Welcome to Monash Science

Course information fast facts.
Look for these icons for key information.

Location
Duration
ATAR ATAR Entry requirement
IB IB Entry requirement
MG Monash Guarantee
We’re facing a wide range of complex challenges — environmental pressure, climate change, booming population and an ever-changing technological, economic and social landscape.

At Monash Science, we believe in making a difference to the world by using our science training and knowledge to influence our future. Science is about learning how to analyse problems and solve them.

Our future depends on bright minds, innovators and collaborators who can create solutions that will change the world. With a science degree from Monash University, the possibilities to be a driver of change are endless.

You could find yourself on a field trip searching for fossils in Antarctica, exploring gravitational waves using the LIGO Observatory in the US, developing a life-saving vaccine, or influencing national and international policy on environmental issues.

Or you might want to be an entrepreneurial scientist using your training and knowledge in the business, government and not-for-profit sectors.

We have one of the most flexible science degrees in Australia, allowing you to tailor your program to your scientific interest, and if it crosses boundaries in ways that people haven’t thought of before, that’s great — we encourage you to be able to think about using science in new and exciting ways.

Our science precinct is among the most vibrant and dynamic in the world with more than $200 million invested in the faculty in recent years. Our students are taught, nurtured and mentored by scientists who are at the forefront of their disciplines.

Our world-class staff and teaching environment will provide you with a globally-recognised education and the skills to make a difference in the world through science. I look forward to welcoming you, our future scientists, leaders and world-changers, in 2019.

Professor Jordan Nash
Dean, Faculty of Science
Monash University
Flexibility
> Our science degree offers flexibility and choice unrivalled by any other Australian university.
> You can study subjects across the scientific spectrum and even take units from other areas, such as arts, music and business, just to name a few.
> We offer double degree options, which means you can graduate with two degrees in less time.
> You can build your course around your love of science, and not be directed to study subject areas outside science that may not interest you.

Real experience from the world’s best
> Learn from academics who are leaders in their scientific disciplines.
> We offer almost twice the number of lab hours as most Australian universities.
> Get involved in a research project – some of our students have been published in leading scientific journals before graduating!

The world is your classroom
> We offer 25 units that can take you from the classroom out into the field – to Heron Island’s pristine coral cays, the jungles of Borneo, and the rocky outcrops of the Cinque Terre in Italy.
> Seize the opportunity to assist our senior staff with research into topics as diverse as natural resource exploration in Tanzania, fossicking for fossils in Antarctica and developing solutions to water purity using graphene.
> Take advantage of the Monash Abroad exchange program and study for one or two semesters at our Monash Malaysia campus, or at one of our 100 university partners worldwide.

Australia's best science facilities
> Study in our new science precinct.

Science Student Learning Lounge
> We have two 24/7 student lounges just for science students, along with many other comfortable breakout spaces for studying or just hanging out.

Earth Sciences Garden
> We take a unique approach to teaching. For example, you’ll study geology by working in our Earth Sciences Garden – an outdoor classroom like no other, being the first of its kind in Australia and the most comprehensive worldwide.

Jock Marshall Reserve
> We’re home to the three-hectare Jock Marshall Reserve, a reserve that allows you to study the natural world in the great outdoors. The reserve also includes a new integrated learning facility.

Green Chemical Futures Building
> Budding chemists take note – our new home of chemistry is an award-winning, multidisciplinary innovation hub where teaching, research and industry R&D mix in an exciting, creative space.

Physics and Astronomy Collaborative learning Environment (PACE)
> It’s the end of traditional lectures in our first-year physics and astronomy classes. Instead you’ll benefit from problem-based learning through hands-on activities in a collaborative learning environment, with purpose-built spaces to foster teamwork and improve learning outcomes.

