Assessment by Occupational Physician (case by case)</td>
</tr>
<tr>
<td></td>
<td>Automated cage cleaning</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>Cleaning within animal unit</td>
<td>Wear appropriate personal protective equipment (lab coat, gloves, respiratory protection)¹</td>
</tr>
<tr>
<td></td>
<td>Indirect contact in animal room</td>
<td>Assessment by Occupational Physician (case by case)</td>
</tr>
<tr>
<td></td>
<td>Feeding Animals</td>
<td>Participate in Health Surveillance program, e.g. lung function test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adhere to safe work instructions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduce airborne allergens when cleaning cages, i.e. wet cleaning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use low dust bedding materials</td>
</tr>
<tr>
<td>High</td>
<td>Injections and other invasive procedures</td>
<td>Wear appropriate personal protective equipment (lab coat, gloves, respiratory protection)¹</td>
</tr>
<tr>
<td></td>
<td>Shaving</td>
<td>Assessment by Occupational Physician (case by case)</td>
</tr>
<tr>
<td></td>
<td>Fur</td>
<td>Participate in Health Surveillance program, e.g. lung function test</td>
</tr>
<tr>
<td></td>
<td>Handling animals</td>
<td>Adhere to safe work instructions</td>
</tr>
<tr>
<td></td>
<td>Box changing</td>
<td>Reduce airborne allergens when cleaning cages, i.e. wet cleaning</td>
</tr>
<tr>
<td></td>
<td>Disposal of soiled litter</td>
<td>Use low dust bedding materials</td>
</tr>
<tr>
<td></td>
<td>Changing filters of local exhaust ventilation or room ventilation</td>
<td>Ensure adequate ventilation, e.g. local exhaust ventilation or work within a Class II Biosafety</td>
</tr>
<tr>
<td></td>
<td>Washing cages.</td>
<td>cabinet for specific procedures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduce the frequency and time spent with animals in high density rooms</td>
</tr>
</tbody>
</table>

¹ Although engineering controls can be useful in reducing exposure to animal allergens, airborne levels generated on direct contact to animals and bedding materials can still be significant. Respiratory protection of various types may be necessary to reduce exposure and must be fitted correctly. Advice on suitable and effective respiratory protection should be sought from OH&S.

6.5 Zoonosis

All staff and students working with animals may be exposed to micro-organisms carried by the animals which may also be able to infect humans under the right conditions. These micro-organisms will be categorised into one of the risk groups as outlined in section 5.1.

- The passage of the micro-organisms may occur via scratches, bites, urine, faeces or through aerosols generated by further manipulation of tissue harvested from animals.
- Information on zoonotic disease associated with animals commonly used at Monash
University is found in Appendix I.

- The appropriate animal husbandry skills in conjunction with using appropriate personal protective equipment will reduce the risk of cross infection. In addition, adopting standard PC2 precautions and restricting processes likely to create aerosols to biosafety cabinets will also reduce the risk of zoonotic infection.

Further information and advice on zoonoses can be obtained from the OHS Health team.

6.6. **Infectious Animal Models**

The considerations outlined in Section 6.3 also apply to research that involves the use of infectious animal models, where animals have been injected with infectious pathogens. Appropriate risk control measures must be in place prior to commencement and the OHS Health team can be contacted for advice.

7. **Health Surveillance**

Those staff and students working with animals or other biological agents may be subject to health surveillance which consists of the systematic monitoring of those “at risk” for any adverse effects of work on their health as it relates to their duties. It is delivered through medical assessment and biological monitoring (e.g. lung function testing). Staff working with animals may be subject to a pre-placement assessment to determine individual risk factors and baseline measurements.

Further details of the Monash University Health surveillance program are outlined in the Health surveillance Procedure.

8. **Immunisation**

As part of their work or study, Monash University staff and students may be at risk of exposure to infectious diseases including those which are vaccine preventable. Staff and students should be offered such vaccines where the risk assessments demonstrate a need. The Immunisation grid should be used to determine immunisation requirements. For further assistance contact the OHS Health team.

9. **Importation of Biologicals**

9.1. **Quarantine Requirements**

All biological material brought into Australia directly by Monash staff is subject to quarantine requirements as set out in the Biosecurity Act (2015) and Regulations. General information regarding the importation of biologicals is provided on the Department of Agriculture website by following the Quarantine and Export service link or by contacting the Research office.

