EXCITING POSSIBILITIES, ENDLESS OPPORTUNITIES – CHEMISTRY AT MONASH

Studying chemistry at Monash will equip you with skills you can use in any career.

Our journey to become leaders in the global shift towards green and sustainable chemistry starts with us, which is why we’ve built Green Chemical Futures (GCF), a hub right here on campus. GCF offers teaching, research and industry in one location. We’ve created a vibrant home on campus where students can learn, network, socialise and collaborate with their peers, academics and industry professionals.

As a chemistry student, you’ll use the latest educational equipment and resources – including lecture spaces, sophisticated laboratories and research facilities, as well as interactive spaces specifically designed for engagement with other students, researchers and industry.

All the while, you’ll be learning in a building that aims to minimise environmental impact by using sustainable materials, and supporting energy conservation through the molecular structure of the building itself. GCF is the heart of forward-thinking in chemical science, with each level inviting students and researchers to explore possibilities and stretch their minds, marrying learning with innovation in the same space.

MONASH CHEMISTRY
study.monash

Our journey to become leaders in the global shift towards green and sustainable chemistry starts with us, which is why we’ve built Green Chemical Futures (GCF) hub right here on campus. GCF unifies teaching, research and industry in one location. We’ve created a vibrant home on campus where students can learn, network, socialise and collaborate with their peers, academics and industry professionals.

As a chemistry student, you’ll use the latest educational equipment and resources – including lecture spaces, sophisticated laboratories and research facilities, as well as interactive spaces specifically designed for engagement with other students, researchers and industry.

All the while, you’ll be learning in a building that aims to minimise environmental impact by using sustainable materials, and supporting energy conservation through the molecular structure of the building itself. GCF is the heart of forward-thinking in chemical science, with each level inviting students and researchers to explore possibilities and stretch their minds, marrying learning with innovation in the same space.

The lower levels of the building house innovative teaching and collaborative learning spaces, moving away from traditional lecture halls in favour of learning spaces that encourage active learning and creative problem-solving in smaller groups. State-of-the-art research laboratories and transitional facilities are located on the upper levels.

Monash Science students and academics have access to:
- Collaborative learning spaces
- Sophisticated laboratories and research facilities
- The latest equipment and resources
- A lecture-style learning space
- Wireless technology
- Industry engagement spaces
- Visual interaction and interaction.

Studying chemistry at Monash will equip you with skills you can use in any career.

Dr Chris Thompson
Senior Lecturer in Chemistry at Monash

Dr Chris Thompson is an academic with a special focus on education. Not every university employs specialist educators, and in an unusual move, there is a handful of these rare specialists in the Monash Faculty of Science. Chris’ research implements innovative ways to teach chemistry.

“I want to change the way we educate chemistry students – to help them become professional scientists who are trained to think independently; to ask clever questions and devise solutions.

“Students entering the chemistry course in 2017 will enter a new world. A 9500-square-metre multi-level building known as Green Chemical Futures is the hub for all chemistry study and research on the Clayton campus. The top two floors are an incubator for more than 100 chemists and engineers doing both basic science and industry-driven research. The lower levels house some of the finest purpose-built labs and learning spaces in Australia.”

“These labs can accommodate 1200 first-year students working in groups of 16 at long benches, each with a screen, gleaming glassware and modern instruments. Everything in this space is fresh, modern and all to designed to facilitate a new kind of learning. We have fun. Imagine an experiment where we give you and your team a vial containing an unknown white powder. You’ll have two weeks to come up with a strategy on how you plan to identify the powder before getting a chance to confirm your hypothesis. This is the kind of learning you’ll experience in chemistry at Monash.”

Further information
monash.edu/chemistry
monash.edu/science/future

1800 MONASH (1800 668 274)

Copyright © Monash University. All rights reserved. E0000014

Further information
monash.edu/chemistry
monash.edu/science/future
1800 MONASH (1800 668 274)

Designed and produced by SMC Monash. 17P-0629.

CRICOS provider: Monash University 00008C

Further information
monash.edu/chemistry
monash.edu/science/future
1800 MONASH (1800 668 274)

Designed and produced by SMC Monash. 17P-0629.

CRICOS provider: Monash University 00008C
CHEMISTRY RESEARCH AND INNOVATION

Chemistry’s influence is at a level unseen by the human eye. At Monash you’ll discover a range of computational, experimental and theoretical research opportunities, among many, that will enable you to engage with the beauty of chemistry in a curiosity-driven frame.

We also collaborate on a number of projects with other Monash departments, schools and industry partners, including biochemistry, biological sciences, microbiology and earth sciences. This emphasises chemistry’s place as the central science and will give you a wide platform to address a range of problems if you choose to undertake further study in chemistry.

Our focus is on student learning that is enhanced by our active research culture, industry engagement and community involvement.

