Contents

2 Engineering: making things happen
3 The Monash difference
4 Graduate opportunities
5 Extended study
6 More than an Engineering course: the total experience
10 The finest facilities
11 Engineering scholarships
12 Double degrees
14 Bachelor of Engineering (Honours)
16 Bachelor of Engineering (Honours) – Specialisations
24 Monash College
30 Admissions, ATARs and prerequisites
33 How to apply
ENGINEERING: MAKING THINGS HAPPEN

Engineers are creative, imaginative, analytical and technical, with excellent teamwork skills. As an engineer you will apply science and mathematics in a practical way to develop new technologies and improve existing ones.

Engineers solve problems, figure out how things work and create solutions. They are key to the development of society and solving the challenges the world currently faces such as climate change, natural resource depletion, food shortages and increased demands on energy.

Engineers possess a rare combination of skills and qualities that place them in demand in many different industries. An engineer’s career is diverse, interesting and can be anywhere in the world.

As a qualified engineer you will be equipped to work in many areas outside of engineering such as management, banking and consulting. Some engineers go on to become CEOs of major corporations. Almost 20 per cent of CEOs of ASX100 companies are engineers. Problem solving and planning skills, combined with a focus on the future and continuous improvement, make engineers competent business leaders.

A career in engineering will suit you if you:

✓ Are curious about how things work
✓ Like and are good at maths and science
✓ Enjoy challenges
✓ Are goal oriented
✓ Like working with lots of different people in multidisciplinary teams
✓ Like analysing and solving problems
✓ Have an interest in improving the quality of human life.

THE MONASH DIFFERENCE

More choice; greater flexibility

Not everyone is sure what kind of engineering they want to study, or exactly where their future lies. So Monash created an engineering degree that gives you maximum choice and flexibility.

The Common First Year

The Bachelor of Engineering (Honours) has a common first year, allowing you to better understand engineering and its specialisations before deciding which to pursue, from level two.

Double Degrees

Around 70% of our students study a double degree, combining engineering with another area for flexibility and diversity.

Whether it’s Architectural Design, Arts, Biomedical Science, Commerce, Commerce Specialist, Design, Law, Pharmaceutical Science or Science, Monash allows you to study engineering while pursuing other passions and interests.

Professional recognition

Monash Engineering degrees are recognised by the following professional engineering bodies:

■ Engineers Australia
■ The Institution of Chemical Engineers (Bachelor of Chemical Engineering (Honours) only)
■ Engineering Accreditation Council Malaysia (Malaysian Engineering degrees only)
■ Australian Computer Society (Bachelor of Software Engineering (Honours) only).

Australia is a signatory to the Washington Accord, which enables Monash Engineering graduates to work in any other signatory country, without the need to re-qualify.

For more information about the Washington Accord and a list of signatories visit: ieagreements.org/washington-accord

MONASH ENGINEERING

MORE CHOICE; GREATER FLEXIBILITY

Not everyone is sure what kind of engineering they want to study, or exactly where their future lies. So Monash created an engineering degree that gives you maximum choice and flexibility.

THE COMMON FIRST YEAR

The Bachelor of Engineering (Honours) has a common first year, allowing you to better understand engineering and its specialisations before deciding which to pursue, from level two.

DOUBLE DEGREES

Around 70% of our students study a double degree, combining engineering with another area for flexibility and diversity.

Whether it’s Architectural Design, Arts, Biomedical Science, Commerce, Commerce Specialist, Design, Law, Pharmaceutical Science or Science, Monash allows you to study engineering while pursuing other passions and interests.

PROFESSIONAL RECOGNITION

Monash Engineering degrees are recognised by the following professional engineering bodies:

■ Engineers Australia
■ The Institution of Chemical Engineers (Bachelor of Chemical Engineering (Honours) only)
■ Engineering Accreditation Council Malaysia (Malaysian Engineering degrees only)
■ Australian Computer Society (Bachelor of Software Engineering (Honours) only).

Australia is a signatory to the Washington Accord, which enables Monash Engineering graduates to work in any other signatory country, without the need to re-qualify.

For more information about the Washington Accord and a list of signatories visit: ieagreements.org/washington-accord

MONASH ENGINEERING

MORE CHOICE; GREATER FLEXIBILITY

Not everyone is sure what kind of engineering they want to study, or exactly where their future lies. So Monash created an engineering degree that gives you maximum choice and flexibility.

THE COMMON FIRST YEAR

The Bachelor of Engineering (Honours) has a common first year, allowing you to better understand engineering and its specialisations before deciding which to pursue, from level two.

DOUBLE DEGREES

Around 70% of our students study a double degree, combining engineering with another area for flexibility and diversity.

Whether it’s Architectural Design, Arts, Biomedical Science, Commerce, Commerce Specialist, Design, Law, Pharmaceutical Science or Science, Monash allows you to study engineering while pursuing other passions and interests.

PROFESSIONAL RECOGNITION

Monash Engineering degrees are recognised by the following professional engineering bodies:

■ Engineers Australia
■ The Institution of Chemical Engineers (Bachelor of Chemical Engineering (Honours) only)
■ Engineering Accreditation Council Malaysia (Malaysian Engineering degrees only)
■ Australian Computer Society (Bachelor of Software Engineering (Honours) only).

Australia is a signatory to the Washington Accord, which enables Monash Engineering graduates to work in any other signatory country, without the need to re-qualify.

For more information about the Washington Accord and a list of signatories visit: ieagreements.org/washington-accord

MONASH ENGINEERING
Graduate opportunities

Engineering graduates are amongst Australia’s highest earners (behind only dentistry and optometry) and enjoy many and varied career options.

The world relies on engineers to drive innovation and economic growth internationally. With Engineers Australia accreditation, Monash engineering graduates can work in any other country that is signatory to the Washington Accord, without the need to re-qualify.

At Monash, you can graduate after four years with a specialised engineering (Honours) qualification, and begin working immediately as an accredited engineer. To open up even more career opportunities, you can also do a double degree in one of nine other areas. See page 12 for more information.

An engineering degree from Monash University gives you a competitive edge. As a Monash Engineering graduate, you will not only be highly sought after when you first enter the workforce, it will continue well into your career.

Average Australian engineering salary

$110,834**

An Engineering degree from Monash University gives you a competitive edge. As a Monash Engineering graduate, you will be a highly sought-after industry professional when you first enter the workforce and throughout your career.

Extended study

A Bachelor of Engineering (Honours) from Monash offers you the opportunity for extended or postgraduate study.