New Horizons Research Centre
> This houses the research laboratories of the School of Physics and Astronomy. It brings together world-leading researchers from Monash and CSIRO, with diverse backgrounds in physics, astrophysics, engineering, mathematics, IT and biosciences.
Getting ready for the real world

> We provide career coaching and guidance to prepare you for the world after university.
> Build your professional experience with an internship or project. A science internship will give you real-word experience and count as credit towards your degree.
> Our “Career skills for scientists” unit uses work-related activities to enhance valuable skills such as commercial awareness, leadership, teamwork and communication.
> For those interested in teaching science, our “Science schools project” unit places you in a classroom within a school.
> Our recruitment agency, Monash Talent, can help you find your dream job when you graduate.
> We engineer invaluable networking exposure through our “Industry internship” unit, supplemented by our annual Science Industry Week where students can access their future employers.

> The jobs database and other services offered by Monash Career Connect assists you with work opportunities during your studies and after graduation.
> We have a proven track record of providing a springboard to a huge range of careers and graduate research in science and beyond. Depending on your major, you may be eligible to join the following professional bodies: Royal Australian Chemical Institute, Australian Institute of Biology, Australian Society for Microbiology, Environment Institute of Australia, and many others.

For more information about career development and support, visit monash.edu/science/careers-support
Your success is our success. We partner with you to bring out your best. Science at Monash offers a range of services to help you when you start and throughout your course.

Science Student Services
Our expert course advisors are there to help you shape your course according to your interests, passions and career goals.

Science Transition Program
We’ve developed an online hub to help you make a smooth transition to uni. Each week when you log in you’ll see tips on where to get lecture notes, how to access library materials, managing workload, preparing for exams and much more.

Drop-in study centres
We offer drop-in study centres for all students where you’ll find free tutoring and academic support. If you need assistance with lecture, tutorial or laboratory class content, the tutors in the learning centres can help. Many of them are also instructors in first-year units, so they have extensive knowledge of the unit, assignments and assessment tasks you need to complete. Tutors can also assist with developing study plans, provide tips on study techniques, and show you how to access the range of University support services available.

Mentors
The Science Peer Mentoring Program matches you with a senior science student who can help you get settled in and make friends as you begin your studies.

The six-week program provides you with opportunities to meet like-minded fellow students in a social setting.

For more information on our help and support services, visit monash.edu/science/student-help

Science Student Services – our student services team can provide you with expert course advice.
GET INVOLVED

We offer many additional opportunities to develop networks within the University and to help you take your Science degree to the next level.

Becoming a mentor
As a mentor, you play a vital part in helping new students make a smooth transition from high school to University life. You meet your mentee weekly and organise fun activities to help them settle in, make friends and have a fun and successful first year. As a mentor, you receive training and support from your own “super mentor”.

Monash Science societies
The Monash Science Society (MSS) is one of our largest student clubs, offering a range of activities throughout the year. There are also a number of other science societies such as The Biological Society, CHAMPS and MASS^3 that provide a great opportunity to make friends and get involved. Monash University has more than 150 student clubs and societies, as well as plenty of opportunities to become involved through the many different volunteering and leadership initiatives.

Science Future Leaders Program
Influence and inspire the next generation of scientists by joining the Science Future Leaders Program. Activities undertaken during the year-long program will help you develop a range of skills relevant to leadership in your studies and career. These include a camp, a series of leadership seminars and workshops, and the opportunity to practise leadership within the University, your chosen profession, and/or the wider community.

Science Student Ambassador Program
Science student ambassadors play a key role in promoting science programs and activities to future and current students. You’ll gain hands-on experience with public speaking, social media management and events. Science student ambassadors receive $1000 as recognition of their commitment to the role.

For more information on the leadership and social experiences you can add as a Monash Science student, visit monash.edu/science/social-leadership
OUR COURSES AT A GLANCE

For students looking to begin study in 2019.

BACHELOR OF SCIENCE

<table>
<thead>
<tr>
<th>Clayton</th>
<th>3 years (full-time)</th>
<th>ATAR 85.00*</th>
<th>IB 31</th>
<th>MG 75.00</th>
</tr>
</thead>
</table>

The choice, flexibility and depth across the huge range of science disciplines available at Monash means you’ll graduate with a degree unique to you, tailored to your individual expertise, interests and career aspirations.

