WELCOME TO MONASH SCIENCE

As a society we continue to face a wide range of complex challenges – environmental pressure, climate change, booming population and an ever-changing technological, economic and social landscape.

At Monash Science, we believe in making a difference to the world by using our science training and knowledge to influence our future. Science is about learning how to analyse problems and solve them.

Our future depends on bright minds, innovators and collaborators who can create solutions that will change the world. With a science degree from Monash University, the possibilities to be a driver of change are endless.

You could find yourself on a field trip searching for fossils in Antarctica, exploring gravitational waves using the LIGO Observatory in the US, or influencing national and international policy on environmental issues.

Or you might want to be an entrepreneurial scientist using your training and knowledge in the business, government and not-for-profit sectors.

Our Bachelor of Science degree is one of the most flexible and popular science degrees in Australia.

In addition to this flexible program, we offer many other courses including the Bachelor of Applied Data Science, the Bachelor of Applied Data Science Advanced (Honours), the Bachelor of Science Advanced Research (Honours) and the Bachelor of Science Advanced Global Challenges (Honours).

When you join Monash Science, you will be immersed in a science precinct that is among the most vibrant and dynamic in the world. Our students are taught, nurtured and mentored by scientists who are at the forefront of their disciplines.

Our world-class staff and teaching environment will provide you with a globally-recognised education and the skills to make a difference in the world through science. I look forward to welcoming you, our future scientists, leaders and world-changers, in 2024.

PROFESSOR JORDAN NASH
Dean, Faculty of Science Monash University
WHY CHOOSE SCIENCE AT MONASH?

Join us for a tour of the Science Precinct

youtu.be/XN4OiogG6E4
FLEXIBILITY
Our science degrees offer flexibility and choice unrivalled by any other Australian university. You can:

- Study subjects across the scientific spectrum, and even take units from other areas such as arts, music and business, just to name a few.
- Graduate with two degrees in less time, by studying a double degree
- Build your course around your passion for science, and not be directed to study subject areas outside science that may not interest you.

REAL EXPERIENCE FROM THE WORLD’S BEST
- Learn from academics who are leaders in their scientific disciplines.
- We offer almost twice the number of lab hours as most Australian universities.
- Get involved in a research project — some of our students have been published in leading scientific journals before graduating!

THE WORLD IS YOUR CLASSROOM
- We offer a number of units that can take you from the classroom out into the field — to Heron Island’s pristine coral cays, the jungles of Borneo, and the rocky outcrops of the Cinque Terre in Italy.
- Seize the opportunity to assist our senior staff with research into topics as diverse as natural resource exploration in Tanzania, fossicking for fossils in Antarctica and developing solutions to water purity using graphene.
- Take advantage of the Monash Abroad exchange program and study for one or two semesters at our Monash Malaysia campus, or at one of our 100 university partners worldwide.

STUDY IN ONE OF THE WORLD’S AND AUSTRALIA’S BEST SCIENCE PRECINCTS

SCIENCE STUDENT LEARNING LOUNGE
We have two purpose-built student lounges just for science students, along with many other comfortable breakout spaces for studying or just hanging out.

EARTH SCIENCES GARDEN
We take a unique approach to teaching. For example, you’ll study geology by working in our Earth Sciences Garden — an outdoor classroom like no other; the first of its kind in Australia and the most comprehensive worldwide.

JOCK MARSHALL RESERVE
We’re home to the three-hectare Jock Marshall Reserve, which allows you to study the natural world in the great outdoors. The reserve includes a new integrated learning facility.

GREEN CHEMICAL FUTURES BUILDING
Budding chemists take note — our home of chemistry is an award-winning, multidisciplinary innovation hub where teaching, research and industry mix in an exciting, creative space.

PHYSICS AND ASTRONOMY COLLABORATIVE LEARNING ENVIRONMENT (PACE)
It’s the end of traditional lectures in our first-year physics and astrophysics classes. Instead you’ll benefit from problem-based learning through hands-on activities in a collaborative learning environment, with purpose-built spaces to foster teamwork and improve learning outcomes.

NEW HORIZONS RESEARCH CENTRE
This houses the research laboratories of the School of Physics and Astronomy. It brings together world-leading researchers from Monash and CSIRO, with diverse backgrounds in physics, astrophysics, engineering, mathematics, IT and biosciences.

MATHS LEARNING CENTRE
The Mathematics Learning Centre is a drop-in centre, which offers one-to-one help if you’re enrolled in mathematics and statistics units.

THE HUTTON-WESTFOLD OBSERVATORY
The Hutton-Westfold Observatory at our Clayton campus allows you to observe stars and distant galaxies that are 10,000 times fainter than what can be seen with the unaided eye.
We provide career coaching and guidance to prepare you for the world after university.

- Build your professional experience with an internship or project. A science industry internship will give you real-world experience and count as credit towards your degree.
- Our ‘Career skills for scientists’ unit uses work-related activities to enhance valuable skills such as commercial awareness, leadership, teamwork and communication.
- Our recruitment agency, Monash Talent, can help you find your dream job when you graduate.
- The jobs database and other services offered by Monash Career Connect assists you with work opportunities during your studies and after graduation.
- We have a proven track record of providing a springboard to a huge range of careers and graduate research in science and beyond. Depending on your major, you may be eligible to join the following professional bodies: Royal Society of Chemistry, Australian Institute of Biology, Australian Society for Microbiology, Environment Institute of Australia, and many others.

For more information on our help and support services, visit monash.edu/science/current-students/career-prospects.
Find out more about one of our on campus outdoor classrooms, the Jock Marshall Reserve.
youtu.be/zj-sMnG1wCU
SUPPORTING YOU ALL THE WAY

Your success is our success. We partner with you to bring out your best. Science at Monash offers a range of services to help you start your course, and then throughout it.