9.2. **Purchase Of Biologicals**

- Before purchasing new biologicals, check with the Research Compliance officer regarding: Requirements for licenses, permits or notification to use the biologicals;
- the physical containment (PC) requirements or Quarantine Approved Premise (QAP) classification for use and storage of the biological;

Before purchasing new biologicals, check with your biosafety officer regarding:

- the availability of appropriate handling conditions for the biological, e.g. biological safety cabinets;
- the availability of appropriate emergency facilities and procedures required for the biological;
- the appropriate waste disposal procedures required for the biological.

9.3. **Permits**
Before importing ANY biologicals from overseas Monash staff must obtain the appropriate importation permit through the Research Office. Staff should not apply for permits directly via DoA.

9.4. Facilities

In certain circumstances DoA may require that all work to be conducted with specific imported biologicals must be performed within a QAP facility. Such facilities must be of a physical containment level specified by DoA and inspected and certified prior to the importation of biologicals.

10. Genetically Modified Organisms

10.1. Work/Study With GMO

10.1.1. All work/study utilising recombinant DNA technology is controlled through the Office of the Gene Technology Regulator. All Monash matters concerning gene technology are handled by the Research Office.

10.1.2. General information regarding the use of GMOs and appropriate approval can be obtained from the OGTR website or by contacting the Research Office.

10.2. Facilities

10.2.1. Facilities to be used for GMO work must comply with the requirements set out by the OGTR.

- Facilities must be of the appropriate physical containment level matching the type of GMO dealing being conducted.
- PC1, PC2 and PC3 facilities must meet the OGTR’s guidelines for such facilities and be certified.
- PC2 and PC3 facilities must be inspected annually by a person deemed competent by the Institutional Biosafety Committee (IBC) and PC3 facilities are also inspected routinely by the OGTR.

10.2.2. No GMO work can commence until the appropriate approval has been sought and the facility where the work is to be conducted has been certified by the OGTR.

11. SDS

When purchasing biologicals, verify that the SDS for the biological is already present in the University’s ChemWatch SDS database, or as a hardcopy in the work area. If the SDS is not already held, it must be requested from the supplier, manufacturer or importer.

For purchases completed via SAP, a statement is already included in the order terms and conditions, which states:

11.1. Hazardous Material

Additional terms and conditions and material safety data sheets will be supplied for hazardous materials where this order specifies such hazardous materials.

A copy of all SDS not currently held in the University’s ChemWatch SDS database must be forwarded to ChemWatch to be included.

12. Risk Management

Risk management must be completed on all processes/procedures/activities that involve biologicals and/or animals in accordance with the OHS Risk Management at Monash University procedure.
12.1. **Risk Management Must Be Completed**
Before activities using biologicals and/or animals commence;
- before the introduction of new procedures, processes or equipment that use biologicals and/or animals;
- when procedures or processes or equipment that use biologicals and/or animals are modified;
- using the Monash Risk control program
- by Buildings and Property staff before entering laboratory areas using the Safe Work Method Statement (SWMS) tool and in consultation with the local biosafety officer.

12.2. **Update and Review of Risk Assessments**
12.2.1. Risk assessments must be reviewed:
- each time changes are made to the task, procedure; or equipment; or
- at least every 3 years;
12.2.2. following an incident that involved the use of biologicals and/or animals.
12.2.3. Academic/administrative units that undertake research using biologicals may need to update their risk assessments frequently, even daily, to ensure that their biological risk assessments are up to date.

13. **Safe Work Instructions**
- Following the completion of risk assessments, safe work instructions must be developed and can be incorporated into laboratory procedures or safety manuals. Safe work instructions should include training, appropriate personal protective equipment, the need for immunisation and first aid and emergency procedures.
- OH&S has developed Guidelines for the development of safe work instructions, to provide guidance and a template for use by areas, which are available at the OH&S website.

14. **Training**
The training needs of staff and students should be determined using the OHS training guide and meet the requirements of the OHS Induction & training at Monash University procedure.

14.1. **Biological Safety**
Training in the use of biologicals must be provided at a range of levels, including local and at University level.