- Flexible, not locked-in from day one to a defined area of science.
- Choose from 26 majors.
- Specialise in up to two majors – you can study an additional major from Science or from another eligible faculty.

Our VTAC Subject Bonus

Rewards students studying more than one Year 12 science subject – this could improve your ranking and eligibility by providing additional points towards your ATAR aggregate.

Visit monash.edu/study to view entry requirements and to read more about our courses.

BACHELOR OF SCIENCE ADVANCED GLOBAL CHALLENGES (HONOURS)

<table>
<thead>
<tr>
<th>Clayton</th>
<th>4 years (full-time)</th>
<th>ATAR 90.00**</th>
<th>IB 33</th>
<th>MG 85.00</th>
</tr>
</thead>
</table>

This course is the only one of its kind in Australia.

- One internship which can be an international placement.
- Includes an ‘Impact through science’ stream that provides high-level training in leadership, persuasive communication, entrepreneurship, policy, ethics and corporate social responsibility.
- Transforms scientific expertise into a thriving business venture or social enterprise.

BACHELOR OF SCIENCE ADVANCED RESEARCH (HONOURS)

<table>
<thead>
<tr>
<th>Clayton</th>
<th>4 years (full-time)</th>
<th>ATAR 95.05*</th>
<th>IB 37</th>
<th>MG 90.00</th>
</tr>
</thead>
</table>

Do you see yourself making a difference in the world through the advancement of scientific research? If so, this is the course for you.

- Designed for students who intend to pursue a career in research.
- Allows for accelerated learning by progressing earlier to higher-level and advanced units.
- Enhanced opportunities for research projects.
- Research mentoring by leading scientists.
- You must undertake two science majors.
- Possible entry into a PhD.

The Monash Guarantee MG allows entry into select courses with a lower ATAR for all eligible applicants.

SUBJECT PREREQUISITES

VCE

English: Units 3 and 4: a study score of at least 30 in English (EAL) or 25 in English other than EAL.

Maths or Science: Units 3 and 4: a study score of at least 25 in one of Biology, Chemistry, Environmental Science, Geography, Mathematical Methods (any), Specialist Mathematics, Physics or Psychology.

IB

English: At least 4 in English SL or 3 in English HL or 5 in English B SL or 4 in English B HL.

Maths or Science: At least 4 at Standard Level (SL) or 3 at Higher Level (HL) in one of Biology, Chemistry, Environmental Systems and Societies (SL only), Further Mathematics (HL only), Geography, Mathematics, Physics or Psychology.

*Australian domestic students ATAR. International students should consult monash.edu/study

*Range of criteria includes supplementary information form and interview.

Note: Mathematics or Further Mathematics can only be used if not counted towards the Maths prerequisite.
COURSE MAP

This is what your studies will look like as a Bachelor of Science student.

As a Bachelor of Science student, you’ll have the option to take electives, allowing you to choose subjects outside of science or extra science subjects, depending on your interests.

Year 1

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Science major</th>
<th>Science</th>
<th>Maths or Statistics</th>
<th>Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 2</td>
<td>Science major</td>
<td>Science</td>
<td>Science elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Year 2

| Semester 1 | Science major | Science | Science Communication | Elective |
| Semester 2 | Science major | Science | Science | Elective |

Year 3

| Semester 1 | Science major | Science major | Elective | Elective |
| Semester 2 | Science major | Science major | Elective | Elective |

To find out more about double degrees, including how they work and their benefits, visit monash.edu/science.double-degrees

DOUBLE DEGREES

If you have a passion for an area outside of science, or would like to go into a field in which scientific knowledge would be an advantage, a double degree could be the perfect choice for you.

Combining science with another area of specialisation gives you a distinctive set of skills and helps you stand out in today’s competitive job market.