Science Student Services
Our expert course advisors can help you shape your course according to your interests, passions and career goals.

Science Transition Program
We’ve developed an online hub to help you make a smooth transition to uni. Each week when you log in, you’ll see tips on where to get lecture notes, how to access library materials, managing your workload, preparing for exams and much more.

Monash Science clubs and societies
The Monash Science Society (MSS) is one of our largest student clubs, offering a range of activities throughout the year. There are also a number of other science societies such as the Biological Society, CHAMPS, MASS^3, and the Monash Atmospheric Geosciences and Environmental Society that provide a great opportunity to make friends and get involved.

Monash University has more than 150 student clubs and societies, as well as plenty of opportunities to become involved through the many different volunteering and leadership initiatives.

Mentors
Our Science Peer Mentoring Program matches you with a senior Science student who can help you get settled in and make friends as you begin your studies.

The six-week program provides you with opportunities to meet like-minded fellow students in a social setting.

GET INVOLVED

We offer many additional opportunities to develop networks within the University and to help you take your Science degree to the next level.

Becoming a mentor
As a mentor, you play a vital part in helping new students make a smooth transition from high school to university life. You’ll meet your mentee weekly and organise fun activities to help them settle in, make friends and have a fun and successful first year. As a mentor, you receive training and support from your own ‘super mentor’.

Monash Science clubs and societies
The Monash Science Society (MSS) is one of our largest student clubs, offering a range of activities throughout the year. There are also a number of other science societies such as the Biological Society, CHAMPS, MASS^3, and the Monash Atmospheric Geosciences and Environmental Society that provide a great opportunity to make friends and get involved.

Monash University has more than 150 student clubs and societies, as well as plenty of opportunities to become involved through the many different volunteering and leadership initiatives.

Science Future Leaders Program
Influence and inspire the next generation of scientists by joining the Science Future Leaders Program. Activities undertaken during the year-long program will help you develop a range of skills relevant to leadership in your studies and career. These include a camp, a series of leadership seminars and workshops, and the opportunity to practise leadership within the University, your chosen profession, and/or the wider community.

Science Student Ambassador Program
Science student ambassadors play a key role in promoting science programs and activities to future and current students. You’ll gain hands-on experience with public speaking, social media and events. Science student ambassadors receive up to $1000 as recognition of their commitment to the role.

For more information, visit monash.edu/science/current-students/Social-and-Leadership

GET INVOLVED

We offer many additional opportunities to develop networks within the University and to help you take your Science degree to the next level.

Becoming a mentor
As a mentor, you play a vital part in helping new students make a smooth transition from high school to university life. You’ll meet your mentee weekly and organise fun activities to help them settle in, make friends and have a fun and successful first year. As a mentor, you receive training and support from your own ‘super mentor’.

Monash Science clubs and societies
The Monash Science Society (MSS) is one of our largest student clubs, offering a range of activities throughout the year. There are also a number of other science societies such as the Biological Society, CHAMPS, MASS^3, and the Monash Atmospheric Geosciences and Environmental Society that provide a great opportunity to make friends and get involved.

Monash University has more than 150 student clubs and societies, as well as plenty of opportunities to become involved through the many different volunteering and leadership initiatives.

Science Future Leaders Program
Influence and inspire the next generation of scientists by joining the Science Future Leaders Program. Activities undertaken during the year-long program will help you develop a range of skills relevant to leadership in your studies and career. These include a camp, a series of leadership seminars and workshops, and the opportunity to practise leadership within the University, your chosen profession, and/or the wider community.

Science Student Ambassador Program
Science student ambassadors play a key role in promoting science programs and activities to future and current students. You’ll gain hands-on experience with public speaking, social media and events. Science student ambassadors receive up to $1000 as recognition of their commitment to the role.

For more information, visit monash.edu/science/current-students/Social-and-Leadership

GET INVOLVED

We offer many additional opportunities to develop networks within the University and to help you take your Science degree to the next level.

Becoming a mentor
As a mentor, you play a vital part in helping new students make a smooth transition from high school to university life. You’ll meet your mentee weekly and organise fun activities to help them settle in, make friends and have a fun and successful first year. As a mentor, you receive training and support from your own ‘super mentor’.

Monash Science clubs and societies
The Monash Science Society (MSS) is one of our largest student clubs, offering a range of activities throughout the year. There are also a number of other science societies such as the Biological Society, CHAMPS, MASS^3, and the Monash Atmospheric Geosciences and Environmental Society that provide a great opportunity to make friends and get involved.

Monash University has more than 150 student clubs and societies, as well as plenty of opportunities to become involved through the many different volunteering and leadership initiatives.

Science Future Leaders Program
Influence and inspire the next generation of scientists by joining the Science Future Leaders Program. Activities undertaken during the year-long program will help you develop a range of skills relevant to leadership in your studies and career. These include a camp, a series of leadership seminars and workshops, and the opportunity to practise leadership within the University, your chosen profession, and/or the wider community.

Science Student Ambassador Program
Science student ambassadors play a key role in promoting science programs and activities to future and current students. You’ll gain hands-on experience with public speaking, social media and events. Science student ambassadors receive up to $1000 as recognition of their commitment to the role.

For more information, visit monash.edu/science/current-students/Social-and-Leadership
For more information, visit
youtube.com/watch?v=l7qdQmXpVbU
The interdisciplinary nature of this course attracted a diverse cohort from business to healthcare. Every semester we undertook a 12-week group project where we worked on a real-world issue while mentored by external industry professionals.

I transferred to this course in my second year with no prior coding experience, and I’m graduating with employable skills, lifelong friends and confidence to begin creating meaningful impact within my chosen field of work.”

