Monash University developing an actionable decarbonisation roadmap

Project Summary

December 2021

Objective of the study

Accelerated decarbonisation is crucial for Monash University to align itself with its broader sustainability commitments and to remain a competitive leader in the tertiary education sector

The purpose of this report

- Monash has made a strong commitment to innovation and decarbonisation to position itself as a leader among competitor universities in the sustainability transformation.
- The ambitious target of achieving **net-zero emissions by 2030** will set the benchmark for universities and large scale precincts.
- In fulfilment of its commitment to net-zero emissions, Monash engaged ENGIE Impact to identify cost-effective decarbonisation pathways for its university campuses.
- This work presents the findings of the Clayton campus base case scenario, which includes its current and projected energy demands and baseline emissions portfolio.

Why is this work needed?

Stakeholder expectations

As one of Australia's largest universities, there are **high expectations from stakeholders** for Monash to take bold and decisive action on climate change and uphold its sustainability commitments.

Rising costs and carbon exposure

Rising operating costs and uncertainty in the cashflows due to external factors such as **volatility in commodity prices and carbon prices** are creating challenging commercial circumstances which must be managed.

Reliable energy supply and resilience

Clean and reliable energy supply is critical for ensuring continuous operations and building a **resilient energy network**. To meet emissions reduction targets without compromising operating continuity, it is essential for Monash to source a cost-competitive, reliable supply of zero-carbon energy across is campuses.

Towards real-time Net Zero

In line with Impact 2030, Monash is updating its Net Zero approach support the decarbonisation of the grid

Annual Net Zero / 100% renewables

- Annual green electricity consumption equals annual electricity demand.
- Annual net zero is achieved through the <u>procurement of</u> <u>Large-scale Generation Certificates</u> (LGCs), created by eligible electricity generated by a renewable power station.
- The annual net zero approach relies on interactions with the energy markets for matching supply and demand. Hence, it does not allow a system-wide decarbonisation.
- Furthermore, this approach leaves Monash exposed to energy and carbon pricing.

Real-time Net Zero / 100% renewables

- Monash's electricity demand is matched with green electricity supply on an hourly base.
- The matching is realised by <u>combining solar PV</u>, <u>wind energy</u>, and <u>battery energy storage</u> at the supply side with <u>flexibility</u> on the demand side.
- As there is a <u>direct link</u> between the hourly production and consumption of energy, the real-time net zero approach can scale up to a system-wide level.
- Therefore, it substantially reduces Monash's exposure to energy and carbon pricing.

Scope of work and study objectives

The decarbonisation roadmap provides a pathway for Monash University to reach its net-zero emissions target by 2030

Purpose and scope of the engagement

Our three-stage approach

Objective:

- **Review** the existing decarbonisation strategy, establish ongoing initiatives, and define/validate measurable **KPIs**.
- Engage with the Monash Net Zero team to **co-create** Monash University's decarbonisation pathway.
- Deliver a **phased 'roadmap'** of emissions reduction initiatives that will be prioritised year-on-year to maximise short and long-term value.

Scope:

- Develop an actionable decarbonisation roadmap for the Clayton campus that can be replicated and scaled for other precincts.
- Scenario-based approach to capture uncertainty on future trends and technology evolutions.
- Scope 1 and Scope 2 emissions are to be included, as well as a part of Scope 3 emissions (i.e. captive vehicle fleets).

Clayton campus primary energy demand overview

The energy consumption data and its associated CO₂ emissions have been assessed

Observations

- The Monash University Clayton campus has an annual total carbon dioxide emission of 59,018 tCO₂-e, with electricity contributing 77% and gas contributing 23%.
- 51% of the total energy demand is supplied by grid and on-campus renewable electricity, while the remaining 49% is supplied by natural gas for building heating and DHW.
- Monash effectively reduces its emissions by 24,604 tCO₂-e/y in 2020 by voluntary surrendering 35% of surplus LGCs¹.
- Primary annual electricity consumption is split between electricity usage (79%), representing the largest demand, cooling (18%), heating (3%), and a negligible amount going towards DHW¹
- Primary annual gas consumption is split between heating (86%),DHW¹ (8%), and cooling (6%).