BACHELOR OF SCIENCE

<table>
<thead>
<tr>
<th>Second degrees available</th>
<th>Duration (years)</th>
<th>2018 ATAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Bachelor of Arts</td>
<td>4</td>
<td>85.05</td>
</tr>
<tr>
<td>+ Bachelor of Biomedical Science</td>
<td>4</td>
<td>95.05</td>
</tr>
<tr>
<td>+ Bachelor of Commerce</td>
<td>4</td>
<td>91.10</td>
</tr>
<tr>
<td>+ Bachelor of Computer Science</td>
<td>4</td>
<td>93.50</td>
</tr>
<tr>
<td>+ Bachelor of Global Studies</td>
<td>4</td>
<td>90.15</td>
</tr>
<tr>
<td>+ Bachelor of Commerce Specialist</td>
<td>4</td>
<td>94.10</td>
</tr>
<tr>
<td>+ Bachelor of Education (Honours)</td>
<td>4</td>
<td>86.90</td>
</tr>
<tr>
<td>+ Bachelor of Engineering (Honours)</td>
<td>5</td>
<td>92</td>
</tr>
<tr>
<td>+ Bachelor of Information Technology</td>
<td>4</td>
<td>83.35</td>
</tr>
<tr>
<td>+ Bachelor of Laws (Honours)</td>
<td>5</td>
<td>98</td>
</tr>
<tr>
<td>+ Bachelor of Music</td>
<td>4</td>
<td>85* + RC**</td>
</tr>
</tbody>
</table>
Where Your First-Year Study Can Take You

What you can study in first year

Biology
- **Choose from:**
 - Biology I
 - Biology II
 - Environmental biology

- **Possible majors**
 - Biochemistry
 - Developmental biology
 - Ecology and conservation biology
 - Environmental science (extended major)
 - Genetics
 - Human pathology
 - Immunology
 - Microbiology
 - Pharmacology
 - Physiology
 - Plant sciences
 - Zoology

- **Example careers**
 - Agricultural researcher
 - Animal technician
 - Bioinformatician
 - Biotechnologist
 - Biotechnology product developer
 - Botanist/plant scientist
 - Clinical scientist
 - Cytogeneticist
 - Ecologist entomologist
 - Environmental/conservation biologist
 - Environmental consultant
 - Environmental health promoter
 - Evolution and adaptation biologist
 - Fauna assessment officer
 - Geneticist
 - Hospital scientist
 - Laboratory research technician
 - Marine/freshwater biologist
 - Medical researcher
 - Microbiologist
 - Museum curator
 - Park ranger
 - Patent officer
 - Research scientist
 - Science journalist
 - Science teacher
 - Soil scientist
 - University lecturer
 - Wildlife manager
 - Zoologist

Chemistry
- **Choose from:**
 - Chemistry I
 - Chemistry II
 - Chemistry advanced I
 - Chemistry advanced II

- **Possible majors**
 - Biochemistry
 - Chemistry
 - Materials science
 - Physiology

- **Example careers**
 - Agrochemicals chemist
 - Analytical chemist
 - Biomedical chemist/analytical chemist
 - Biotechnologist
 - Biotechnology sales and marketing manager
 - Drug development chemist
 - Environmental/water chemist
 - Explosives chemist
 - Food technologist
 - Forensic scientist
 - Hospital or medical laboratory technician
 - Industrial chemist
 - Instrument specialist
 - Molecular design chemist
 - Occupational health and safety officer
 - Occupational hygienist
 - Paint chemist
 - Pharmaceutical and product manufacturer
 - Pharmaceutical representative
 - Polymer chemist/materials scientist
 - Process control specialist
 - Quality controller
 - Research chemist
 - Risk-management consultant
 - Science journalist
 - Teacher
 - Toxicologist
 - Waste and resources management
 - Consultant
 - Water quality and management consultant
 - Winemaker

Earth, Atmosphere and Environment
- **Choose from:**
 - Earth, atmosphere and environment I
 - Earth, atmosphere and environment II

- **Possible majors**
 - Earth science
 - Geographical science
 - Environmental science (extended major)
 - Atmospheric science