MARDI GILLESPIE-DAWSON
Bachelor of Applied Data Science

The Monash Guarantee (MG) allows entry into select courses by lowering the ATAR for all eligible applicants.
monash.edu/study/how-to-apply/entry-schemes/the-monash-guarantee
Bachelor of APPLIED DATA SCIENCE

If you’re interested in mastering big data and helping others to understand it, this is the course for you.

• This program of study will provide you with the skills necessary to solve a wide range of problems.
• It’s a comprehensive course which will develop your technical know-how in being able to approach data challenges.
• Through selected streams, you’ll develop your passion for the physical sciences, sociological or anthropological studies, business or engineering.
• Working in groups and on individual projects, you’ll bring together key skills in IT and mathematics, and apply these to real-life projects.

Subject prerequisites
VCE
English: Units 3 and 4: a study score of at least 30 in English (EAL) or 25 in English other than EAL.
Maths: Units 3 and 4: a study score of at least 25 in Mathematical Methods (any) or Specialist Mathematics.

IB
English: Level 1.
Maths: Level 3.

For prerequisite subject requirements, please refer to page 21.

Our VTAC Subject Adjustment Bonus
This rewards students studying more than one Year 12 science subject – this could improve your ranking and eligibility by providing additional points towards your ATAR aggregate.

Bachelor of APPLIED DATA SCIENCE ADVANCED (Honours)

This is an advanced program for those passionate about data science.

• This four-year specialist course brings together studies in IT and mathematics in a series of interdisciplinary problem-solving challenges.
• The degree will give you the skills necessary to provide solutions to a wide range of problems.
• Research and analysis into big data has the capacity to make a positive impact on our daily lives.
• Through selected streams, you’ll develop your passion for the physical sciences, sociological or anthropological studies, business or engineering.
• Working in groups and on individual projects, you’ll bring together key skills in IT and mathematics, and apply these to real-life projects.
• Satisfactory completion of this course may provide credit toward a Monash master’s by coursework degree and will provide the preparation necessary to undertake a master’s by research degree or a doctoral (PhD) degree.

Subject prerequisites
VCE
English: Units 3 and 4: a study score of at least 30 in English (EAL) or 25 in English other than EAL.
Maths: Units 3 and 4: a study score of at least 25 in Mathematical Methods (any) or Specialist Mathematics.

IB
English: Level 1.
Maths: Level 3.

For prerequisite subject requirements, please refer to page 21.
Bachelor of
SCIENCE

The choice, flexibility and depth across the huge range of science disciplines available at Monash means you’ll graduate with a degree unique to you, tailored to your individual expertise, interests and career aspirations.

- Flexible, not locked-in from day one to a defined area of science.
- Choose from 25 majors.
- Specialise in up to two majors – you can study an additional major from Science or from another eligible faculty.

Our VTAC Subject Adjustment Bonus

This rewards students studying more than one Year 12 science subject – this could improve your ranking and eligibility by providing additional points towards your ATAR aggregate.

Visit -\(\text{monash.edu/science/subject-adjustment} \) to view entry requirements and to read more about our courses.

Subject prerequisites

VCE

English: Units 3 and 4: a study score of at least 30 in English (EAL) or 25 in English other than EAL.
Maths or Science: Units 3 and 4: a study score of at least 25 in one of Biology, Chemistry, Environmental Science, Geography, Mathematical Methods (any), Specialist Mathematics, Physics or Psychology.

IB

English: Level 1.
Science: from approved list.

For prerequisite subject requirements, please refer to page 21.

Bachelor of
SCIENCE
ADVANCED–
GLOBAL CHALLENGES
(Honours)

This course is the only one of its kind in Australia.

- Combines science with business and industry.
- One internship, which can be an international placement.
- Includes an ‘impact through science’ stream that provides high-level training in leadership, persuasive communication, entrepreneurship, policy, ethics and corporate social responsibility.
- Transforms scientific expertise into a thriving business venture or social enterprise.

Subject prerequisites

VCE

English: Units 3 and 4: a study score of at least 35 in English (EAL) or 30 in English other than EAL.
Maths or Science: Units 3 and 4: a study score of at least 30 in one of Biology, Chemistry, Environmental Science, Geography, Mathematical Methods (any), Specialist Mathematics, Physics or Psychology.

IB

English: Level 2.
Science: higher score required.

For prerequisite subject requirements, please refer to page 21.

Bachelor of
SCIENCE
ADVANCED–
RESEARCH
(Year 12)

Do you see yourself making a difference in the world through the advancement of scientific research? If so, this is the course for you.

- Designed for students who intend to pursue a career in research.
- Allows for accelerated learning by progressing earlier to higher-level and advanced units.
- Enhanced opportunities for research projects.
- Research mentoring by leading scientists.
- You must undertake two Science majors.
- Direct entry into a PhD.
- Satisfactory completion of this course may provide credit toward a Monash master’s by coursework degree and will provide the preparation necessary to undertake a master’s by research degree or a doctoral (PhD) degree.

Subject prerequisites

VCE

English: Units 3 and 4: a study score of at least 35 in English (EAL) or 30 in English other than EAL.
Maths: Units 3 and 4: a study score of at least 30 in Mathematical Methods (any).
Maths or Science: Units 3 and 4: a study score of at least 30 in two of Biology, Chemistry, Environmental Science, Geography, Specialist Mathematics, Physics or Psychology.

IB

English: Level 2.
Maths: Level 3+
Science: higher score required in two subjects.

For prerequisite subject requirements, please refer to page 21.
COURSE STRUCTURE
This is what your studies will look like as a Bachelor of Science student. You’ll have the option to take electives, allowing you to choose subjects outside of Science or extra Science subjects, depending on your interests.