A double degree with one of nine other degrees will offer extensive breadth to your course, and can be completed in just one additional year (or two and a half in the case of Engineering and Laws).

You may also wish to further your study with the Master of Advanced Engineering or a research degree.

The Master of Advanced Engineering allows you to explore your discipline on an advanced level and learn how to apply your new knowledge to real problems. The course will also focus on engineering leadership to strengthen your critical reasoning and strategic thinking skills, and will add only one or two years to your study.

A research degree allows you to pursue your particular interests, work on an original idea, have your ideas published, solve a real-world problem, and have the opportunity to work with some of Australia’s leading researchers. You’ll be thoroughly challenged and will further develop your transferable skills such as communication, data analysis, problem solving and time management. A Masters of Engineering Science (Research) is a two year full-time qualification, an Engineering PhD will take you four years of full time study, and both can be undertaken at the end of your Bachelor of Engineering (Honours).

Faculty-guaranteed scholarships

Designed for high-achieving final year students, Monash engineering guaranteed scholarships provide an ideal pathway to research studies.

If, at the end of your course, you have achieved an H1 honours-weighted average, we guarantee you a scholarship to undertake a higher degree by research (masters or PhD). The scholarship value is equivalent to the Australian Postgraduate Award rate. Conditions apply.

*MyCareer.com.au
**adzuna.com.au Based on job listings inclusive of wage from the last 90 days (as at 1 February 2016). Figure may incorporate total package.
Outstanding academic performance is not always first on an employer’s must-have list: employers want graduates who are highly skilled, well-rounded individuals. Many place interpersonal and communication skills, critical reasoning and problem-solving, together with passion, at the top of their list.

At Monash we open your eyes to a world outside the classroom. As a Monash Engineering graduate, you leave prepared for leadership, success and – most importantly – life. The following are just a few examples of the activities you can get involved in while at Monash Engineering.

The Engineering Leadership Program is a three-year extra-curricular program that will prepare you to be a leader in your chosen engineering field. Comprising of 13 modules delivered by external professionals, it engages heavily with the private sector through the delivery of interactive workshops, networking sessions and the provision of scholarships. All Engineering Excellence Scholarship holders are invited to participate in the program and an open call for applications from Engineering students takes place mid-year.

This valuable program equips you with job application skills to secure employment. A Monash Engineering degree plus the Work Ready Program will give you the edge in a competitive employment market. Build confidence in career planning, finding work in engineering, developing a professional profile and writing job applications. Participate in mock interviews and meet professional engineers through ‘speed networking’.

The MITI Program provides a rare opportunity for students to combine academic theory with practical application while working in a contemporary business environment. The MITI Program is an Australian first and is unique to Monash University. Working as part of a multi-disciplinary team, students are exposed to leading industry experts and challenging projects that encourage and support positive learning outcomes in the areas of problem solving, innovation and design. An invaluable experience for all participants, MITI complements the University’s commitment to equipping students for life’s challenges by offering insight into the business world, practical learning opportunities, leadership and teamwork.

Zoe Van Gulick
Bachelor of Materials Engineering (Honours) and Bachelor of Commerce

“The Leadership in a Technological Environment program (now the Monash Engineering Leadership Program) teaches me invaluable skills and has heaps of opportunities for networking, both with like-minded students and industry professionals. It definitely a step in the right direction for securing employment when I graduate.”

Visit mti.monash.edu for more information.
One of my fondest memories at Monash was designing and building components and systems for a formula style racing car with the Monash Motorsport team. This experience was invaluable in getting me to where I am today. This was a great exercise to see a project through from concept to completion and creatively come up with solutions to issues.

– Chris Heath
Bachelor of Mechanical Engineering (Honours)
Motorsports Solutions Specialist, Riedel Communications, Germany
Monash celebrates academic excellence and supports students who are disadvantaged. Monash Engineering offers you a range of scholarships to help ensure that money and circumstances are not barriers to you accessing a world-class engineering education. For details, and a full list of scholarships, bursaries, and awards available, visit monash.edu/scholarships

Engineering Excellence Award
Awarded to the highest-achieving eligible year 12 students entering an engineering course at Monash in Australia. Recipients must receive an ATAR or equivalent of at least 98.00. Includes an invitation to participate in the prestigious Monash Engineering Leadership Program (see page 5 for details).
Number available: Up to 50
Total value: $24,000

Engineering International Undergraduate Award
Awarded to the highest-achieving eligible international students studying Year 12 or IB in Australia who receive an ATAR or equivalent of at least 90.00.
Number available: Up to 50
Total value: $5000 (One off payment)

Mining Engineering Scholarship
Awarded to the highest-achieving eligible year 12 students entering the Bachelor of Mining Engineering (Honours). Recipients must receive an ATAR or equivalent of at least 98.00.
Number available: Up to 5
Total value: $24,000

Women in Engineering Scholarship
Awarded to the highest-achieving eligible year 12 female students commencing an undergraduate engineering program offered by the Faculty of Engineering.
Number available: Up to 50
Total value: $5000 (One off payment)

Engineering Indigenous Scholarship for Equity
Offered in conjunction with Monash College, this scholarship is awarded to the highest-achieving indigenous students commencing a Diploma of Engineering at Monash College, and articulating to a Bachelor of Engineering (Honours) degree.
Number available: Variable
Total value: Full tuition fees paid for the Diploma of Engineering at Monash College, plus $6000 per 48 credit points of study for the minimum number of credit points required to complete the Bachelor of Engineering (Honours) degree.

Monash University’s world-class engineering facilities include:

- The Cave2™ Imagine being able to step inside a microscope, a virtual world, or the lens of a robot on Mars. With facilities such as the Cave2™, an immersive visualisation platform, you can.

- The largest wind tunnel in the Southern Hemisphere, used to test the aerodynamics of everything from vehicles (including airplanes, unmanned aerial vehicles, trucks, trains, buildings, yachts and the Monash Motorsport car) to elite athletes such as Olympic gold medallist Anna Meares.

- The New Horizons Centre, a Monash/CSIRO collaboration dedicated to research and development themes selected for their national and international importance. These include future manufacturing, biological engineering, renewable energy, modelling and simulation.

- The Monash Centre for Electron Microscopy, housing one of the world’s most powerful electron microscopes.

- Communications and power laboratories equipped with commercial systems and best-in-class instrumentation.

- Optical microscopy imaging laboratories.

- Computer laboratory facilities, available 24/7, with printing and multimedia capabilities.

- The Hargrave-Andrew library, a science and technology library and resource centre designed specifically for engineering studies.
Double degrees

Enrol in two degrees at the same time in two completely different areas. More and more organisations seek engineering graduates with expertise in other disciplines. They are continually impressed by the breadth of knowledge and insight evident in double degree graduates from Monash.

