A novel series of highly potent peptides that selectively stimulate AT\textsubscript{2} receptors (AT\textsubscript{2}R) for development as anti-fibrotic medications. Lead compounds completely reverse elevated organ fibrosis in preclinical models and are highly stable.

- Novel anti-fibrotic peptide lead series having the ability to reverse existing fibrotic lesions
- Benchmarked against “gold standard” treatments with our lead series displaying greater efficacy
- Proof of mechanism established as well as impressive in vivo efficacy

THE CHALLENGE
Chronic and progressive tissue fibrosis can affect all major organ systems and is caused by the excess accumulation of extracellular matrix components, including collagens.

Activation of the renin-angiotensin system (RAS), oxidative stress and inflammation pathways are all involved in the aetiology of fibrosis. Among the mediators of these pathways, Angiotensin II (Ang II), acting at AT\textsubscript{1} receptors (AT\textsubscript{1}R), and transforming growth factor-\(\beta\) (TGF-\(\beta\)) play important roles as major drivers of tissue fibrosis in virtually all fibrotic diseases.

Inhibition of the RAS with either ACE inhibitors or angiotensin-receptor blockers are the gold standards for improvements in cardiac and renal function which can lead to a reduction in cardiovascular mortality. However, these drug classes are associated with only modest regression of total collagen fraction. Given that marked increases in extracellular matrix occurs in most hypertensive- and metabolic-related diseases, including ageing, and thus contributes to organ dysfunction, there is an unmet need to develop more effective anti-fibrotic agents.

There is a clear need to develop new drugs that can reverse organ fibrosis and prevent the development of fibrosis in those ‘at-risk’.

THE TECHNOLOGY
Monash researchers Prof. Rob Widdop, Prof. Mibel Aguilar and Prof. Mark Del Borgo have developed a unique series of AT\textsubscript{2}R agonists that prevent and (more importantly) reverse existing cardiac, kidney and liver fibres. These small peptides are highly potent towards AT\textsubscript{2}R (low nM) and exhibit unparalleled selectivity for AT\textsubscript{2}R over AT\textsubscript{1}R (>20,000-fold). The lead series has been optimised producing a number of highly stable candidates (\(t_{1/2}>24\) hrs in biological fluids).

We have conducted numerous proof-of-concept studies supporting that selective AT\textsubscript{2}R stimulation with our lead series is beneficial in fibrosis. Key findings are:

- Pharmacological stimulation using our unique AT\textsubscript{2}R agonists (e.g. MU23) in mice, fed a high-salt diet to induce organ fibrosis, completely reversed established cardiac fibrosis, unlike candesartan (Fig.1), and kidney fibrosis (Fig. 2) and various pro-fibrotic (TGF-\(\beta\)) and pro-inflammatory markers. Reduced fibrosis is also seen in liver and in other models such as spontaneously hypertensive rats.

- AT\textsubscript{2}R stimulation has other potential clinical applications such as arthero- and vaso-protection, and improved plaque stability in diseased vessels.

- AT\textsubscript{2}R stimulation is also neuro-protective in spontaneously hypertensive rats when given 6 hours after stroke.

Intelectual Property: Provisional application AU 2017902801 filed on these novel compositions and their uses.

CONTACT US
Monash Innovation
T: +61 3 9905 9910
E: innovation@monash.edu
monash.edu/industry