YEAR 1

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Science major</th>
<th>Science</th>
<th>Maths or Statistics</th>
<th>Elective or second major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 2</td>
<td>Science major</td>
<td>Science</td>
<td>Science communication</td>
<td>Elective or second major</td>
</tr>
</tbody>
</table>

YEAR 2

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Science major</th>
<th>Science</th>
<th>Science</th>
<th>Elective or second major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 2</td>
<td>Science major</td>
<td>Science</td>
<td>Science</td>
<td>Elective or second major</td>
</tr>
</tbody>
</table>

YEAR 3

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Science major</th>
<th>Science</th>
<th>Elective or second major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 2</td>
<td>Science major</td>
<td>Science</td>
<td>Elective or second major</td>
</tr>
</tbody>
</table>

DOUBLE DEGREES
If you have a passion for an area outside of science, or would like to go into a field in which scientific knowledge would be an advantage, a double degree could be the perfect choice for you. Combining Science with another area of specialisation gives you a distinct set of skills and helps you stand out in today’s competitive job market.

<table>
<thead>
<tr>
<th>BACHELOR OF SCIENCE</th>
<th>Duration</th>
<th>2023 ATAR¹</th>
<th>2023 VCE International ATAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Bachelor of Arts</td>
<td>4</td>
<td>82.20</td>
<td>78</td>
</tr>
<tr>
<td>+ Bachelor of Biomedical Science</td>
<td>4</td>
<td>88.10</td>
<td>90</td>
</tr>
<tr>
<td>+ Bachelor of Commerce</td>
<td>4</td>
<td>87.05</td>
<td>90</td>
</tr>
<tr>
<td>+ Bachelor of Computer Science</td>
<td>4</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td>+ Bachelor of Global Studies</td>
<td>4</td>
<td>82.10</td>
<td>85</td>
</tr>
<tr>
<td>+ Bachelor of Education (Honours)</td>
<td>4</td>
<td>Primary = 82.25 RC Secondary = 82.85 RC</td>
<td>75</td>
</tr>
<tr>
<td>+ Bachelor of Engineering (Honours)</td>
<td>5</td>
<td>86</td>
<td>87.50</td>
</tr>
<tr>
<td>+ Bachelor of Information Technology</td>
<td>4</td>
<td>84.65</td>
<td>75</td>
</tr>
<tr>
<td>+ Bachelor of Law (Honours)</td>
<td>5</td>
<td>97</td>
<td>95</td>
</tr>
<tr>
<td>+ Bachelor of Music</td>
<td>4</td>
<td>RC²</td>
<td>70</td>
</tr>
</tbody>
</table>

For more information about double degrees, including how they work and their benefits, visit monash.edu/science/double-degrees

¹ The scores provided are to be used as a guide only, and are either the lowest selection rank to which an offer was made in 2023 or an estimate (E). Australian domestic students ATAR.

² Range of criteria includes audition.

International students should consult monash.edu/study
WHERE YOUR FIRST YEAR CAN TAKE YOU

WHAT YOU CAN STUDY IN FIRST YEAR

BIOLOGY
Choose from:
- Blueprints for life
- Life on Earth
- Environmental biology

Possible majors
- Biochemistry
- Anatomy and developmental biology
- Ecology and conservation biology
- Environmental science (extended major)
- Genetics and genomics
- Human pathology
- Immunology
- Microbiology
- Pharmacology
- Physiology
- Plant sciences
- Zoology

Biomedical majors:

Career options
- Agricultural researcher
- Animal technician
- Bioinformatician
- Biotechnologist
- Biotechnology product developer
- Botanist/plant scientist
- Clinical scientist
- Cytogenetist
- Ecologist entomologist
- Environmental/conservation biologist
- Environmental consultant
- Environmental health promoter
- Evolution and adaptation biologist
- Fauna assessment officer
- Geneticist
- Hospital scientist
- Laboratory research technician
- Marine/freshwater biologist
- Medical researcher
- Microbiologist
- Museum curator
- Park ranger
- Patent officer
- Research scientist
- Science journalist
- Science teacher
- Soil scientist
- University lecturer
- Wildlife manager
- Zoologist

CHEMISTRY
Choose from:
- Chemistry 1
- Chemistry 2
- Chemistry 1 advanced
- Chemistry 2 advanced

Possible majors
- Biochemistry
- Chemistry
- Environmental science
- Microbiology
- Physiology

Career options
- Agrochemicals chemist
- Analytical chemist
- Biomedical chemist/analytical chemist
- Biotechnologist
- Biotechnology sales and marketing manager
- Cosmetology
- Drug development chemist
- Environmental/water chemist
- Explosives chemist
- Food technologist
- Forensic scientist
- Hospital or medical laboratory technician
- Industrial chemist
- Instrument specialist
- Molecular design chemist
- Occupational health and safety officer
- Occupational hygienist
- Paint chemist
- Perfumer
- Pharmaceutical and product manufacturer
- Pharmaceutical representative
- Polymer chemist/materials scientist
- Process control specialist
- Quality controller
- Research chemist
- Risk-management consultant
- Science journalist
- Teacher
- Toxicologist
- Waste and resources management consultant
- Water quality and management consultant
- Winemaker

EARTH, ATMOSPHERE AND ENVIRONMENT
Choose from:
- Earth, atmosphere and environment 1
- Earth, atmosphere and environment 2

Possible majors
- Climate and atmospheric science
- Earth science
- Environmental science (extended major)
- Geographical science

Career options
- Agricultural researcher
- Atmospheric scientist
- Climate change advisor
- Climate and sustainability manager
- Climate scientist
- Ecotourism operator
- Environmental consultant
- Environmental geoscientist
- Environmental scientist
- Geochemist (analytical laboratories)
- Geological survey scientist
- Geologist (mineral/petroleum exploration)
- Geophysicist
- Geospatial analyst
- Government advisor (environmental policy and management)
- Hydrologist
- Hydrogeologist
- Landcare project manager
- Oceanographer
- Marine geoscientist
- Metallurgist
- Meteorologist
- Museum scientist
- Natural resource manager
- Palaeontologist
- Park ranger
- Planetary scientist
- Policy officer
- Research scientist
- Risk manager (insurance companies and banks)
- Science communicator
- Secondary educator
- Seismologist
- Soil scientist
- Volcanologist
- Weather forecaster
OF STUDY CAN TAKE YOU