- **Example careers**
 - Atmospheric scientist
 - Ecotourism operator
 - Environmental geoscientist
 - Environmental scientist
 - Geochemist (analytical laboratories)
 - Geological survey scientist
 - Geologist (mineral/petroleum exploration)
 - Geophysicist
 - Geospatial analyst
 - Geotechnical engineer
 - Government adviser (environmental policy and management)
 - Hydrologist
 - Hydrogeologist
 - Land use planner
 - Landcare project manager
 - Marine biologist
 - Marine geoscientist
 - Metallurgist
 - Museum scientist
 - Natural resource manager
 - Palaeontologist
 - Park ranger
 - Research geologist
 - Research geophysicist
 - Soil scientist
 - Weather forecaster
MATHEMATICS

Choose from:
- Functions and their applications
- Analysis of change
- Techniques for modelling
- Techniques for modelling (advanced)
- Discrete mathematics for computer science
- Multivariable calculus
- Multivariable calculus (advanced)
- Introduction to statistical reasoning
- Statistical methods for science

Possible majors
- Applied mathematics
- Financial and insurance
- Mathematics (extended major)
- Mathematics
- Mathematical statistics
- Pure mathematics

Example careers
- Atmospheric scientist
- Biostatistician/data analyst
- Business analyst
- Computational mathematician
- Computer software developer
- Data mining analyst
- Environmental resource
- Model developer
- Financial consultant
- Investment/business analyst
- Market statistician
- Mathematical modeller
- Mathematics teacher
- Meteorologist
- Oceanographer
- Programmer
- Quantitative analyst
- Statistician

PHYSICS

Choose from:
- Classical physics and relativity
- Fields and quantum physics
- Physics for the living world
- Physics for Engineering
- Foundation physics
- Earth to cosmos — introductory astronomy
- Life and the universe — astrophysics

Possible majors
- Astrophysics
- Materials science
- Physics
- Physiology

Example careers
- Accelerator physicist
- Acoustics scientist
- Applied physicist
- Astronomer and astrophysicist
- Atmospheric physicist
- Biophysicist
- Electron microscopist
- Energy consultant
- Forensic physicist
- Industrial physicist
- Instrumentation physicist
- Materials scientist
- Medical physicist
- Nuclear physicist
- Optical physicist
- Optical systems specialist
- Patent attorney
- Physics teacher
- Synchrotron scientist
- Telecommunications specialist
- University lecturer

COMPUTATIONAL SCIENCE

Choose from:
- Introduction to computer science
- Algorithms and programming fundamentals in Python

Possible majors
- Computational science

Example careers
- Business analyst
- Business operations
- Coordinator
- Consultant business systems
- Analyst
- Graduate project manager
- IT analyst
- IT consultant
- IT domain specialist
- IT support
- Project manager
- Software consultant
- Software developer
- Software test analyst
- Strategic analyst
- Technology consultant
- Web developer

PSYCHOLOGY

Choose from:
- Psychology 1A
- Psychology 1B

Possible majors
- Psychology

Example careers
- Career counselling
- Child psychology
- Clinical neuropsychology
- Clinical psychology
- Counselling psychology
- Educational and developmental psychology
- Forensic psychology
- Health psychology
- Management
- Organisational psychology
- Sport psychology
- Teaching

Please note: some careers may require further study.

For more information about majors and sequences, visit monash.edu/science/majors
A–Z GUIDE OF MAJORS

Within the Bachelor of Science at least eight units will make up your science major. You’ll also have eight units of free electives, which offer you the flexibility to shape your course in a number of different ways – such as extending your major to add depth, adding a second major or a minor from the same or another course, or studying a range of units from across the University.

APPLIED MATHEMATICS
Apply techniques and models to solve problems from medicine, engineering, information technology and commerce.
> Explain observations or predict future trends.
> Contribute to new theories and adapt existing mathematical approaches to new problems.
> Develop key technical skills in advanced calculus, linear algebra, differential equations and computational methods.