14.2. **Local Training**
Supervisors must ensure that induction and training in the use of biologicals is provided to staff and students under their supervision. This may be provided by local safety personnel or experts with specific knowledge of the biologicals used in the area and must include:
- identification of biological hazards in the area and the nature of the hazard including exposure routes.
- the location of risk assessments and safe work instructions for the biologicals held and used in the area;
- the use and location of personal protective and emergency equipment for the use with biologicals;
- local procedures, processes or equipment that use biologicals especially those resulting in the generation of aerosols.
• immunisation requirements for working with biologicals.
• biological waste handling, storage and disposal procedures

14.3. University Level Training

• The Staff Development Unit (SDU) coordinates training courses on biological safety for staff and for Postgraduate and Honours students across all campuses and centres.
• Information regarding the content and scheduling of training courses offered at Monash University is provided:
 o at the Staff Development Unit web site; and
 o in the OHS training guide.

14.4. Animal Care and Use

The Information Session on “Regulatory Issues, Animal Care and Use in Research and Teaching at Monash University” is a prerequisite for Animal Ethics approval for Honours and Postgraduate students and inexperienced staff. Information about the course is available at the Monash Animal Ethics Office web site.

The following practical training courses in Animal Handling are run for Monash staff and students by Monash Animal Research Platform (MARP):

• Mouse or Rat - Administration of Substances and Blood Collection
• Rodent Anaesthesia
• Surgical Techniques in Rodents

Course information and dates are available from the MARP website.

Training in other species is available on request by contacting the MARP Training Manager.

14.5. Training Records

In order for units/centres and supervisors to demonstrate effectively that they have provided local training for the staff and students that they supervise; local training records must be kept and this should:

• include training in specific procedures
• be maintained in a folder in each area where training is provided

The student or staff member being trained should be able to demonstrate competence in the task/s before a record is completed.

OH&S has developed a proforma to use to record attendance at OHS training in each academic/administrative unit, which is available at the OH&S web site.

A short description of the points covered in the training should also be documented for all biological training provided in the academic/administrative unit. The description will act as both a reminder regarding the areas that should be covered in the training and as a record of the areas covered in the training.

15. Waste Disposal

Correct biological waste management involves a structured program to ensure that any wastes generated are correctly identified in terms of their potential hazard to the environment and to any staff or students handling them.

15.1. All Biological Waste Must Be

15.1.1. handled by staff with knowledge and access to appropriate personal protective equipment;
15.1.2. segregated according to the particular hazards, treatment methods and recycling or re-use opportunities associated with the waste type, as outlined in the Biohazard Waste poster;

15.1.3. packaged to ensure that:

15.1.4. the waste materials cannot escape the container at any time;

15.1.5. containers used conform to the colour coding and marking system specified by Australian standards and outlined in Biohazardous waste collection and storage are fit for transport; and

15.1.6. will not pose risks to personnel handling the wastes such as cleaning staff and waste disposal contractors

15.1.7. clearly labelled identifying:

- the type of waste material;
- the major contaminant or risk associated with the waste;
- the academic/administrative unit who generated the waste and their contact details, e.g. phone number;
- date of generation;

15.1.8. In areas where Clinismart 64 bins are used:

- the bins can be used without a bin-liner/bag in non-OGTR/QAP facilities. Proper segregation between sharps and non-sharps waste is still required.
- only the G64 bins can be used for OGTR and/or QAP certified facilities and these must be used with a bin liner/bag, in accordance with the Guidelines for the Transport, Storage and Disposal of GMOs version 1.1(2011) for double-containing waste. The bin liner/bag must be tied off by a laboratory staff member and the lid locked into position prior to collection by the waste contractor
- stored in a secure site/area specifically designated for the waste type and for the academic/administrative unit generating the waste, refrigerated, if required. The waste store must be in compliance with EPA bunding guidelines to ensure spills will not cause pollution or pose an environmental hazard.
- disposed of by a licensed EPA-prescribed waste contractor, however where appropriate waste may be autoclaved and disposed of to landfill in accordance with the Guidelines for the Transport, Storage and Disposal of GMOs version 1.1(2011), Sections 3.1.6 - 3.1.9 and AS/NZS 2243.3:2010, Section 10.6.
- transported in such a manner to ensure that the health of staff, students, visitors to the university, and/or the environment is not compromised and in accordance with Victorian EPA requirements and the Australian Dangerous Goods Code for the Transport of Dangerous Goods by Road and Rail.

15.1.9. There are specific procedures for the disposal of syringes, needles and syringe barrels. These are available in the document Syringes, Needles and Syringe Barrels – use & disposal.

15.1.10. In any instance where the waste type is unclear or biological waste is contaminated with radiation, OH&S must be contacted for advice.