MATHEMATICS

Choose from:
- Functions and their applications
- Analysis of change
- Techniques for modelling
- Techniques for modelling (advanced)
- Discrete mathematics for computer science
- Multivariable calculus
- Multivariable calculus (advanced)
- Introduction to statistical reasoning
- Statistical methods for science
- Introduction to scientific coding

Possible majors
- Applied mathematics
- Financial and insurance mathematics (extended major)
- Mathematics
- Mathematical statistics
- Pure mathematics

Career options
- Atmospheric scientist
- Biostatistician/data analyst
- Business analyst
- Computational mathematician
- Computer software developer
- Data mining analyst
- Environmental resource
- Model developer
- Financial consultant
- Investment/business analyst
- Market statistician
- Mathematical modeller
- Mathematics teacher
- Meteorologist
- Oceanographer
- Programmer
- Quantitative analyst
- Statistician

PHYSICS

Choose from:
- Classical physics and relativity
- Fields and quantum physics
- Physics for the living world
- Physics for engineering
- Foundation physics
- Earth to cosmos – introductory astronomy
- Life in the universe – astrobiology

Possible majors
- Astrophysics
- Physics
- Physiology

Career options
- Accelerator physicist
- Acoustics scientist
- Applied physicist
- Astronomer and astrophysicist
- Atmospheric physicist
- Biophysicist
- Electron microscopist
- Energy consultant
- Forensic physicist
- Industrial physicist
- Instrumentation physicist
- Materials scientist
- Medical physicist
- Nuclear physicist
- Optical physicist
- Optical systems specialist
- Patent attorney
- Physics teacher
- Synchrotron scientist
- Telecommunications specialist
- University lecturer

COMPUTATIONAL SCIENCE

Choose from:
- Introduction to computer science
- Introduction to programming
- Computer Science (advanced)
- Algorithms and programming fundamentals in python

Possible majors
- Computational science

Career options
- Business analyst
- Business operations
- Coordinator
- Consultant business systems
- Analyst
- Graduate project manager
- IT analyst
- IT consultant
- IT domain specialist
- IT support
- Project manager
- Software consultant
- Software developer
- Software test analyst
- Strategic analyst
- Technology consultant
- Web developer

PSYCHOLOGY

Choose from:
- Foundations in Psychology
- Introduction to psychological inquiry

Possible majors
- Psychology

Career options
- Career counselling
- Child psychology
- Clinical neuropsychology
- Clinical psychology
- Counselling psychology
- Educational and developmental psychology
- Forensic psychology
- Health psychology
- Management
- Organisational psychology
- Sport psychology
- Teaching

Example first year study plans by major
monash.edu/science/current-students/manage-your-science-studies/example-by-major
A-Z GUIDE OF MAJORS

Within the Bachelor of Science, at least eight units will make up your Science major. You’ll also have eight units of free electives, which offer you the flexibility to shape your course in a number of different ways – such as extending your major to add depth, adding a second major or a minor from the same or another course, or studying a range of units from across the University.

ENVIRONMENTAL SCIENCE
Study the interactions between the physical, chemical, geographical and biological components and processes of the environment.
• Explore current environmental challenges such as climate change, water and land management, resource use and sustainability.
• Apply scientific information to the management of natural systems.
• Understand how environmental science can affect policy and management changes.
• The extended major in environmental science includes the choice of three streams: ecology, climate and environmental earth sciences.

CHEMISTRY
Study the science of matter and energy.
• Investigate the structure of substances.
• See how atoms and molecules react and interact, and how this affects materials, medicine and technology.
• Learn about synthetic and analytical chemistry, medicinal and biological chemistry, and physical and environmental chemistry.
• Undertake lab work in purpose-built chemistry facilities.

ANATOMY AND DEVELOPMENTAL BIOLOGY
Explore the processes of development from a single cell to an adult organism.
• Investigate cellular and molecular mechanisms underlying normal and abnormal development.
• Apply laboratory practices incorporating cellular, molecular and imaging techniques.
• Study topics such as gene expression, stem cell biology, tissue engineering, regenerative biology and medicine.

APPLIED MATHEMATICS
Apply techniques and models to solve problems from medicine, engineering, information technology and commerce.
• Explain observations or predict future trends.
• Contribute to new theories and adapt existing mathematical approaches to new problems.
• Develop key technical skills in advanced calculus, linear algebra, differential equations and computational methods.

CHEMISTRY
Study the science of matter and energy.
• Investigate the structure of substances.
• See how atoms and molecules react and interact, and how this affects materials, medicine and technology.
• Learn about synthetic and analytical chemistry, medicinal and biological chemistry, and physical and environmental chemistry.
• Undertake lab work in purpose-built chemistry facilities.

APPLIED MATHEMATICS
Apply techniques and models to solve problems from medicine, engineering, information technology and commerce.
• Explain observations or predict future trends.
• Contribute to new theories and adapt existing mathematical approaches to new problems.
• Develop key technical skills in advanced calculus, linear algebra, differential equations and computational methods.

For more information about majors and sequences, visit monash.edu/science/majors Please note: some careers may require further study.
ASTROPHYSICS
Use observations and the laws of physics to understand the universe and its constituents.
- Study celestial objects such as planets and stars, comets, pulsars and quasars, black holes and galaxies.
- Link the smallest and the largest objects in the universe, from strings to super clusters of galaxies.
- Explore the possibility of extraterrestrial life.
- Use the latest technology – from large telescopes to supercomputers.