ASTROPHYSICS
Use observations and the laws of physics to understand the universe and its constituents.
> Study celestial objects such as planets and stars, comets, pulsars and quasars, black holes and galaxies.
> Link the smallest and the largest objects in the universe, from strings to super clusters of galaxies.
> Explore the possibility of extraterrestrial life.
> Use the latest technology – from large telescopes to supercomputers.

ATMOSPHERIC SCIENCE
Explore the relationship between the Earth’s atmosphere, weather and climate.
> Study aspects of environmental science, applied mathematics and physics that drive weather and climate.
> Ask the big questions: Is the climate changing, and is it our fault? How can we better forecast day-to-day weather?
> Undertake exciting fieldwork, analyse and model climate, and engage in research.

For more information about majors and sequences, visit monash.edu/ science/majors
BIOCHEMISTRY
Explore the chemical components and biological processes of all living systems.
> Study the chemistry within the biological processes that form the foundation for all living matter.
> Understand the cause of disease.
> See how effective treatments/vaccines are developed.

DEVELOPMENTAL BIOLOGY
Explore the processes of development from a single cell to an adult organism.
> Investigate cellular and molecular mechanisms underlying normal and abnormal development.
> Apply laboratory practices incorporating cellular, molecular and imaging techniques.
> Study topics such as gene expression, stem cell biology, tissue engineering, regenerative biology and medicine.

CHEMISTRY
Study the science of matter and energy.
> Investigate the structure of substances.
> See how atoms and molecules react and interact, and how this affects materials, medicine and technology.
> Learn about synthetic and analytical chemistry, medicinal and biological chemistry, and physical and environmental chemistry.
> Undertake lab work in purpose-built chemistry facilities.

EARTH SCIENCE
Study the structure, geology, chemistry and biology of the materials that make up our Earth. Earth science offers three streams: physical environment, climate and geosciences, and geographical science.
> Explore how the Earth has changed over geological time, and the processes that created the change.
> Investigate processes such as plate tectonics, volcanism and earthquakes, and how these affect the atmosphere, biosphere, the Earth’s surface and oceans.
> Gain an understanding of our major resources, including mineral deposits, oil, gas and water.

COMPUTATIONAL SCIENCE
Solve scientific problems through computers.
> Construct and apply mathematical models, simulations and data-analysis techniques.
> Learn the fundamentals of algorithmic problem-solving to advanced programming, 3D computer graphics and intelligent systems.
> Undertake parallel computation for massive data analysis and simulation to tackle the world’s current and emerging problems.

ECOLOGY AND CONSERVATION BIOLOGY
Study the ecological and evolutionary interactions between organisms and their environments.
> Explore conservation management.
> Develop ways to reduce the escalating biodiversity loss within our world.
> Study ecosystem structure and function.
> Discover how organisms adapt to changing environments.
HUMAN PATHOLOGY
Study disease processes, including cell death, inflammation, disorders of immunity and neoplasia.
> Explore current environmental challenges such as climate change, water and land management, resource use and sustainability.
> Apply scientific information to the management of our natural systems.
> Understand how environmental science can affect policy and management changes.
> The extended major in environmental science includes the choice of three streams: ecology, climate and environmental earth sciences.

GENETICS
Study genes – their structure, function, transmission and evolution.
> Learn how genetics underpins areas such as biomedical science, conservation biology, forensics and biotechnology.
> Develop advanced practical skills in recombinant DNA technology, transgenic organism analysis, genotyping, genomics and bioinformatics.
> Design and implement both laboratory and computer-based genetic experiments.

ENVIRONMENTAL SCIENCE
Study the interactions between the physical, chemical, geographical and biological components and processes of the environment.
> Explore current environmental challenges such as climate change, water and land management, resource use and sustainability.
> Apply scientific information to the management of our natural systems.
> Understand how environmental science can affect policy and management changes.
> The extended major in environmental science includes the choice of three streams: ecology, climate and environmental earth sciences.