A double degree course allows you to pursue a career in either area, or to take up one of the many opportunities emerging at the interface of disciplines. An engineering double degree offers diversity, more career choices and flexibility.

Architectural Design

The building industry needs engineering professionals with strong architectural knowledge.

The combination of architectural design with civil engineering is an exploration of creative solutions to a wide variety of engineering and social problems, like looking at sustainable ways to build or renovating existing structures to work more efficiently. You will graduate with valuable skills for transforming the built environment, from the design of buildings or bridges to renovating existing structures to work more efficiently. The ability to provide solutions through creative thinking and realistic applications will make you attractive to architectural and engineering firms in Australia and overseas.

Arts

Combining an engineering degree with an arts degree provides complimentary skills in technology and communications.

You will develop the transferable skills employers are looking for: communication, teamwork, research and critical thinking.

Arts at Monash provides your comprehensive gateway to approximately forty areas of study across the arts, humanities and social sciences. With this dual degree you will have a portfolio uniquely tailored to meet your interests and aspirations.

Biomedical Science

If you’re eager to explore a career in biological/biomedical engineering, consider a double degree in engineering and biomedical science.

Advances in biological sciences and demand for technological solutions are creating new opportunities for engineers. In the coming years engineering will be transformed, as it parallels and fuses with developments in biomedical science.

Commerce

Do you dream of making it big in the business world? If so, engineering and commerce is a powerful combination.

Many CEOs of major corporations have engineering qualifications. People with sound business skills and a strong technological background are consistently in demand across many industries and organisations.

Motorcycle

Engineering is about innovation, big picture thinking and decision making. This combined with commerce specialist prepares you to take on the business world, equipping you with skills that develop your expertise in the specialist areas of actuarial science, economics or finance. This combination will give you genuine depth of study, and the skills to join the next generation of commercial leaders.

Chemical Science

Have an eye for form and function? Like to build things? Consider combining mechanical engineering with industrial design to become a product design engineer.

Product design engineers design and develop manufactured products that are functional, ergonomic, beautiful, and well engineered.

This double degree integrates the technical and project management skills of an engineer with the creativity and manufacturing know-how of an industrial designer.

Science

Engineering is concerned with the application of science; however, many engineers are fascinated by scientific investigation and eager to enhance their understanding of the pure sciences.

You may choose to combine engineering with food science or technology, or explore the fundamentals of the cosmos through astrophysics. Or you may be interested in the most fascinating machine of all: the human body.

Laws (Honours)

An engineering and law degree bridges the gap between technological and legal issues.

This double degree combination produces engineers who are sensitive to the legal, corporate and political implications of technology and its applications.

As an engineering and law graduate, you are eligible to practise as a solicitor; alternatively, you might join the legal team of an engineering, manufacturing or technology firm.

Pharmaceutical Science

There is an increasing demand for pharmaceutical scientists with the expertise to take products from the design and formulation stage through to manufacturing.

Chemical engineers can design, run and troubleshoot production facilities, but their training typically excludes the skills to develop pharmaceutical and related products. Similarly, formulation scientists can invent and test new products such as pharmaceuticals, food and cosmetics, but they lack the know-how to manage the product process beyond the laboratory stage.

This double degree combines chemical engineering and pharmaceutical science to produce professionals capable of covering the full spectrum of the pharmaceutical product design and development process.

Double degree combinations

The following table shows double degree combinations and the engineering fields they are available with.

<table>
<thead>
<tr>
<th>Architectural Design</th>
<th>Arts</th>
<th>Biomedical Science</th>
<th>Commerce Specialist</th>
<th>Design</th>
<th>Law</th>
<th>Pharmaceutical Science</th>
<th>Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical and Computer Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechatronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No double degrees are available with the geological, mining, oil and gas, or renewable energy engineering specialisations.

Chrisha Satkunarajah
Bachelor of Civil Engineering (Honours) and Bachelor of Commerce

“In industry there appears to be a disconnect between the technical and the financial/commercial demands of a business. I like the engineering and commerce double degree being a powerful combination, allowing me to better understand these demands and position me with greater knowledge as I enter the workforce.”
The Common First Year

The Bachelor of Engineering (Honours) at Monash University has a common first year, giving you time and experience before you select your engineering specialisation. You learn about the engineering profession and its specialisations before deciding which to pursue from second year.

Many students change their career paths after exploring the vast field of engineering and its specialisations during the common first year. The common first year allows you to immerse yourself in engineering from day one while developing the knowledge to make an informed decision.

In your first year you will solve real engineering problems and develop the fundamental skills to be successful in your studies. You will learn about the role and function of engineers in society and immerse yourself in hands-on design and build activities.

You might develop mobile apps, build a bridge then learn how to tear it down using a trebuchet, or build practical power supplies. Learn about aircraft performance, engineering design to make things lighter, faster and stronger, and fundamental skills in mathematics and computing.

Then choose your own future.

Prequisite studies

VCE

- English: Units 3 and 4: a study score of at least 30 in English (EAL) or 25 in English other than EAL.
- Maths: Units 3 and 4: a study score of at least 25 in Mathematical Methods (CAS)
- Science: Units 3 and 4: a study score of at least 25 in Chemistry or Physics

IB

- English: At least 4 in English A SL or 3 in English HL or 5 in English B SL or 4 in English B HL.
- Maths: At least 4 in Mathematics SL or 3 in Mathematics HL or 3 in Further Mathematics HL.
- Science: At least 4 in Chemistry SL or 3 in Chemistry HL or 4 in Physics SL or 3 in Physics HL.

Specialist courses

AVAILABLE

- Aerospace
- Chemical
- Civil
- Electrical and Computer Systems
- Environmental
- Geotechnical
- Oil and Gas
- Materials
- Mechanical
- Mechatronics
- Mining
- Renewable Energy
- Software

SPECIALIST COURSES AVAILABLE

- CLAYTON
- MALAYSIA
- SEE PAGE

- Aerospace
- 16
- Chemical
- 17
- Civil
- 18
- Electrical and Computer Systems
- 19
- Environmental
- 20
- Geotechnical
- 21
- Oil and Gas
- 26
- Materials
- 22
- Mechanical
- 23
- Mechatronics
- 24
- Mining
- 25
- Renewable Energy
- 26
- Software
- 27

UNIT TYPES

- **Required engineering units**
- **Some choice:** you can choose from a prescribed list
- **Free choice:** you can choose further engineering studies, or you can choose to study units from a different field

For in-depth course descriptions and structures visit: study.monash/courses
In my role as a Building Physics Engineer, I conduct simulation work to provide advice that encompasses comfortable environments and holistic, whole-building, sustainable design.

