Product Type
Small molecule drug candidate – repurpose or NCE

Indication/ROA
Obesity – intra-nasal (reformulation existing drug) or oral NCE

Target/MoA
A hypothalamic protein tyrosine phosphatase (PTP) ‘switch’, regulated by glucocorticoids (GC), modulates insulin sensitivity and weight loss. CNS-targeted blocking of TCPTP (via GC-receptor antagonism) resets arcuate nucleus (ARC) neurons to insulin, increases energy expenditure and white adipose tissue (WAT) browning leading to weight loss. Combined with targeting PTP1B to re-sensitize ARC neurons to leptin, this represses feeding and leads to synergistic and sustained weight loss and improved glucose metabolism.

Development Stage
Targets validated through intra-nasal administration of TCPTP inhibitor (or GC antagonist) and PTP1B inhibitor; in preclinical efficacy studies; re-profile existing marketed drugs/drug candidates for i.n. delivery.

Brief Description & Differentiation
Central targeting of the hypothalamic PTPs is a new approach to increase insulin and leptin signalling, increase WAT browning and energy expenditure and repress feeding for the treatment of metabolic disease and obesity. Inhibiting TCPTP and PTP1B in ARC neurons is highly efficacious in promoting weight loss in obesity and improving glucose metabolism, even without lifestyle modifications.

Research Team
Prof Tony Tiganis (Monash BioMedicine Discovery Institute)

Intellectual Property
PCT/AU2018/050588 - METHODS AND COMPOSITIONS FOR THE TREATMENT OF OBESITY

Key Publications

Future
Re-profile TCPTP and PTP1B inhibitors for i.n. administration and formal preclinical studies

Key Data
Monash researchers have identified a novel hypothalamic PTP switch linking GC to insulin receptor signalling.
- Elevated ARC PTP1B & TCPTP promote cellular leptin & insulin resistance.
- Elevated ARC PTP1B & TCPTP contribute to the maintenance of obesity, systemic insulin resistance & hyperglycemia.
- Intranasal delivery of TCPTP (via GC antagonist) increases WAT browning and energy expenditure while PTP1B inhibitor represses feeding to promote weight loss and improve glucose metabolism in obesity.

Figure 1: Once daily Intranasal Delivery of TCPTP and PTP1B inhibitors promotes weight loss in DIO

Figure 2: Once daily Intranasal Delivery of TCPTP and PTP1B inhibitors promotes weight loss in DIO