GEOGRAPHICAL SCIENCE
Discover the relationships between people, society and the natural environment.
> Study physical and human geography, such as climatology, hydrology, soil science and sustainability theory.
> Learn about atmospheric circulation, climate change, land and water management, the coastal zone, vegetation dynamics, how landscapes change, urbanisation and environmental policy.

FINANCIAL AND INSURANCE MATHEMATICS
Apply mathematical modelling and statistical techniques to understand and assess risk in insurance and financial markets.
> Develop financial and risk models.
> Evolve financial and investment business strategies.
> Demonstrate high-level critical thinking skills to analyse, use and interpret data.

HUMAN PATHOLOGY
Study disease processes, including cell death, inflammation, disorders of immunity and neoplasia.
> Learn about organ system failure during disease and injury, and how this knowledge is critical for diagnosis, prognosis and medical intervention.
> Develop a comprehensive knowledge of cell injury, wound healing, fluid and vascular disorders, growth disorders and immunopathology.
> Apply practical laboratory skills such as microscopy, histological staining techniques and diagnosis.

IMMUNOLOGY
Learn how the immune system protects us from harmful pathogens such as bacteria and viruses.
> Study the immune system’s mechanisms in cancers, allergies, autoimmunity and transplant rejection.
> Explore how the function of the immune system can be manipulated to improve development of vaccines and cures for autoimmune diseases.
MATHEMATICAL STATISTICS
Study mathematical theory and the applications of this theory in the real world.
> Explore models involving random, unpredictable components and learn how to use these models to make informed decisions.
> Develop key technical skills in advanced calculus and linear algebra.
> Apply high-level probability, statistical and stochastic processing techniques to real-life problems.

MICROBIOLOGY
Learn about micro-organisms, including bacteria, viruses, protozoa, algae and fungi.
> Study their diversity, structure, molecular biology and how they interact with humans and other living organisms.
> Study the rise of antibiotic resistance in medically important bacteria.
> Discover how microbiologists are involved in the development of vaccines.

MATHEMATICS
Discover how mathematics is used to describe, model, understand and even create aspects of the world around us.
> Develop key technical skills in advanced calculus and linear algebra.
> Explore techniques for modelling and how to use these techniques to solve complex problems.

PHARMACOLOGY
Study the effect of drugs on living organisms and how to scientifically define the term ‘drug’.
> Discover how drugs affect cell responses, including whether drug action will be selective and long-lasting, and the nature of side effects.
> Learn about drugs used in the prevention or treatment of an illness and those that are taken for recreation.

MATERIALS SCIENCE
Study different types of materials, including metals, polymers, ceramics, nanomaterials, glasses and composites.
> Discover the relationship between structure, property, processing and performance of these materials.
> Understand the manipulation of these materials to benefit technologies in health, engineering and manufacturing.
> Study topics such as crystallography, thermodynamics, biological engineering and solid mechanics.

PHYSICS
Study space and time, matter and energy.
> Explore the full spectrum of topics, from atom optics and BECs to particle physics and quantum science.
> Investigate recent discoveries such as the Higgs boson and gravitational waves.
> See how physics underpins other science disciplines, including medicine and engineering.
> Develop high-level analytical, numerical modelling and problem-solving skills.
PHYSIOLOGY
Learn how the body functions in health and disease.
> Explore how body systems adapt when challenged by stresses such as exercise or environmental extremes, and how body functions change in diseased states.
> Examine the nerves and muscles, the brain and hormones, and the body’s functionality from the molecular and cellular through to the body systems level.

PURE MATHEMATICS
Pure mathematics deals with the abstract, the rigour and the beauty of perfection.
> Explore how pure mathematics becomes the basis for applied mathematics to solve the most concrete problems.
> See how the theory of prime numbers is fundamental to security systems and electronic banking.
> Apply high-level knowledge in advanced analysis, algebra and geometry.

PLANT SCIENCES
Study the structure, function, genetics and diversity of plants – from algae and mosses through to gymnosperms and angiosperms.
> Discover the differences and similarities between plants living on the land, in the sea and in freshwater environments.
> Learn how plants adapt to particular environments and what factors influence the distribution and diversity of plant species and communities in which they grow.