As a student, I was offered a place in the Leadership in a Technological Environment program (now the Monash Engineering Leadership Program). The various modules assisted with developing my communication, leadership and networking skills, which complemented my technical training. I developed confidence to network with people from industry, which lead to invaluable career opportunities.

Bachelor of Engineering (Honours) – Specialisations

Aerospace engineering

Aerospace engineering is concerned with the design and airworthiness, development and maintenance of flight vehicles. It involves aerodynamics, aerostructures, avionics, propulsion, materials engineering and computational simulation.

As an aerospace engineer, you will have the opportunity to tackle many of tomorrow’s global challenges. You may be involved in the creation of more environmentally friendly aircraft, or even help to build a vehicle capable of exploring our solar system and beyond.

Project work includes the use of wind tunnels for aerodynamic testing, computational modelling for predicting structural behaviour, advanced manufacturing, and materials and structural testing.

Location
Clayton campus

Career options
When you graduate you are likely to work in design and manufacturing, research and development or airworthiness operations.

You might join a large aerospace company or a manufacturer that contracts to the aerospace industry. Or you might work at an airline, a government aerospace laboratory or research centre.

Formula One teams also employ aerospace engineers. Aerospace engineering might also lead you to a career in management consulting or finance.

Join a thrilling profession in the midst of developing the next generation of flight vehicles. The Airbus A380, A350, A400M and the Boeing 787 are just some of the astounding advances being led by aerospace engineers.

Double degrees available with
■ Arts ■ Commerce ■ Commerce Specialist ■ Law ■ Science

Chemical engineering

Chemical engineers invent, develop and design processes that convert raw materials into useful products, with minimal environmental impact. They are also involved with pollution control, energy generation and conservation, and protection of the environment.

Many everyday items involve chemical engineering during some stage of their production: petrol, paper, milk, coffee, computer chips and mobile phones, just to name a few.

Chemical engineering blends chemistry with engineering and other fields including biological science, environmental science, nanotechnology, mathematical modelling, management, and economics.

Chemical engineering at Monash

A selection of high-achieving students are given the opportunity to undertake integrated industrial training in their final year.

Our students have the benefit of expert industry lecturers teaching several units in third and fourth year, in addition to frequent industry guest lecturers in all year levels.

Location
Clayton, Malaysia campus

Career options
As a chemical engineer, you might:
■ design, develop or improve industrial processes and equipment for large scale chemical and biochemical manufacturing
■ plan and test methods of manufacturing
■ improve energy efficiency or reduce water use at manufacturing sites
■ develop methods for the treatment of by-products
■ develop new processes and products
■ design, develop and use new materials
■ develop alternative fuels and energy sources.

Double degrees available with
■ Arts ■ Biomedical Science ■ Commerce ■ Commerce Specialist ■ Law ■ Pharmaceutical Science ■ Science

There are vast career prospects for chemical engineers. Society will continue to rely on chemical engineers to design and undertake large scale projects, so that we can meet the growing demand for sustainable products and services. I love the thought of being able to one day work on an oil-rig in the middle of the Pacific, or analyse geological data collected from two kilometres under the surface of the ocean.

I’m always astounded to hear from engineering graduates where their degree has taken them.”
Jackson Law
Bachelor of Civil Engineering (Honours)
and Bachelor of Commerce

“I chose civil engineering because I want to be involved in large and complex projects that will provide comprehensive solutions and improvements to infrastructure, and benefit communities around the world. I’m currently the Construction Manager with Engineers Without Borders – a club that aims to alleviate disadvantage in communities through humanitarian engineering, volunteering and education.”

Bachelor of Engineering (Honours) – Specialisations

Civil engineering
Civil engineers improve systems and processes that allow humans and nature to coexist with minimal impact. Modern society could not function without them.

We need civil engineers to design and build high-capacity transportation systems. We need them to construct larger commercial and industrial complexes. We need them for water supply and pollution control. We need efficient, cost-effective and innovative repair or replacement of civil infrastructure such as roads, bridges and buildings.

At Monash we help you prepare for your chosen civil engineering career early, with a focus of the fundamentals and a taste of industry experience through specialisation opportunities in the areas below.

Location
Clayton, Malaysia campus

Civil engineering streams
Structures
Structural engineers design buildings, bridges, airports, railways, commercial complexes, towers, offshore platforms and tunnels. They ensure structures remain sound under extreme conditions such as wind, waves and earthquakes.

Water
Water engineers manage water supply and drainage systems for people, agriculture and industry. Typically, a water engineer will develop projects to control flood waters, design dams, spillways, and pipe networks, manage rivers and develop systems to collect and treat wastewater, and develop urban water systems.

Transport
Transport engineers plan the future travel needs of city and country areas. They investigate alternative transport technologies to make existing road and traffic systems safer and more efficient.

Geomechanics
Geomechanical engineers advise on foundation design, support structures, stability of slopes, tunnel design and construction, and the suitability of materials for infrastructure projects.

Career options
Your career prospects as a civil engineer are strong and diverse. When you graduate, you might work in any one of these sectors:

- private industry
- government
- marine and resort developments
- construction and mining
- property and land development
- consulting firms.

Electrical and computer systems engineering
Electrical and computer systems engineering is an extremely diverse field, encompassing biomedical, computer systems, electronics, electrical power, robotics and telecommunications. Electrical and computer systems engineers investigate, plan, design, develop, construct, test, market and maintain a wide range of products and systems.

As an electrical and computer systems engineer you might design and develop digital products such as smartphones, virtual reality systems or computer games, or maybe robotic medical devices to assist in surgery and rehabilitation.

Monash will help you develop the hands-on training and theoretical insight you need for an exciting future as an electrical and computer systems engineer.

All our students experience industry-standard reprogrammable chips in the laboratories from first year onwards. By third year you will be building miniaturized machines with very powerful processing on-board. In fourth year you may apply this knowledge to a ‘product’ of your own.

Location
Clayton, Malaysia campus

Career options
As an electrical and computer systems engineers you could work locally or internationally in a wide range of industries including:

- power generation
- industrial and power electronics
- automation systems
- computer programming
- robotics
- health care
- water and energy

Many Monash graduates work in large public and private telecommunications, manufacturing and electrical-power companies. Others work for defence and intelligence organisations.

You could also work in banking and finance, or with any organisation that creates, stores, encodes, and transmits big data or manages complex systems.