16. Emergencies Involving Biologicals and Animals

16.1. Incident and Emergency Response

- Emergency procedures for a biohazard spill are contained in the Monash ‘333’ emergency procedures booklet located near every telephone on all campuses. For off-campus locations, local emergency procedures must be followed.
• Report all incidents to your supervisor, biosafety officer and safety officer using the Hazard and incident reporting, investigation and recording procedure.

• Incidents involving GMOs (including unintentional release into the environment) should also be immediately reported to the Research Compliance Officer (who will in turn notify the Institutional Biosafety Committee (IBC)).

16.2. Crisis Management

• Monash University has invested considerable resources on planning crisis management and recovery. This planning includes consideration regarding crises involving biologicals.

• Further details and the crisis management plan are detailed in the Crisis Management Policy and procedures.

17. Responsibility for Implementation

A comprehensive list of OHS responsibilities is provided in the document OHS Roles, Committees and Responsibilities Procedure. A summary of responsibilities with respect to this procedure is provided below.

Occupational Health & Safety (OH&S): The responsibilities of OH&S include:

• development, maintenance, review and audit of the university's policies, procedures and systems related to biological safety management;

• advising on appropriate immunisation;

• providing information, instruction and training on biological safety management.

Research Office: The responsibilities of the Research Office include:

• administering all matters relating to the Gene Technology Act 2000 (including the Gene Technology Regulations 2001) and Biosecurity Act 2015 and their discharge.

• providing information, instruction and training on work involving GMOs or biologicals subject to quarantine requirements.

Monash Animal Ethics Office: The responsibilities of the Monash Animal Ethics Office include:

• administering all ethical matters relating to the use of animals for research purposes.

• providing information and instruction on regulatory issues, animal care and the Animal Ethics approval process.

Heads of Academic/Administrative Units: It is the responsibility of the head of academic/administrative unit or controlled entity to ensure that procedures and systems are in place in their unit or entity to manage biological and/or animals effectively to ensure:

• a healthy and safe environment for staff, students, visitors and contractors;

• that local standards and practices comply with legislative requirements and university policy;

• that staff and students undertake recommended training in the use of biologicals and/or animals.

Supervisors: It is the responsibility of supervisors to ensure that procedures and systems are in place in the areas of their responsibility to manage biological and/or animals effectively to ensure:

• a healthy and safe environment for staff, students, visitors and contractors;

• that local standards and practices comply with legislative requirements and University policy;
that staff and students undertake recommended training in the use of biological and/or animals.

Biosafety Officers: It is the responsibility of the Biosafety Officer to:

- advise, inform and instruct staff and students on the local use, storage, transport and disposal of biological substances, including appropriate equipment, facilities and work practices to prevent exposure to any harmful biological material and ensure appropriate containment;
- assist in local induction of new staff and students with regards to biosafety, OGTR and quarantine matters;
- monitor the need and advise staff and students of availability and procedures for immunisation against potential biohazards;
- serve as a local source of expertise to the academic/administrative unit regarding biosafety, OGTR and quarantine requirements including licensing, certification of facilities and classification of activities under the relevant legislation and standards;
- monitor local area compliance with biosafety, OGTR and quarantine requirements with regard to the use and disposal of hazardous biological materials and recombinant DNA molecules;
- liaise with the University’s Research Compliance Officer, OH&S, local OHS committee, head of unit or controlled entity and local health & safety representative in matters relating to biosafety, OGTR and quarantine;
- review biosafety aspects of research projects and teaching activities and provide advice/assistance on document preparation, e.g. risk assessments, OGTR applications;
- develop and implement emergency response procedures for incidents involving biohazardous agents and materials;
- participate in workplace inspections of research and teaching facilities for compliance with regulations and guidelines pertaining to the use, handling, and disposal of potential biohazards and recombinant DNA;
- respond to and investigate all biosafety incidents occurring within the department, and develop corrective action plans;
- report any breach of compliance to the Research Compliance Officer (who will in turn notify the Institutional Biosafety Committee (IBC)) and OH&S;

Staff and students: staff using biological and/or animals must comply with OHS instructions, policies and procedures using control measures and/or personal protective equipment to ensure their own health and safety as well as the health and safety of others.