Scenario definitions - summary

Defining robust decarbonisation scenarios is a crucial first-step towards developing a decarbonisation roadmap and requires a holistic assessment of decarbonisation preferences and ambitions

	Scenario 0: Victoria BAU	Scenario 1: Monash BAU	Scenario 2: DHC ¹ network	Scenario 3: Building retrofit
Targets & Scope	Target: No defined emissions reduction target	Target: Net-zero emissions by 2030 Boundary: Scope 1 and 2	Target: Net-zero emissions by 2030 Boundary: Scope 1 and 2	Target: Net-zero emissions by 2030 Boundary: Scope 1 and 2
Energy supply	Grid Gas Rooftop energy solar PV	Renewables Rooftop Gas (standard PPA ²) solar PV with LGC ⁴ surrender	Rooftop Renewables (active PPA ³) solar PV with LGC ⁴ surrender	Rooftop Renewables (active PPA ³) solar PV with LGC ⁴ surrender
Energy storage		Batteries as a short-term storage option	batteries as a short-term DHC thermal storage option storage	Batteries as a short-term Building-level storage option thermal storage
Further emissions reduction measures		Building energy efficiency improvements Electrification	District heating Electrification and cooling (non-DHC ¹ buildings)	Energy efficiency and Deep deep building retrofits electrification

1. DHC: District Heating and Cooling; 2. Standard Power Purchase Agreement (PPA): Fixed volume power purchase contract where the retailer bears the risk of renewable production; 3. Active Power Purchase Agreement (PPA) – A pay-as-produced contract (with no-volume obligation) which is enhanced by the on/off-site storage and demand flexibility. 4. LGC: Large-scale generation certificates

Annualised cost and LCOE¹ comparison

The DHC² scenario has the lowest annualised cost and LCOE while achieving a higher emission (93%) reduction compared to Monash BAU (67%), compared to the Victoria BAU

Observations

The DHC² scenario has the lowest annualised cost (with carbon cost included) and LCOE¹ in all scenarios in this comparison.

Annualised costs

 The DHC² scenario has a lower annualised cost compared to both BAU scenarios due to lower energy costs and lower carbon cost exposure

LCOE¹

- The LCOE¹ in the Victoria BAU and Monash BAU are significantly higher than the DHC² and the Building Retrofit scenarios due to the higher reliance on grid imported electricity/gas.
- The DHC² scenario has a lower LCOE¹ compared to the Building retrofit scenario due to the large flexibility in the supply chain being served by the thermal storage capacity of the DHC² network.

Abated emissions and MAC¹ comparison

The DHC² scenario has a much lower MAC¹ compared to the Building Retrofit scenario while achieving the highest emission reduction over the lifetime

Observations

The DHC² has a significantly lower MAC¹ than the Building retrofit scenario

Scenario emissions

- The Victoria and Monash-BAU have significantly higher emissions over the lifetime compared to the DHC² and the Building retrofit scenario
- The Monash BAU effective emissions are 554ktCO₂-e as the rest have been attributed to the 67% electricity supplied from the existing PPA is emission free.
- The DHC² and the Building retrofit scenario meet the 93% emission reduction target for 2030 compared to Victoria BAU.

MAC¹

- The MAC¹ for the DHC² case is significantly lower than the Building retrofit scenario due to the lower NPC³ over the lifetime.
- The MAC¹ for DHC² scenario is lower than the cost of carbon required to meet the 1.5°C climate scenario

Roadmap timeline

We recommend starting the DHC network implementation as soon as possible, combined with sourcing the required associated renewable energy through an active PPA

© ENGIE Impact 2021 To learn more about ENGIE Impact and our services visit: engieimpact.com

The information in this document and any oral presentations made by ENGIE Impact is confidential and should not be disclosed, used or duplicated in whole or in part for any purpose other than the evaluation by Monash University of ENGIE Impact for the purpose of developing the Decarbonisation Roadmap for Monash University.