Double degrees available with

- Arts
- Biomedical Science
- Commerce
- Commerce Specialist
- Law
- Science
Environmental engineering

Few branches of engineering have such a profound impact on our health and quality of life as environmental engineering. Environmental engineering involves the implementation and management of solutions and programs in keeping with the principles of sustainable development. It involves reducing energy and resource use and minimising waste, while providing the community with the development opportunities it needs to grow.

Environmental engineering encompasses water and air-pollution control, recycling, water supply, waste disposal, land management, transport and the built environment, process engineering, and public health issues.

Location
Clayton campus

Career options
Environmental problems exist in all countries and industries so your opportunities are broad and far reaching.

You might work in air-pollution control, water supply, land management, impact assessment, hazardous-waste management, energy production, stormwater and wastewater management, environmental management systems – and so much more.

Organisations employing environmental engineers include:
- power generation
- engineering consulting firms
- industries that need cleaner production systems
- private and municipal agencies that supply drinking water and treat wastewater
- companies treating and disposing of hazardous waste
- organisations helping to account for carbon and implementing low-carbon solutions
- government agencies monitoring and regulating environmental issues
- universities that teach and conduct sustainability research
- international agencies that aid developing nations.

Double degrees available with
- Arts
- Commerce
- Commerce Specialist
- Science

Geological engineering

Geological engineering is an interdisciplinary field, in which principles of geoscience are used to solve engineering and environmental problems. It connects geology to numerous forms of engineering that include mining, oil and gas, civil, tunnelling and renewable (e.g. hydro-power and geothermal energy). A geological engineer has a versatile set of skills that are applicable to a wide range of contemporary problems.

As a Monash geological engineering graduate, you will be among the first geological engineering graduates in Australia, and will have specialised geotechnical expertise that is focused on practical applications for the mining, oil & gas, tunnelling and renewable energy industries.

You will study exciting subjects including resource estimation, surface mining, underground mining, rock mechanics, unconventional resources, ore deposit geology, and geothermal energy.

Location
Clayton campus

Career options
Creating solutions for the challenges of sustainable practices, environmental protection, and Australia’s deteriorating infrastructure, geological engineering graduates are in high demand. Geological engineering graduates can work as:
- tunnelling engineers
- geotechnical specialists
- numerical modellers
- rock mechanics engineers
- reservoir engineers
- ground support engineers
- foundation engineers
- construction managers
- design engineers
Bachelor of Engineering (Honours) – Specialisations

Materials engineering

Materials engineering is all about making new materials and improving existing ones. It is about making things stronger, lighter and more functional, sustainable and cost-effective. It underpins much of engineering – if we want to make things, we need to have materials with the right properties.

Whether it’s a next-generation jet engine, a biodegradable tissue scaffold to grow organs from stem cells, or new types of solar cells and batteries, the structure, properties and processing of materials are crucial to the final product.

Materials engineers work with everything from the thermal protection of space shuttles and high-tech artificial hip and cochlear implants, to nanoparticles that seek and destroy cancer.

Materials engineering is truly interdisciplinary. It involves physics, mathematics, biology and chemistry, culminating in a ground-breaking research field and a thriving job market.

Location
Clayton campus

Career options
Demand for materials engineers continues to outstrip supply, with Monash graduates receiving an exceptional response in the employment market.

Working across a range of exciting industries including aerospace, biomedical, mining, future manufacturing, 3D printing and recycling, materials engineers become:
- metallurgists
- biomedical engineers
- forensic engineers
- adhesive scientists
- process and quality-control engineers
- corrosion or fracture engineers
- research engineers.

As a materials engineer, your expertise will be sought after in:
- the emerging fields of nanotechnology, biomedical materials, electronic materials, recycling and energy generation
- the development of lightweight metal alloys
- the use of materials for energy storage such as batteries and fuel cells
- functional materials made at the nanoscale, including the wonder-material ‘graphene’
- traditional industries such as metallurgy and mining, including next generation additive manufacturing
- failure analysis.

Double degrees available with
- Arts
- Biomedical Science
- Commerce
- Commerce Specialist
- Design
- Law
- Science

Mechanical engineering

As a mechanical engineer, you might design automatic control systems, or create efficiently heated and cooled buildings, manage the water supply for a whole state, design wind turbines or Formula One cars, work with the medical profession to create robots that can operate with greater precision than a human, or be at the cutting edge of advanced manufacturing using 3D printers to create aircraft parts with elegance and function.

Mechanical engineering is about the efficient use of energy for the design and function of all types of mechanisms, from the simplest to the most complex. It builds on physics, chemistry, materials, mathematics and biology to achieve this goal.

Mechanical engineers design and develop everything from door locks to space shuttles. In fact, if it moves, you will find mechanical engineering at the heart of its design.

Other growth industries include communications, banking, public utilities, consulting practices and the entertainment industry.

Location
Clayton, Malaysia campus

Career options
Industries employing mechanical engineers include:
- building systems engineering
- advanced manufacturing
- petrochemical
- consulting
- transportation
- aerospace
- mining
- robotics
- renewable energy.

Double degrees available with
- Arts
- Biomedical Science
- Commerce
- Commerce Specialist
- Design
- Law
- Science

Eliza Tipping
Engineering Graduate, BP
Bachelor of Materials Engineering (Honours) and Bachelor of Commerce

“Materials engineering is the crucial stepping stone to innovation, allowing us to push technological boundaries. It’s a relatively new field of engineering that, in a world focused on sustainability, will only continue to grow.”

Lisa Mililli
Marketing and Sales Specialist, NuVasive
Bachelor of Mechanical Engineering (Honours) and Bachelor of Biomedical Science

“My double degree allowed me to be able to think in a multidisciplinary manner, and incorporate innovation into my interests in development of medical technology. I am a Clinical Affairs Associate for a medical device company and am involved in clinical research and development of software and medical tools for surgeons.”
Bachelor of Engineering (Honours) – Specialisations

Mechatronics engineering

Mechatronics is the nexus between mechanical and electrical engineering, employing computer controlled systems to make devices smarter and more efficient.

As a mechatronics engineer you could create planetary exploration rovers or robots for medical applications. Or you might take an everyday household product and turn it into a truly clever device.

Mechatronics engineers design the devices and the programs that control those devices. They are adept in handling vast amounts of data and designing systems that make sense of data in real time, so that a fully automated manufacturing facility can operate safely and efficiently, or a car can drive completely autonomously.

Mechatronics engineers are in high demand as the need for professionals in this space is increasing. They are needed in the advanced manufacturing and aerospace industries as well as by the manufacturers of robots and in data analysis.