Our academics are involved in a diverse range of research projects:

- Molecular design and synthesis
- Anti-cancer agents
- Medicinal chemistry
- Development of materials
- Environmental chemistry
- Bioorganic and bio-inorganic chemistry
- Drug design
- Fuel chemistry
- Bio-diagnostics
- Forensic analysis
- Analytical chemistry
- Water chemistry and supply
- Energy
- Environmental chemistry
- Bio-inorganic and bioorganic chemistry
- Radio fueling
- Green chemistry
- Chemical education

Monash University is ranked number-one in Australia, according to QS World University Rankings.

CHEMISTRY

Monash University is at the forefront of chemistry innovation and research. Chemistry at Monash offers a world-class research environment and enables you to engage with the beauty of chemistry in a curiosity-driven frame.

Monash boosts a strong research emphasis on sustainable chemistry. With a focus on materials, synthetic, analytical and green chemistry, our academics are at the forefront of research and development that will provide partnerships in the chemical and plastic industry, which industry chosen to have an impact across all of Australia’s R1 industries. That’s massive.

This means that as a student, whether undergraduate or graduate, you’ll benefit from exceptional teaching and training, and a stimulating learning environment that is underpinned by a research-led teaching approach.

CHEMISTRY RESEARCH AND INNOVATION

CHEMISTRY RESEARCH AND INNOVATION

STUDYING CHEMISTRY IN MONASH SCIENCE

Chemistry and explore a wide range of options. Consider undertaking an honours year as part of your chemistry education and have the opportunity to be part of a research group studying a significant problem.

COURSES

You can study a chemistry major in the following courses:

- Bachelor of Science
- Bachelor of Science Advanced – Research (Honours)
- Bachelor of Science Advanced – Global Challenges (Honours)

A major in chemistry can also be taken as part of a double degree. For further details and information on these options please see our Science Undergraduate Course Guide or visit our website for a detailed list of course outlines.

HONOURS STUDIES

Honours-level study enables you to undertake a specialised research project with one of our world-leading research groups. You will complete a major in chemistry and an honours degree.

GRADUATE STUDIES

After honours, students can apply to undertake Master of Science and PhD studies. These degrees involve coursework options and a research project or thesis.

Our academics are involved in a diverse range of research projects:

- Molecular design and synthesis
- Anti-cancer agents
- Medicinal chemistry
- Development of materials
- Environmental chemistry
- Bioorganic and bio-inorganic chemistry
- Drug design
- Fuel chemistry
- Bio-diagnostics
- Forensic analysis
- Analytical chemistry
- Water chemistry and supply
- Energy
- Environmental chemistry
- Bio-inorganic and bioorganic chemistry
- Radio fueling
- Green chemistry
- Chemical education

Monash University is ranked number-one in Australia, according to QS World University Rankings.

CHEMISTRY

Monash University is at the forefront of chemistry innovation and research. Chemistry at Monash offers a world-class research environment and enables you to engage with the beauty of chemistry in a curiosity-driven frame.

Monash boosts a strong research emphasis on sustainable chemistry. With a focus on materials, synthetic, analytical and green chemistry, our academics are at the forefront of research and development that will provide partnerships in the chemical and plastic industry, which industry chosen to have an impact across all of Australia’s R1 industries. That’s massive.

This means that as a student, whether undergraduate or graduate, you’ll benefit from exceptional teaching and training, and a stimulating learning environment that is underpinned by a research-led teaching approach.

CHEMISTRY RESEARCH AND INNOVATION

CHEMISTRY RESEARCH AND INNOVATION

STUDYING CHEMISTRY IN MONASH SCIENCE

Chemistry and explore a wide range of options. Consider undertaking an honours year as part of your chemistry education and have the opportunity to be part of a research group studying a significant problem.

COURSES

You can study a chemistry major in the following courses:

- Bachelor of Science
- Bachelor of Science Advanced – Research (Honours)
- Bachelor of Science Advanced – Global Challenges (Honours)

A major in chemistry can also be taken as part of a double degree. For further details and information on these options please see our Science Undergraduate Course Guide or visit our website for a detailed list of course outlines.

HONOURS STUDIES

Honours-level study enables you to undertake a specialised research project with one of our world-leading research groups. You will complete a major in chemistry and an honours degree.

GRADUATE STUDIES

After honours, students can apply to undertake Master of Science and PhD studies. These degrees involve coursework options and a research project or thesis.

Our academics are involved in a diverse range of research projects:

- Molecular design and synthesis
- Anti-cancer agents
- Medicinal chemistry
- Development of materials
- Environmental chemistry
- Bioorganic and bio-inorganic chemistry
- Drug design
- Fuel chemistry
- Bio-diagnostics
- Forensic analysis
- Analytical chemistry
- Water chemistry and supply
- Energy
- Environmental chemistry
- Bio-inorganic and bioorganic chemistry
- Radio fueling
- Green chemistry
- Chemical education

Monash University is ranked number-one in Australia, according to QS World University Rankings.