18. Records

For OHS Records document retention please refer to: [Monash University OHS Records Management Procedure](http://www.monash.edu.au/ohs/).
Status
Revised

Approval Body
Monash University OHS Committee

Legislation Mandating Compliance
- Australian Dangerous Goods Code 7th edition
- Biosecurity Act 2015
- Biosecurity (Consequential Amendments and Transitional Provisions) Regulation 2016
- Environment Protection Act 1970
- Environment Protection (Industrial Waste Resource) Regulations 2009 (Vic)
- Gene Technology Act 2000
- Gene Technology Regulations 2001
- Occupational Health and Safety Act 2004 (Vic)
- Occupational Health and Safety Regulations 2017 (Vic)
- Prevention of Cruelty to Animals Act 1986 (Vic)
- Prevention of Cruelty to Animals Regulations 2008 (Vic)

Related Policies
- OHS Policy

Related Documents
Australian and International Standards
- AS/NZS 2982:1997 Laboratory design and construction
- AS/NZS 2243.3:2010 Safety in laboratories Part 3: Microbiological aspects and containment facilities
- AS/NZS 4031:1992 Non-reusable containers for the collection of sharp medical items used in health care areas
- AS/NZS 1319:1994 Safety signs for the occupational environment

Other Documents
- Guidance notes for the transport of Class 6.2 (infectious substances) dangerous goods (1997)
- Guidelines for the Transport, Storage and Disposal of GMOs, Version 1.1 (2011)

Monash University OHS Documents
- Guidelines for the development of safe work instructions
- Health surveillance procedure
- Immunisation procedure
- OHS Information Sheet – Syringes, needles & syringe barrels – use & disposal at Monash University

For the latest version of this document please go to: http://www.monash.edu.au/ohs/
19. Document History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date of Issue</th>
<th>Changes made to document</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>November 2012</td>
<td>Using Biologicals and Animals at Monash University Procedure, v.3</td>
</tr>
<tr>
<td>3.1</td>
<td>July 2015</td>
<td>Updated hyperlinks throughout to new OH&S website.</td>
</tr>
</tbody>
</table>
| 4 | November 2015 | 1. Updated Abbreviation for Department of Agriculture
 2. Changed DAFF Biosecurity to Department of Agriculture (DoA) throughout the document
 3. Updated Definitions section to only include those that are specific to this procedure. Provided link to Definitions tool.
 4. Updated Specific Responsibilities section to include only those specific to this procedure. Provided link to "OHS Roles, Committees and Responsibilities procedure".
 6. Updated references to legislation in Section 5.2.
 7. Updated Sections 5.6 and 19.1 to reflect that Biosafety officers should report any breach of compliance to the Research Compliance Officer, who will in turn notify the Institutional Biosafety Committee (IBC).
 8. Updated section 12 to clarify the roles of the Research Compliance Officer and local Biosafety officer regarding the purchase of biologicals.
 9. Added requirements for the use of Clinismart bins in Section 18 – Waste disposal.
 10. Updated records sections to reflect which records are retained by the Monash Research Office. |
| 4.1 | August 2017 | 1. Updated logos in header
 2. Updated OHS Regulations to 2017 |
20. **APPENDIX I - Examples of Zoonotic Diseases**

<table>
<thead>
<tr>
<th>Host</th>
<th>Disease in Humans</th>
<th>Mode of transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep</td>
<td>Brucellosis</td>
<td>Direct contact with infected semen, foetuses, foetal membranes and vaginal secretions</td>
</tr>
<tr>
<td>Sheep</td>
<td>Q-fever</td>
<td>Inhalation, direct contact with amniotic fluid or placenta</td>
</tr>
<tr>
<td>Sheep</td>
<td>Campylobacteriosis</td>
<td>Ingestion</td>
</tr>
<tr>
<td>Non-human primates</td>
<td>Tuberculosis</td>
<td>Inhalation, direct contact, ingestion</td>
</tr>
<tr>
<td>Macaques</td>
<td>Cercopithecine (B virus) encephalitis</td>
<td>Direct contact, bite wounds</td>
</tr>
<tr>
<td>Rodents, Farm and wild animals</td>
<td>Leptospirosis</td>
<td>Direct contact, urine, contaminated soil and water</td>
</tr>
<tr>
<td>Rodents</td>
<td>Ringworm/Tapeworm</td>
<td>Direct contact, soil may be a reservoir</td>
</tr>
<tr>
<td>Rabbits</td>
<td>Salmonellosis</td>
<td>Ingestion, Inhalation</td>
</tr>
<tr>
<td>Sheep</td>
<td>Direct contact</td>
<td></td>
</tr>
<tr>
<td>Farm animals</td>
<td>Giardia/Parasitic infections</td>
<td>Ingestion</td>
</tr>
<tr>
<td>Amphibians</td>
<td>Direct contact</td>
<td></td>
</tr>
<tr>
<td>Farm animals</td>
<td>Bacterial/Protozoal infections</td>
<td>Direct contact</td>
</tr>
<tr>
<td>Amphibians</td>
<td>Australian Bat Lyssavirus</td>
<td>Bites/scratches</td>
</tr>
</tbody>
</table>
21. APPENDIX II – Risk Group 2 Organisms