BIOCHEMISTRY
Explore the chemical components and biological processes of all living systems.
- Study the chemistry within the biological processes that form the foundation for all living matter.
- Understand the cause of disease.
- See how effective treatments and vaccines are developed.

CLIMATE AND ATMOSPHERIC SCIENCE
Study climate and atmospheric science, meteorology and climatology; exploring the links between the Earth’s atmosphere, cryosphere, oceans and landmasses.
- Study aspects of Earth science, applied mathematics and physics that drive weather and climate.
- Explore how we can better forecast day-to-day weather and understand our changing climate using data science and advanced modeling.

COMPUTATIONAL SCIENCE
Solve scientific problems through computers.
- Construct and apply mathematical models, simulations and data-analysis techniques.
- Learn the fundamentals of algorithmic problem-solving to advanced programming, 3D computer graphics and intelligent systems.
- Undertake parallel computation for massive data analysis and simulation to tackle the world’s current and emerging problems.

EARTH SCIENCE
Study the Earth’s geology, climate, oceans, and environment.
- Explore how the Earth has changed over geological time and how factors including plate tectonics, volcanism and climate affect the Earth’s surface and environment.
- Undertake exciting fieldwork, analyse and model Earth and climate processes, and engage in frontier research.
- Learn how to responsibly manage landscapes, water and other major resources, creating pathways to a sustainable future.
- Earth science offers three streams: Earth’s physical environment, Earth’s climate, and Geosciences.

ECOLOGY AND CONSERVATION BIOLOGY
Study the ecological and evolutionary interactions between organisms and their environments.
- Explore conservation management.
- Develop ways to reduce the escalating biodiversity loss within our world.
- Study ecosystem structure and function.
- Discover how organisms adapt to changing environments.

FINANCIAL AND INSURANCE MATHEMATICS
Apply mathematical modelling and statistical techniques to understand and assess risk in insurance and financial markets.
- Develop financial and risk models.
- Evolve financial and investment business strategies.
- Demonstrate high-level critical thinking skills to analyse, use and interpret data.

GENETICS AND GENOMICS
Study genes – their structure, function, transmission and evolution.
- Learn how genetics underpins areas such as biomedical science, conservation biology, forensics and biotechnology.
- Develop advanced practical skills in recombinant DNA technology, transgenic organism analysis, genotyping, genomics and bioinformatics.
- Design and implement both laboratory and computer-based genetic experiments.
GEOGRAPHICAL SCIENCE
Study the links between society and the natural environment to find innovative solutions for global challenges.

- Learn physical and human geography, including climatology, hydrology, soil science and sustainability theory.
- Explore natural hazards, climate change, vegetation dynamics, how landscapes change, urbanisation and environmental policy, as well as land, coast and water management.

HUMAN PATHOLOGY
Study disease processes, including cell death, inflammation, disorders of immunity and neoplasia.

- Learn about organ system failure during disease and injury, and how this knowledge is critical for diagnosis, prognosis and medical intervention.
- Develop a comprehensive knowledge of cell injury, wound healing, fluid and vascular disorders, growth disorders and immunopathology.
- Apply practical laboratory skills such as microscopy, histological staining techniques and diagnosis.

PLANT SCIENCES
Study the structure, function, genetics and diversity of plants – from algae and mosses through to gymnosperms and angiosperms.

- Discover the differences and similarities between plants living on the land, in the sea and in freshwater environments.
- Learn how plants adapt to particular environments and what factors influence the distribution and diversity of plant species and communities in which they grow.

MATHEMATICS
Discover how mathematics is used to describe, model, understand and even create aspects of the world around us.

- Develop key technical skills in advanced calculus and linear algebra.
- Explore techniques for modelling and how to use these techniques to solve complex problems.

MICROBIOLOGY
Learn about micro-organisms, including bacteria, viruses, protozoa, algae and fungi.

- Study their diversity, structure, molecular biology and how they interact with humans and other living organisms.
- Study the rise of antibiotic resistance in medically important bacteria.
- Discover how microbiologists are involved in the development of vaccines.

PHYSIOLOGY
Learn how the body functions in health and disease.

- Explore how body systems adapt when challenged by stresses such as exercise or environmental extremes, and how body functions change in diseased states.
- Examine the nerves and muscles, the brain and hormones, and the body’s functionality from the molecular and cellular through to the body systems level.

PLANT SCIENCES
Study the structure, function, genetics and diversity of plants – from algae and mosses through to gymnosperms and angiosperms.

- Discover the differences and similarities between plants living on the land, in the sea and in freshwater environments.
- Learn how plants adapt to particular environments and what factors influence the distribution and diversity of plant species and communities in which they grow.

PSYCHOLOGY
Study the mind and behaviour, including investigations of the brain, learning, memory, reasoning, decision-making, language, developmental and social processes, personality and mental health.

- Examine the practical and ethical applications of psychological research.
- Opportunity to complete the Australian Psychology Accreditation Council (APAC)-accredited study for those wanting to specialise in psychology.

ZOOLOGY
Study the diversity of animals, including their evolution, form, function, behaviour and ecology.

- Explore the interactions of animals with their environments through food chains and competition for resources.
- Understand the impact that parasites and pests have on our natural food supplies.
- Undertake field trips in Australia and overseas.
PHYSICS
Study space and time, matter and energy.
• Explore the full spectrum of topics, from atom optics and BECs to particle physics and quantum science.
• Investigate recent discoveries such as the Higgs boson and gravitational waves.
• See how physics underpins other science disciplines, including medicine and engineering.
• Develop high-level analytical, numerical modelling and problem-solving skills.

MATHEMATICAL STATISTICS
Study mathematical theory and the applications of this theory in the real world.
• Explore models involving random, unpredictable components, and learn how to use these models to make informed decisions.
• Develop key technical skills in advanced calculus and linear algebra.
• Apply high-level probability, statistical and stochastic processing techniques to real-life problems.