ZOOLOGY
Study the diversity of animals, including their evolution, form, function, behaviour and ecology.
> Explore the interactions of animals with their environments through food chains and competition for resources.
> Understand the impact that parasites and pests have on our natural food supplies.
> Undertake field trips in Australia and overseas.

PSYCHOLOGY
Study the mind and behaviour, including investigations of the brain, learning, memory, reasoning, decision-making, language, developmental and social processes, personality and mental health.
> Examine the practical and ethical applications of psychological research.
> Opportunity to complete the Australian Psychology Accreditation Council (APAC) accredited study for those wanting to specialise in psychology.
PATHWAYS INTO SCIENCE

If you don’t achieve the ‘right’ ATAR, it isn’t the end of the world – there are alternative pathways into a Bachelor of Science at Monash.

- **TAFE qualifications (graded)**
 Science-related Certificate IV or Diploma.

- **Monash University Foundation Year** *(international students only)*
 Students completing Monash University Foundation Year can enter the Bachelor of Science at first year.

- **Diploma of Higher Education (DoHE)**
 An ATAR of at least 65 is required, with a study score of at least 30 in English (EAL) or 25 in any other English.

- **Diploma of Science, Monash College** *(full-fee paying)*
 Upon completion of Year 12 Australian equivalent, students can undertake an eight-month Diploma of Science at Monash College, which offers a direct pathway into the second year of a science degree.

- **Single University units**
 Mature-age students can apply to study two single (science) University units. Upon completion of these units with a minimum average result of 60 per cent, and after satisfying English language requirements, students are eligible to apply for entry into the Bachelor of Science.

- **Transfer from another university**
 With a science-related degree.
USING SCIENCE AS A PATHWAY TO OTHER STUDY AREAS

A Monash Bachelor of Science forms a strong foundation for students wanting to work towards further study in medical, pharmaceutical or psychology fields*.

Complete first year Bachelor of Science

Use your Bachelor of Science year as a pathway into a range of other Monash degrees.

Range of careers depending upon degree of choice.

Complete a Bachelor of Science 3 years (full-time)

Graduate entry Bachelor of Pharmacy (Honours) 2 years (full-time)

Pharmacist or employment within science-related role

Graduate entry Bachelor of Medical Science and Doctor of Medicine (MD)

Medical practitioner

Doctor of Veterinary Medicine

Veterinary surgeon

Complete a Bachelor of Science 3 years (full-time) + Honours in Psychology 1 year (full-time)

Graduate study in psychology – Master of Psychology 2 years (full-time)

Psychologist

For more information about Science as a pathway into other study areas, visit monash.edu/science/pathways

* Entry requirements apply; interested applicants should enquire with destination courses.
Jock Marshall Reserve, Biology teaching laboratory, Clayton campus.
The information in this brochure was correct at the time of publication (April 2018). Monash University reserves the right to alter this information should the need arise. You should always check with the relevant faculty office when considering a course.

Produced by Strategic Marketing and Communication Job 18P-03057.

CRICOS provider: Monash University 00008C Monash College 01135J

Monash Online
monash.edu

Find a course
monash.edu/study

International students
monash.edu/study/international

Scholarships
monash.edu/scholarships

Off-campus learning
monash.edu/offcampus

Monash on YouTube
youtube.com/monashunivideo

Science Online
monash.edu/science

Monash Science on Twitter
@Monash_Science

Monash Science on Instagram
@monashscience

Monash Science Facebook
@MonashUniScience

Monash Science YouTube
youtube.com/ScienceMonashUni

Future student enquiries

Australian citizens, permanent residents and New Zealand citizens
Tel: 1800 MONASH (666 274)
Email: future@monash.edu
monash.edu/study/contact

International students
Australia freecall tel: 1800 181 838
Tel: +61 3 9903 4788 (outside Australia)
Email: study@monash.edu
Wechat: MonashUniAus
Youku: Monash 蒙纳士大学