21.1. Examples of Bacteria

Abiotrophia spp.
Acidovorax spp.
Acinetobacter spp.
Actinomycetes pyogenes
Aeromonas hydrophila
Afipia spp.
Arcanobacterium haemolyticum
Bacillus cereus
Bartonella henselae, B. quintana, B. vinsonii, B. elizabethiae, B. weisii
Bordetella pertussis
Brucella ovis
Burkholderia spp. (except B. mallei and B. pseudomallei)†
Campylobacter coli, C. fetus, C. jejuni Capnocytophaga canimorsus
Chlamydia spp. (except avian strains of C. psittaci)
Clostridium spp. (except those known to be nonpathogenic)†
Corynebacterium diphtheriae†, C. renale, C. pseudotuberculosis
Dermatophilus congolensis
Edwardsiella tarda
Eikenella corrodens
Enterococcus spp. (Vancomycin-resistant strains)
Erysipelothrix rhusiopathiae
Pathogenic Escherichia coli (except Verocytotoxin-producing (VTEC) strains† and genetically crippled strains‡)
Fusobacterium spp.
Gardnerella vaginalis
Gordona spp.
Haemophilus influenzae, H. Ducreyi
Helicobacter pylori
Kingella kingae
Klebsiella spp.
Legionella spp.
Listeria spp.†
Moraxella spp.
Mycobacterium spp.†
Mycoplasma pneumoniae, M. Fermentans
Neisseria gonorrhoeae, N. meningitidis†
Nocardia spp.
Oligella spp.
Pasteurella spp.
Rhodococcus equi
Salmonella serovars†
Shigella spp.†
Sphaerophorus necrophorus
Staphylococcus aureus
Stenotrophomonas maltophilia
Streptobacillus moniliformis
Streptococcus pyogenes, S. Pneumoniae
Ureaplasma urealyticum
Vibrio cholerae, V. parahemolyticus, V. Vulnificus
Yersinia spp. (except Y. pestis)
21.2. Bacteria Requiring Special Precautions

Borrelia (mammalian) spp. *Burkholderia pseudomallei* *Clostridium botulinum* *Clostridium tetani* *Corynebacterium diphtheriae*
Coxiella burnetii (smears and serology from samples) *Escherichia coli* Vero cytotoxin-producing strains, e.g. 0157, 0111 *Leptospira interrogans* (all serovars)
Listeria monocytogenes
Mycobacterium spp. other than M. tuberculosis complex
Mycobacterium tuberculosis complex (except multi-drug resistant strains)
Neisseria meningitidis (except for Serogroup B) *Neisseria meningitidis* (Serogroup B) *Salmonella Typhi*
Shigella dysenteriae Type 1
Treponema pallidum
Treponema pertenue

21.3. Examples of Parasites (Infective Stages Only)
Ancylostoma duodenale *Ascaris lumbricoides* *Babesia divergens* *Babesia micro-organismst* *Brugia* spp.
Cryptosporidium spp. *Echinococcus* spp. *Entamoeba histolytica*
Giardia duodenalis (also known as Giardia lamblia and Giardia intestinalis)
Hymenolepis diminuta *Hymenolepis nana* (human origin)
Leishmania (mammalian) spp.
Loa loa *Naegleria fowleri*
Necator americanus
Opisthorchis spp. (including Clonorchis sinensis)
Plasmodium (human and simian)
Strongyloides stercoralis *Taenia saginata*
Taenia solium *Toxocara canis* *Toxoplasma gondii* *Trichinella spiralis*
Trypanosoma brucei sub spp. *Trypanosoma cruzi* *Wuchereria bancrofti*

21.4. Examples Of Fungi
Aspergillus fumigatus and *A. flavus* *Candida albicans*
Cryptococcus neoformans *Epidermophyton floccosum* *Micro-organismssporum* spp. *Sporothrix schenckii*
21.5. **Examples of Viruses and Prions**