IMMUNOLOGY
Learn how the immune system protects us from harmful pathogens such as bacteria and viruses.
• Study the immune system’s mechanisms in cancers, allergies, autoimmunity and transplant rejection.
• Explore how the function of the immune system can be manipulated to improve development of vaccines and cures for autoimmune diseases.

PHARMACOLOGY
Study the effect of drugs on living organisms and how to scientifically define the term ‘drug’.
• Discover how drugs affect cell responses, including whether drug action will be selective and long-lasting, and the nature of side effects.
• Learn about drugs used in the prevention or treatment of an illness and those that are taken for recreation.

PURE MATHEMATICS
Pure mathematics deals with the abstract, the rigour and the beauty of perfection.
• Explore how pure mathematics becomes the basis for applied mathematics to solve the most concrete problems.
• See how the theory of prime numbers is fundamental to security systems and electronic banking.
• Apply high-level knowledge in advanced analysis, algebra and geometry.

For more information about majors and sequences, visit monash.edu/science/majors
Please note: some careers may require further study.
If you don’t achieve the ‘right’ ATAR, it isn’t the end of the world – there are alternative pathways into a Bachelor of Science at Monash.

Diploma of Higher Education (DoHE)
An ATAR of at least 60 is required, with a study score of at least 27 in English (EAL) or 25 in any other English.

Monash University Foundation Year
(international students only)
Students completing Monash University Foundation Year can enter the Bachelor of Science at first year.

TAFE qualifications
(graded)
Science-related Certificate IV or Diploma.

Diploma of Science, Monash College
(full-fee paying)
Upon completion of Year 12 Australian equivalent, students can undertake an eight-month Diploma of Science at Monash College, which offers a direct pathway into the second year of a science degree.

Transfer from another university
With a science-related degree.

Single University units
Mature-age students can apply to study two single (science) University units. Upon completion of these units with a minimum average result of 60 per cent, and after satisfying English language requirements, students are eligible to apply for entry into the Bachelor of Science.

For more information about pathways into Science, visit monash.edu/science/future-students/pathways/pathways-into-science
USING SCIENCE AS A PATHWAY TO OTHER STUDY AREAS

A Monash Bachelor of Science forms a strong foundation for students wanting to work towards further study in medical, pharmaceutical or psychology fields*

COMPLETE FIRST YEAR BACHELOR OF SCIENCE

Use your Bachelor of Science year as a pathway into a range of other Monash degrees.

COMPLETE A BACHELOR OF SCIENCE
3 years (full-time)

Graduate-entry Master of Professional Engineering
2.5 years (full-time)

Graduate-entry Bachelor of Pharmacy/Master of Pharmacy
3 years (full-time)

Graduate-entry Bachelor of Medical Science and Doctor of Medicine (MD)
4 years (full-time)

Doctor of Veterinary Medicine

Engineer or employment within engineering-related role

Pharmacist or employment within science-related role

Medical practitioner

Veterinary surgeon

COMPLETE A BACHELOR OF SCIENCE
3 years (full-time)

Graduate study in psychology
PhD
Masters 2 years (full-time)

Psychologist

For more information about Science as a pathway to Medicine, visit monash.edu/science/future-students/your-essential-guide-domestic-students/science-as-a-pathway-to-medicine

* Entry requirements apply; interested applicants should enquire with destination courses.
INTERNATIONAL ENTRY REQUIREMENTS

To locate ‘how to calculate your entry score’ for the listed qualifications in this guide refer to the 2024 Undergraduate Course Guide International located at: monash.edu/study/why-choose-monash/information-for-schools-and-teachers/publications

<table>
<thead>
<tr>
<th>COURSE</th>
<th>Course code</th>
<th>Intake (semester)</th>
<th>Prerequisite subjects (refer to prerequisites subject table above)</th>
<th>English</th>
<th>Mathematics</th>
<th>Science</th>
<th>English Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor of Applied Data Science</td>
<td>S2010</td>
<td>Feb</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td>ACADEMIC IELTS: Overall 6.5 with no band lower than 6</td>
</tr>
<tr>
<td>Bachelor of Applied Data Science Advanced (Honours)</td>
<td>S3003</td>
<td>Feb</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td>Internet Based TOEFL: 79 overall, 21 Writing, 13 Reading, 12 Listening, 18 Speaking</td>
</tr>
<tr>
<td>Bachelor of Science</td>
<td>S2000</td>
<td>Feb, July</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor of Science Advanced – Global Challenges (Honours)</td>
<td>S3001</td>
<td>Feb</td>
<td>☑</td>
<td></td>
<td>Higher score</td>
<td></td>
<td>ACADEMIC IELTS: Overall 7.0 with no band lower than 6.5</td>
</tr>
<tr>
<td>Bachelor of Science Advanced – Research (Honours)</td>
<td>S3002</td>
<td>Feb, July</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td>Internet Based TOEFL: 84 overall, 24 Writing, 19 Reading, 20 Listening, 20 Speaking</td>
</tr>
</tbody>
</table>

1. Science approved list (unless specified otherwise) VCE: Biology, Chemistry, Environmental Science, Geography, Mathematical Methods (any), Specialist Mathematics, Physics or Psychology. IB (SL or HL): Biology, Chemistry, Environmental Systems and Societies (SL only), Further Mathematics (HL only), Geography, Mathematics, Mathematics: Analysis and Approaches, Mathematics Applications and Interpretations (HL only), Physics or Psychology. Note: Mathematics or Further Mathematics can only be used if not counted towards the Maths prerequisite.
2. The Monash College Diploma Part 1 and Part 2 entry requirements published in this guide are for students commencing their undergraduate destination degree in 2024.
Subject Levels: Pre requisite