Location

Clayton, Malaysia campus

Career options

You will be equipped with the knowledge and skills to design, develop, manufacture and operate the intelligent products and complex systems of today and tomorrow.

Opportunities exist in:
- robotics and automation
- aerospace systems and flight control
- bioengineering
- intelligent systems for motor vehicles
- manufacturing systems and processes
- telecommunications
- medical systems
- software engineering
- mining systems and processes
- nanotechnology.

There are also vast opportunities in consulting, management and finance. You may also pursue a career in research and development, in academia, research institutions or advanced industry sectors.

Double degrees available with
- Arts
- Commerce
- Commerce Specialist
- Science

Mining engineering

Mining engineering is concerned with the development and implementation of safe and economic resource development plans.

Minerals are the basic inputs for the production of building materials, pharmaceuticals and electronic devices. They are also a source of fuel for the manufacturing and utility industries. Mining is essential to our daily lives.

As a mining engineering graduate, you will be highly qualified in areas as diverse as geology, metallurgy, the environment and sustainability, mine planning and project management, safety, communications, and leadership.

Mining engineers are needed in all aspects of exploring, planning, extracting and processing minerals, and increasingly work with the community to produce sustainable solutions with a minimal environmental footprint.

Location

Clayton campus

Career options

Mining engineers are largely employed by mining companies, but can also work in the mining services industry as contractors, suppliers, equipment designers, mine inspectors, government advisors, researchers and technical specialists.

The skill set of a mining engineer also allows them to work in a range of other engineering professions including tunneling, road and railway construction, hydro electric and water supply projects, and the oil and gas industry.

You will be part of a global industry and will find employment throughout Australia and the world.

As a mining engineer you will have a diverse range of potential career paths. These may include:

- Safety: Coordinating safety, equipment needs, social license to operate
- Operations: Managing equipment, design and shafts for underground operations, and designing slopes and haulage roads for open cut operations
- Planning and design: Preparing short- and long-term production plans, designing the safest and most suitable mine layout and access routes for people and equipment, designing tunnels and shafts for underground operations, and designing slopes and haulage roads for open cut operations
- Finance: Reviewing key performance indicators associated with capital, operating costs, and productivity and efficiency. Comparing of expenditure reports against budget and production schedules
- People Management: Communication and community consultation are key elements of the mining profession to ensure mining companies continue their social license to operate
- Automation: Innovative technology will be a major factor as mines of the future will be increasingly automated for efficiency, economy and safety
Career options

Oil and gas engineering

- Production engineering: involving the design, monitoring and evaluation of oil, gas, and manufacturing production to maximise efficiency
- Reservoir engineering: utilising knowledge of geology and fluid mechanics to locate and analyse oil and gas reserves
- Hydraulic fracturing: managing the equipment and production of the fracturing process in a safe and environmentally responsible way
- Drilling engineering: developing, planning, and supervising the operations necessary for drilling oil and gas wells.

Location

Clayton campus

Renewable energy engineering

Renewable energy engineering is an emerging discipline, focused on identifying and developing sustainable systems for electricity generation.

You will graduate with a broad knowledge of renewable energy sources and technologies, and the ability to assess feasibility of alternative energy options and make recommendations based on site specific resource characteristics.

Monash is committed to reducing reliance on fossil fuels. This qualification provides students that have a passion for the environment to enter the growing renewable and clean energy engineering market. Graduates will be equipped to develop and manage the most appropriate and environmentally sustainable energy solutions for any business need, project, or asset.

Monash renewable energy engineers will be at the forefront of renewable energy implementation in Australia, and have the ability to transfer their skills overseas.

Location

Clayton campus

Software engineering

Software is everywhere. It does everything from dispensing medicine to controlling flight paths to monitoring and shaping our shopping habits. Our world’s major companies, governments and organisations depend on smartly designed and well-built software. And they rely on the expertise of skilled software engineers to make it happen.

As a software engineer, you will apply engineering principles to systematically analyse, develop and improve software to ensure it runs effectively, safely and securely.

You will acquire high-level programming expertise, but software engineering goes well beyond writing code. Most modern IT systems are so complicated that teams of people must work together to create them. This specialisation’s emphasis on collaborative studio-based learning will give you strong skills in teamwork, project management and communication.

You have a huge choice of IT electives from Australia’s leading IT faculty, from cybersecurity to games development to business information systems. You can apply for the highly regarded IT Industry Based Learning (IBL) program to do a half year placement with leading Australian and global organisations. Placements count towards your course and are supported by $17,000 scholarships.

Location

Clayton, Malaysia campus

Career options

Software engineers work in teams with other software engineers, scientists, managers, and business people. These teams might consist of people in the next office or of people in locations all over the world.

This project-rich specialisation is designed to address industry demand for tech-savvy graduates with large-scale software systems project capability.

Why not join this young and exciting field of engineering which is constantly evolving as new technologies emerge? Specialise in software engineering at Monash for an exciting career designing and creating the cutting-edge IT software systems that we all rely on.

The Bachelor of Software Engineering (Honours) is also accredited by the Australian Computer Society.

Double degrees available with
- Arts + Commerce + Commerce Specialist + Science

Nadia Antanovskii
Senior Developer, MYOB
Bachelor of Software Engineering (Honours)

“As a software engineer you never stop learning. You’re encouraged to broaden your skills and explore new technologies. Working in such an innovative area for several consultancies in Australia and across Europe has meant the pace of my work is quite fast. I never get bored!”
Monash College is the preferred pathway for students who aspire to study engineering at Monash University but who narrowly miss the academic requirements for direct entry. The course you choose depends on your current level of study and future career plans.

Monash University Foundation Year

The Monash University Foundation Year is the preferred alternative pathway into the Faculty of Engineering at Monash University. The program provides international students with the skills and knowledge required to succeed at Monash University.

After successfully completing Foundation Year and achieving the required marks, you will have a guaranteed place in the first year of relevant courses in the Faculty of Engineering.

Diploma of Engineering

Monash College diplomas offer specialist preparation for second-year entry into your chosen engineering course. During the program you will study the same curriculum and complete the same assessments as first-year university students. After successfully completing Diploma Part 2 you will be guaranteed a place in the second year of your chosen degree.*

English-language courses

The Monash University English Language Centre is the preferred English pathway into Monash University.

If you do not meet the English language requirement for direct entry into your course you may receive a conditional offer for one of our programs.

Monash English Bridging

Monash English Bridging (MEB) is ideal if you have met the academic requirements for Monash, but haven’t quite met the English requirements.