Adenoviridae
- Adenovirus

Arenaviridae
- Arenavirus

Lymphocytic choriomeningitis (LCM) non-neurotropic strains Tacaribe virus complex

Caliciviridae
- Feline calicivirus Norwalk-like Sapporo-like
- Largovirus
- Rabbit haemorrhagic disease

Coronaviridae
- Coronavirus

Flaviviridae
- Flavivirus
 - Dengue 1, 2, 3 and 4
 - Japanese encephalitis (Nakayama strain) Kokobra
 - Kunjin
 - Murray Valley encephalitis Sarafend
 - Saumarez Reef
 - Yellow fever (strain 17D)
- Hepacivirus
- Hepatitis C

Hepadnaviridae
- Duck hepatitis B
- Hepatitis B

Herpesviridae
- Alphaherpesvirinae
 - Simplex
 - Varicella
- Betaherpesvirinae
 - Cytomegalovirus
- Gammaherpesvirinae
 - Herpes 6 and 7
 - Lymphocryptovirus (EB-like viruses)

Orthomyxoviridae
- Influenza (except those in Table 3.10)

Paramyxoviridae
- Paramyxovirinae
 - Morbillivirus
 - Measles
 - Rubulavirus
 - Menangle
 - Mumps
 - Newcastle disease virus (non-virulent endemic strains)
 - Pneumovirus
 - Respiratory syncytial virus
 - Respirovirus
 - Parainfluenza 1, 2, 3 and 4

Parvoviridae
- Human parvovirus

Picornaviridae
- Encephalomyocarditis
- Encephalomyocarditis virus Enterovirus
 - Coxsackie Echo Entero Parecho
- Polio 1, 2 and 3 Rhinovirus
- Hepatovirus
 - Hepatitis A

Poxviridae
- Orthopoxvirus
- Vaccinia Parapoxvirus
- Orf
- Prions
- Reoviridae

Gerstmann-Sträussler syndrome, Kuru and Creutzfeldt-Jakob agents (See Note 1 and Clause 3.5)
Orbivirus
- Bluetongue viruses (endemic strains)
- Epizootic haemorrhagic disease viruses of deer (endemic strains) Rotavirus
- Rotavirus
- Retroviridae (serology, other tests on samples)
 - Oncovirinae
 - Human lymphotropic virus 1
 - Human lymphotropic virus 2
 - Lentivirinae
 - Human immunodeficiency virus
- Togaviridae
 - Alphavirus
 - Barmah Forest
 - Ross River
 - Semliki Forest
 - Arterivirus
 - Equine viral arteritis
 - Rubivirus
 - Rubella

Hepatitis D
Hepatitis E
22. APPENDIX III – RISK GROUP 3 ORGANISMS

22.1. Bacteria

- Bacillus anthracis
- Bartonella bacilliformis
- Burkholderia mallei
- Brucella spp. (except B. ovis)
- Chlamydia psittaci (avian strains)
- Coxiella burnetii (cultures, animal work and concentrates)
- Francisella tularensis (type A)
- Multi-drug resistant Mycobacterium tuberculosis complex
- Rickettsia spp.
- Yersinia pestis

22.2. Fungi

- Aphanomyces astaci
- Blastomyces dermatitidis
- Ceratocystis ulmi
- Coccidioides immitis
- Histoplasma spp.
- Paracoccidioides brasiliensis
- Phytophthora cinnamomi

22.3. Viruses

- Arenaviridae
 - Arenavirus
- Bunyaviridae
 - Group C
 - Oropouche
 - Phlebovirus
 - Hantavirus
 - Hantaan and related viruses
- Flaviviridae
 - Flavivirus
 - Japanese encephalitis
 - St Louis encephalitis
 - Tick-borne viruses
 - West Nile
 - Yellow fever
- Paramyxoviridae
 - Rubulavirus
 - Mapuera
 - Newcastle disease (exotic strains)
- Retroviridae (from cultures and concentrates)
 - oncovirinae
 - Human lymphotropic virus 1
 - Human lymphotropic virus 2
 - lentivirinae
 - Human immunodeficiency virus
- Rhabdoviridae
 - Lyssavirus
 - Australian bat lyssavirus
 - Rabies fixed strain (CVS II)
- Togaviridae
 - Alphavirus
 - Eastern equine encephalitis
 - Western equine encephalitis
 - Venezuelan equine encephalitis