CHEMISTRY

Monash University is at the forefront of chemistry innovation and research. Chemistry at Monash offers a world-class research environment and enables you to engage with the beauty of chemistry in a curiosity-driven frame.

Monash boosts a strong research emphasis on sustainable chemistry. With a focus on materials, synthetic, analytical and green chemistry, our academics are at the forefront of research and development that will provide partnerships in the chemical and plastic industry, which industry chosen to have an impact across all of Australia’s R1 industries. That’s massive.

This means that as a student, whether undergraduate or graduate, you’ll benefit from exceptional teaching and training, and a stimulating learning environment that is underpinned by a research-led teaching approach.

CHEMISTRY RESEARCH AND INNOVATION

CHEMISTRY RESEARCH AND INNOVATION

STUDYING CHEMISTRY IN MONASH SCIENCE

Chemistry and explore a wide range of options. Consider undertaking an honours year as part of your chemistry education and have the opportunity to be part of a research group studying a significant problem.

COURSES

You can study a chemistry major in the following courses:

- Bachelor of Science
- Bachelor of Science Advanced – Research (Honours)
- Bachelor of Science Advanced – Global Challenges (Honours)

A major in chemistry can also be taken as part of a double degree. For further details and information on these options please see our Science Undergraduate Course Guide or visit our website for a detailed list of course outlines.

HONOURS STUDIES

Honours-level study enables you to undertake a specialised research project with one of our world-leading research groups. You will complete a major in chemistry and an honours degree.

GRADUATE STUDIES

After honours, students can apply to undertake Master of Science and PhD studies. These degrees involve coursework options and a research project or thesis.

Our academics are involved in a diverse range of research projects:

- Molecular design and synthesis
- Anti-cancer agents
- Medicinal chemistry
- Development of materials
- Environmental chemistry
- Bioorganic and bio-inorganic chemistry
- Drug design
- Fuel chemistry
- Bio-diagnostics
- Forensic analysis
- Analytical chemistry
- Water chemistry and supply
- Energy
- Environmental chemistry
- Bio-inorganic and bioorganic chemistry
- Radio fueling
- Green chemistry
- Chemical education

Monash University is ranked number-one in Australia, according to QS World University Rankings.

CHEMISTRY

Monash University is at the forefront of chemistry innovation and research. Chemistry at Monash offers a world-class research environment and enables you to engage with the beauty of chemistry in a curiosity-driven frame.

Monash boosts a strong research emphasis on sustainable chemistry. With a focus on materials, synthetic, analytical and green chemistry, our academics are at the forefront of research and development that will provide partnerships in the chemical and plastic industry, which industry chosen to have an impact across all of Australia’s R1 industries. That’s massive.

This means that as a student, whether undergraduate or graduate, you’ll benefit from exceptional teaching and training, and a stimulating learning environment that is underpinned by a research-led teaching approach.

CHEMISTRY RESEARCH AND INNOVATION

CHEMISTRY RESEARCH AND INNOVATION

STUDYING CHEMISTRY IN MONASH SCIENCE

Chemistry and explore a wide range of options. Consider undertaking an honours year as part of your chemistry education and have the opportunity to be part of a research group studying a significant problem.

COURSES

You can study a chemistry major in the following courses:

- Bachelor of Science
- Bachelor of Science Advanced – Research (Honours)
- Bachelor of Science Advanced – Global Challenges (Honours)

A major in chemistry can also be taken as part of a double degree. For further details and information on these options please see our Science Undergraduate Course Guide or visit our website for a detailed list of course outlines.

HONOURS STUDIES

Honours-level study enables you to undertake a specialised research project with one of our world-leading research groups. You will complete a major in chemistry and an honours degree.

GRADUATE STUDIES

After honours, students can apply to undertake Master of Science and PhD studies. These degrees involve coursework options and a research project or thesis.

Our academics are involved in a diverse range of research projects:

- Molecular design and synthesis
- Anti-cancer agents
- Medicinal chemistry
- Development of materials
- Environmental chemistry
- Bioorganic and bio-inorganic chemistry
- Drug design
- Fuel chemistry
- Bio-diagnostics
- Forensic analysis
- Analytical chemistry
- Water chemistry and supply
- Energy
- Environmental chemistry
- Bio-inorganic and bioorganic chemistry
- Radio fueling
- Green chemistry
- Chemical education

Monash University is ranked number-one in Australia, according to QS World University Rankings.

CHEMISTRY

Monash University is at the forefront of chemistry innovation and research. Chemistry at Monash offers a world-class research environment and enables you to engage with the beauty of chemistry in a curiosity-driven frame.

Monash boosts a strong research emphasis on sustainable chemistry. With a focus on materials, synthetic, analytical and green chemistry, our academics are at the forefront of research and development that will provide partnerships in the chemical and plastic industry, which industry chosen to have an impact across all of Australia’s R1 industries. That’s massive.

This means that as a student, whether undergraduate or graduate, you’ll benefit from exceptional teaching and training, and a stimulating learning environment that is underpinned by a research-led teaching approach.