MEB offers students direct entry into Monash University.* Students who successfully complete the Bridging program do not need more testing.

Monash English

Monash English (ME) will improve your English-language skills to prepare you for entry into Monash English Bridging or Monash University.

The program is taught from beginner to advanced levels. As you improve, you can move to the next level of ME.

To enter the University you will need to sit an IELTS test. We have workshops to help you practise and develop the skills you need to sit the test. Monash English courses start every five weeks.

For more information on Monash College academic pathways visit: monashcollege.edu.au/courses

For more information on English-language pathways visit: monashcollege.edu.au/english-courses

*Entry requirements and subject prerequisites apply.

*Not accepted for entry into all degrees. If you need extra English help, consider Monash English.
Bachelor of Engineering (Honours) at Monash University Malaysia

<table>
<thead>
<tr>
<th>Specialisation</th>
<th>Campus</th>
<th>Indicative ATAR Score</th>
<th>Indicative IB Score</th>
<th>Common First Year</th>
<th>Course Length (Full Time)</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace</td>
<td>Clayton</td>
<td>90+</td>
<td>35+</td>
<td>Yes</td>
<td>4 Years</td>
<td>English (EAL) or any other English</td>
</tr>
<tr>
<td>Civil</td>
<td>Clayton</td>
<td>90+</td>
<td>35+</td>
<td>Yes</td>
<td>4 Years</td>
<td>English (EAL) or any other English</td>
</tr>
<tr>
<td>Electrical and Computer Systems</td>
<td>Clayton and Caulfield</td>
<td>91+</td>
<td>Yes</td>
<td>4 Years</td>
<td>English (EAL) or any other English</td>
<td>30</td>
</tr>
<tr>
<td>Environmental</td>
<td>Clayton</td>
<td>91+</td>
<td>35+</td>
<td>Yes</td>
<td>4 Years</td>
<td>English (EAL) or any other English</td>
</tr>
<tr>
<td>Geographical</td>
<td>Clayton</td>
<td>91+</td>
<td>35+</td>
<td>Yes</td>
<td>4 Years</td>
<td>English (EAL) or any other English</td>
</tr>
<tr>
<td>Geoscience</td>
<td>Clayton</td>
<td>91+</td>
<td>35+</td>
<td>Yes</td>
<td>4 Years</td>
<td>English (EAL) or any other English</td>
</tr>
<tr>
<td>Materials</td>
<td>Clayton</td>
<td>91+</td>
<td>35+</td>
<td>Yes</td>
<td>4 Years</td>
<td>English (EAL) or any other English</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Clayton</td>
<td>91+</td>
<td>35+</td>
<td>Yes</td>
<td>4 Years</td>
<td>English (EAL) or any other English</td>
</tr>
<tr>
<td>Mechatronics</td>
<td>Clayton</td>
<td>91+</td>
<td>35+</td>
<td>Yes</td>
<td>4 Years</td>
<td>English (EAL) or any other English</td>
</tr>
<tr>
<td>Mining</td>
<td>Clayton</td>
<td>91+</td>
<td>35+</td>
<td>Yes</td>
<td>4 Years</td>
<td>English (EAL) or any other English</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>Clayton</td>
<td>91+</td>
<td>Yes</td>
<td>4 Years</td>
<td>English (EAL) or any other English</td>
<td>30</td>
</tr>
<tr>
<td>Software</td>
<td>Clayton</td>
<td>91+</td>
<td>35+</td>
<td>Yes</td>
<td>4 Years</td>
<td>English (EAL) or any other English</td>
</tr>
<tr>
<td></td>
<td>Malaysia</td>
<td>Direct application to Malaysia campus. See monash.edu.my for further information.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Selection into disciplines subject to quotas and academic performance during common first year.

Double degrees

<table>
<thead>
<tr>
<th>Course</th>
<th>Campus</th>
<th>Indicative ATAR Score</th>
<th>Common First Year</th>
<th>Course Length (Full Time)</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Design</td>
<td>Clayton and Caulfield</td>
<td>91+</td>
<td>Yes</td>
<td>5 Years</td>
<td>English (EAL) or any other English + Pre-Selection Activity + Interview</td>
</tr>
<tr>
<td>Arts</td>
<td>Clayton</td>
<td>91+</td>
<td>Yes</td>
<td>5 Years</td>
<td>English (EAL) or any other English + Pre-Selection Activity + Interview</td>
</tr>
<tr>
<td>Biomedical Science</td>
<td>Clayton</td>
<td>91+</td>
<td>Yes</td>
<td>5 Years</td>
<td>English (EAL) or any other English + Pre-Selection Activity + Interview</td>
</tr>
<tr>
<td>Commerce</td>
<td>Clayton</td>
<td>91+</td>
<td>Yes</td>
<td>5 Years</td>
<td>English (EAL) or any other English + Pre-Selection Activity + Interview</td>
</tr>
<tr>
<td>Commerce Specialist</td>
<td>Clayton</td>
<td>91+</td>
<td>Yes</td>
<td>5 Years</td>
<td>English (EAL) or any other English + Pre-Selection Activity + Interview</td>
</tr>
<tr>
<td>Design</td>
<td>Clayton and Caulfield</td>
<td>Range of criteria+</td>
<td>Yes</td>
<td>5 Years</td>
<td>English (EAL) or any other English + Pre-Selection Activity + Interview</td>
</tr>
<tr>
<td>Law</td>
<td>Clayton</td>
<td>98+</td>
<td>Yes</td>
<td>6.5 Years</td>
<td>English (EAL) or any other English + Pre-Selection Activity + Interview</td>
</tr>
<tr>
<td>Pharmaceutical Science</td>
<td>Clayton and Parkville</td>
<td>91+</td>
<td>Yes</td>
<td>5 Years</td>
<td>English (EAL) or any other English + Pre-Selection Activity + Interview</td>
</tr>
<tr>
<td>Science</td>
<td>Clayton</td>
<td>91+</td>
<td>Yes</td>
<td>5 Years</td>
<td>English (EAL) or any other English + Pre-Selection Activity + Interview</td>
</tr>
</tbody>
</table>

For double degree entry requirements for international students, refer to monash.edu/prior-study.

2. See monash.edu/mada/apply for details on extra entry requirements.

1. Selection into disciplines subject to quotas and academic performance during common first year.

2. See monash.edu/mada/apply for details on extra entry requirements.
International Admissions

Bachelor of Engineering (Honours) at Clayton and Malaysia

All India Senior School Certificate 81% Overall average of the best four academic subjects (excluding Physical Education). Minimum English language requirement met by successful completion of English Core with an overall average of 60% or above.