All Monash undergraduate courses require you to have previously studied and achieved required standards in certain specified subjects at an Australian level known as prerequisite subjects. Different prerequisite subject levels apply to each undergraduate course and can be located throughout this guide. The table below outlines acceptable subjects that meet these prerequisite subject levels for VCE and IB.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 3+</th>
<th>Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Level 1 (Australian Year 12 equivalent)</td>
<td>Higher score in English (Australian Year 12 equivalent)</td>
<td>Higher level mathematics (Australian Year 12 equivalent)</td>
<td>Science approved list1</td>
<td></td>
</tr>
<tr>
<td>VCE</td>
<td>Units 3 and 4: a study score of at least 30 in English (EAL) or 25 in English other than EAL.</td>
<td>Units 3 and 4: a study score of at least 35 in English (EAL) or 30 in English other than EAL.</td>
<td>Units 3 and 4: a study score of at least 25 in one of Mathematical Methods (any) or Specialist Mathematics.</td>
<td>Units 3 and 4: a study score of at least 30 in one of Mathematical Methods (any) or Specialist Mathematics.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At least 4 in the following SL subjects:</td>
<td>At least 5 in the following SL subjects:</td>
<td>At least 4 in the following SL subjects:</td>
<td>At least 5 in the following SL subjects:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>English A: Literature, or English A: Language and Literature, or Literature and Performance, OR</td>
<td>English A: Literature, or English A: Language and Literature, or Literature and Performance, OR</td>
<td>Mathematics, or Mathematics: Analysis and Approaches, OR</td>
<td>Mathematics, or Mathematics: Analysis and Approaches, OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At least 3 in the following HL subjects:</td>
<td>At least 4 in one of the following HL subjects:</td>
<td>At least 3 in one of the following HL subjects:</td>
<td>At least 4 in one of the following HL subjects:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>English A: Literature, or English A: Language and Literature, OR</td>
<td>English A: Literature, or English A: Language and Literature, OR</td>
<td>Mathematics: Applications and Interpretations, or Mathematics, or Further Mathematics, or Mathematics: Analysis and Approaches.</td>
<td>Mathematics: Applications and Interpretations, or Mathematics, or Further Mathematics, or Mathematics: Analysis and Approaches.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At least 5 in one of the following HL subjects:</td>
<td>At least 6 in one of the following SL subjects:</td>
<td>At least 4 in one of the following HL subjects:</td>
<td>At least 5 in the following SL subjects:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>English AB, or English B, OR</td>
<td>English AB, or English B, OR</td>
<td>English A: Language, or English A: Language and Literature, OR</td>
<td>English B.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At least 4 in the following HL subject:</td>
<td>At least 5 in the following HL subject:</td>
<td>At least 4 in one of the following HL subjects:</td>
<td>At least 5 in the following SL subjects:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>English B.</td>
<td>English B.</td>
<td>English A: Literature, or English A: Language and Literature, or Literature and Performance, OR</td>
<td>Mathematics, or Mathematics: Analysis and Approaches, OR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 3+</th>
<th>Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>Level 3</td>
<td>Level 3</td>
<td>Level 3+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>Science approved list1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VCE

- **Units 3 and 4**: A study score of at least 30 in English (EAL) or 25 in English other than EAL.
- **Level 1**: At least 4 in one of the following SL subjects:
 - English A: Literature, or
 - English A: Language and Literature, or
 - Literature and Performance, OR
 - At least 3 in one of the following HL subjects:
 - English A: Literature, or
 - English A: Language and Literature, OR
 - At least 5 in one of the following SL subjects:
 - English AB, or
 - English B, OR
 - At least 4 in the following HL subject:
 - English B.

IB

- **Units 3 and 4**: A study score of at least 35 in English (EAL) or 30 in English other than EAL.
- **Level 2**: At least 5 in one of the following SL subjects:
 - English A: Literature, or
 - English A: Language and Literature, or
 - Literature and Performance, OR
 - At least 4 in one of the following HL subjects:
 - English A: Literature, or
 - English A: Language and Literature, OR
 - At least 6 in one of the following SL subjects:
 - English AB, or
 - English B, OR
 - At least 5 in the following HL subject:
 - English B.

3. Studies must have been completed within five years of intended commencement. If you have not studied science in the past five years, you may still meet the requirements if you can demonstrate that you have engaged with science after your studies; this could be through work, teaching or volunteering in a capacity where you engaged in science in a meaningful way. If you believe you meet the requirements in this way, please provide us with a CV, letter of support from an employer/supervisor or other form of written proof that can demonstrate how you have engaged with science in the past 5 years.
4. This course has additional selection requirements. Please refer to the course page for further details.
5. There are a limited number of places available in this course. The entry score is only indicative.
DISCOVER MORE TO CHANGE MORE AT OUR 2023 EVENTS

Monash Information Evenings
March to September
We’ll be in your local area to answer your questions on everything you need to know about Monash, including our courses, accommodation, scholarships and student life.
monash.edu/discover/events/general-information

Discover Monash
March to August
Get the inside story from our faculties about what it’s really like to study at Monash.
monash.edu/discover

Open Day
Sunday 6 August
Open Day is your chance to experience what life at Monash is all about! You’ll be able to explore our campuses, meet current students and staff, find out more about our courses, and get a taste of everything Monash has to offer.
monash.edu/open-day

MONASH SCIENCE ONLINE
monash.edu/science

INSTAGRAM
@monash_science

TWITTER
@Monash_Science

YOUTUBE
youtube.com/ScienceMonashUni

TIKTOK
@monash_science

FACEBOOK
facebook.com/ScienceatMonash

The information in this brochure was correct at the time of publication (April 2023). Monash University reserves the right to alter this information should the need arise. You should always check with the relevant faculty office when considering a course. CRICOS provider: Monash University 00008C Monash College 01857J.