Australian Year 12 ATAR 87.5 Final ATAR score.

GCE A Level 11 Total score of a maximum of 3 A levels subjects taken within two years. Two A Level subjects can be counted in place of one A Level subject, provided that the subject has not been taken at A Level and there is at least one A Level subject in the calculation. Score A levels as follows: A1 or A = 4, B = 3, C = 2, D = 1, E = 0.5. English must be taken at Level 3 in IGCSE Literature English, English Literature, or First Language English 052 (or GCE O Level English Language or Literature in English, or GCE AS Level General Paper, English Language, or Language and Literature in English, or literature in English), or by Grade C in IGCSE English as a Second Language, or Grade C in GCE A Level English Language or Literature in English.

Hong Kong Diploma of Secondary Education 21 Total of the best five subjects (Category A and C only). Scores graded as follows: Level 1 = 11, Level 2 = 9, Level 3 = 7, Level 4 = 5, Level 5 = 3, Level 6 = 1. Minimum English language requirement met by successful completion of Grade 12 English with an overall average of Level 4 or above.

Indian School Certificate Examination 76% Overall average of the best four academic subjects (excluding Physical Education). Minimum English language requirement met by an overall average of 60% or above in English.

International Baccalaureate (IB) Diploma 31 Total final score as shown in transcript. Evidence of successful completion of the diploma is required. Minimum English language requirement met by an overall average of 60% or above in English.

National Certificate of Educational Achievement Level 3, New Zealand ATAR 87.5 Equivalent ATAR. To view NCEA entry requirements, refer to: https://www.monash.edu/admissions/entry-requirements/nz-ncea-entry-requirements.

Monash University Foundation Year 83.3% Overall average of the best eight units plus any bonus points that may apply. The undergraduate entry requirements published in this brochure are for students who commenced the FYP program in 2016/2017. Minimum English language requirement met by successful completion of English A and English B with an overall average of 60% or above.

Ontario Secondary School Diploma – Grade 12, Canada 93.3% Overall average of the best six (or in Canada, Grade 12 subjects (excluding workplace preparation courses and open courses). Students must achieve a minimum total of 30 credits and complete Community Involvement. Minimum English language requirement met by an overall average of 60% or above in Grade 12 English.

RMIT Foundation Studies 83% Overall average of percentage grades for all subjects completed, including fails. Minimum English language requirement met by successful completion of English Academic, English Research Skills, and English Critical Analysis with an overall average of 50% or above.

La Trobe Foundation Studies 83% Overall average of percentage grades for all subjects completed, including fails. Minimum English language requirement met by successful completion of Academic Study Skills 1 and 2 with an overall average of 60% or above.

SAT (Scholastic Aptitude Test) 2200 Total of the Critical Reading, Mathematics and Writing scores. A completed regionally accredited Grade 12 American High School Diploma must also be provided. Minimum English language requirement met by successful completion of Grade 12 English with an overall average of 70% or above (for American High School Diplomas that are graded on a 100% scale where 70% is a pass).

South Africa, National Senior Certificate (awarded from 2005 and onwards) 38 Total score of the best six subjects (excluding Life Orientation). A minimum of 2 passes points is required for achieving: English Home Language achievement of Level 3 or above; Mathematics achievement of Level 3 or above; Mathematics Literacy achievement of Level 1 or above; X - 1. Mathematics achievement of Level 1 or above; English Language achievement of Level 3 or above in English Language. Minimum English language requirement met by an IELTS overall score of 5.5 with no band less than 6.0 in the Academic Module.

Sri Lanka GCE A Level 12 Total score of a maximum of the best 3 A level subjects taken in one examination sitting. Score A level grades as follows: A1 = 5, A2 = 4, B1 = 3, B2 = 2, C1 = 1. Minimum English language requirement met by an IELTS overall score of 5.5 with no band less than 6.0.

STPM, Malaysia 9.67 Total of the best three subjects (excluding Pengajian Am (General Studies). Minimum English language requirement met by C grade in GCE O Level English Language - 1179 (SPM).

UCE, Malaysia 3.0 Average of best five subjects. Only grades A1, A2, B3, B4, and B5 are to be included in calculation. Scores graded as follows: A1 = 4, A2 = 3, B3 = 2, B4 = 1, B5 = 0. Minimum English language requirement met by successful completion of an IELTS overall score of 5.5 with no band less than 6.0.

UNIMIB Foundation Studies 8.25 Final grade point average. Minimum English language requirement met by an achievement of C grade or above in Academic English.

University of Melbourne Third Year Foundation Studies 83% Overall average of the best six subjects. Minimum English language entry requirement met by an overall average of 60% in English and an overall average of 70% for English for Academic Purposes.

How to apply

Domestic (Australian) and onshore international students

Apply through VTAC
If you are an Australian or New Zealand citizen, an Australian permanent resident, or you are an international student studying an Australian Year 12 or IB in Australia or New Zealand, apply through the Victorian Tertiary Admission Centre (VTAC).

Visit vtac.edu.au

Prerequisites
Please check that you meet the prerequisites for your chosen course before submitting your application. Prerequisite details for each course can be found in the admissions table beginning on page 30.

International students

International students should apply directly to Monash University and must have completed an equivalent qualification to the Victorian Certificate of Education (VCE) and the prerequisite subjects or equivalent.

For more information visit monash.edu/study/international

Fees

Fees for each course can be found at study.monash.edu

Scholarships

For more information, and to apply for scholarship, visit monash.edu/scholarships

Commonwealth Supported Places

Australian citizens, New Zealand citizens, Australian permanent residents and permanent humanitarian visa holders are eligible to apply for a Commonwealth Supported Place (CSP).

Visit monash.edu/enrolments/loans/commonwealth-supported-place.html

HECS-HELP/FEEL-HELP

Loan options for eligible applicants.

Visit monash.edu/enrolments/loans/domestic-full-fee.html
Monash is proud to have the following industry partners who support our students through scholarships and prizes:

Monash online

monash.edu/engineering
Find a course
study.monash/courses
International students
monash.edu/study/international
Scholarships
monash.edu/scholarships
Off-campus learning
monash.edu/offcampus
Monash on YouTube
youtube.com/monashunivideo

Future student enquiries

Australian citizens, permanent residents, and New Zealand citizens
Tel: 1800 MONASH (666 274)
Email: future@monash.edu
monash.edu/study/contact

International students

Australia freecall tel: 1800 181 838
Tel: +61 3 9903 4788 (outside Australia)
Email: study@monash.edu