Hedging of covered options with linear market impact and gamma constraint
Monash CQFIS working paper
2017 – 6

Bruno Bouchard
Paris-Dauphine University, PSL
Research University

Grégoire Loeper
School of Mathematical Sciences,
Monash University and Centre for
Quantitative Finance and Investment
Strategies
gregoire.loeper@monash.edu

Y. Zho
Paris-Dauphine University, PSL
Research University

Abstract
We study super-replication of contingent claims in markets with linear price impact, we study the problem of hedging a covered European option under gamma constraint. Using stochastic target and partial differential equation smoothing techniques, we prove that the super-replication price is the viscosity solution of a fully non-linear parabolic equation. As a by-product, we show how ε-optimal strategies can be constructed. Finally, a numerical resolution scheme is proposed.
HEDGING OF COVERED OPTIONS WITH LINEAR MARKET IMPACT AND GAMMA CONSTRAINT

BRUNO BOUCHARD†, GRÉGOIRE LOEPER‡, AND YIYI ZOU†

Abstract. Within a financial model with linear price impact, we study the problem of hedging a covered European option under gamma constraint. Using stochastic target and partial differential equation smoothing techniques, we prove that the superreplication price is the viscosity solution of a fully nonlinear parabolic equation. As a by-product, we show how ε-optimal strategies can be constructed. Finally, a numerical resolution scheme is proposed.

Key words. hedging, price impact, stochastic target

AMS subject classifications. 91G20, 93E20, 49L20

DOI. 10.1137/15M1054109

1. Introduction. Inspired by [1, 18], the current authors in [4] considered a financial market with permanent price impact, in which the impact function behaves as a linear function (around the origin) of the number of bought stocks. This class of models is dedicated to the pricing and hedging of derivatives under situations of non-negligible delta-hedging. In fact, the number of stocks required for hedging purposes becomes comparable to the average daily volume traded on the underlying asset. As a consequence, the delta-hedging strategy has an impact on the price dynamics, and also incurs liquidity costs. The linear impact models studied in [1, 4, 18] incorporate both effects into the pricing and hedging of the derivative, while maintaining the completeness of the market (up to a certain extent). These models in turn lead to exact replication strategies. As in perfect market models, this approach provides an approximation of the real market conditions and hence can be used by practitioners to design a suitable hedge in a systematic way, thus eliminating the need to rely on any ad hoc risk criterion.

In [4], we considered the hedging of a cash-settled European option: at inception the option seller builds the initial delta-hedge, and later he liquidates the hedge at maturity to settle the final claim in cash. It is shown therein that the price function of the optimal superreplicating strategy no longer solves a linear parabolic equation, as in the classical case, but rather a quasi-linear one. The hedging strategy in this case essentially follows a modified delta-hedging rule where the delta is computed at the “unperturbed” value of the underlying, i.e., the one the underlying would have had if the trader’s position were liquidated immediately.

The approach and the results obtained in [4] thus differ substantially from those of [1, 18]. While in [1, 18] the impact model considered is the same, the control problem is different in the sense that it is applied to the hedging of covered options.

*Received by the editors December 23, 2015; accepted for publication (in revised form) August 25, 2017; published electronically October 24, 2017.
http://www.siam.org/journals/sicon/55-5/M105410.html
Funding: The first author’s research was partially supported by ANR Liquirisk and by ANR CAESARS (ANR-15-CE05-0024).
†Université Paris-Dauphine, PSL Research University, CEREMADE, UMR 7534, 75775 Paris cedex 16, France (bouchard@ceremade.dauphine.fr, maqstica@gmail.com).
‡School of Mathematical Sciences, Monash University, Victoria 3800, Australia, and Centre for Quantitative Finance and Investment Strategies, Monash University, Melbourne, VIC 3800, Australia (gregoire.loeper@monash.edu).
The hedging of covered options refers to situations where the buyer of the option delivers at inception the required initial delta position and accepts a mix of stocks (at their current market price) and cash as payment of the final claim. The buyer’s indifference between stock and cash eliminates the cost incurred by the initial and final hedge. Quite surprisingly, this is not a genuine approximation of the problem studied in [4]. The question of the initial and final hedge is fundamental, to the point that the structure of the pricing question is completely different: in [4] the equation is quasi-linear, while it is fully nonlinear in [1, 18].

As opposed to [4], the authors in [1, 18] use a verification argument to build an exact replication strategy. Due to the special form of the nonlinearity, the equation is ill-posed when the solution does not satisfy a gamma-type constraint. The aim of the current paper is to provide a direct characterization via stochastic target techniques, and to incorporate right from the beginning a gamma constraint on the hedging strategy.

Note that, in [18], the author establishes, for a particular type of impact function (see \(f \) below), that the fully nonlinear pricing equation has a smooth solution which provides an exact replication strategy. However, it is not shown that this (exact replication) strategy is the cheapest way of superreplicating the final payoff. In the present paper, we assume a more general form for the market impact and show that the weak (viscosity) solution to the pricing equation indeed provides the price of the cheapest superreplication strategy. Note also that the gamma constraint is obtained in [18] as a by-product of the regularity, as opposed to the present paper, where it has to be imposed.

In our context, the supersolution property can be proved by essentially following the arguments of [8]. The subsolution characterization is much more difficult to obtain. This is a second main difference with [4], in which classical geometric dynamic programming and viscosity solutions techniques could be used, once an appropriate change of variables was performed. In the current paper, however, unlike in [8], we cannot prove the required geometric dynamic programming principle, the underlying reason being the strong interaction between the hedging strategy and the underlying price process due to the market impact. Instead, we use the smoothing technique developed in [5]. We construct a sequence of smooth supersolutions which, by a verification argument, provide upper-bounds on the superhedging price. As they converge to a solution of the targeted pricing equation, a comparison principle argument implies that their limit is the superhedging price. A by-product of this construction is the explicit \(\varepsilon \)-optimal hedging strategies. We also provide the comparison principle and a numerical resolution scheme. To begin with, our analysis takes a simplified approach by restricting the models to only have permanent price impact. Later in section 4, we show why adding a resilience effect does not affect our analysis. Note that this is because the resilience effect considered here has no quadratic variation. This is in contrast to [1], in which the resilience can break the parabolicity of the equation and renders the exact replication nonoptimal.

We close this introduction by pointing out some related references. The paper [6] incorporates liquidity costs but no price impact; the price curve is not affected by the trading strategy. It can be modified by adding restrictions on admissible strategies, as in [7] and [23]. This leads to a modified pricing equation, which exhibits a quadratic term in the second order derivative of the solution, and renders the pricing equation fully nonlinear, even not unconditionally parabolic. Other articles focus on the derivation of the price dynamics through a clearing condition; see, e.g., [12, 20, 21], in which the supply and demand curves arise from “reference” and “program”
traders (i.e., option hedgers). This results in a modified price dynamics, but with no liquidity costs taken into account; see also [17]. Finally, the series of papers [22],[8], [23] addresses the liquidity issue indirectly by imposing bounds on the “gamma” of admissible trading strategies; no liquidity cost or price impact is modeled explicitly.

General notation. Throughout this paper, Ω is the canonical space of continuous functions on \mathbb{R}_+ starting at 0, \mathbb{P} is the Wiener measure, W is the canonical process, and $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ is the augmentation of its raw filtration $\mathbb{F}^0 = (\mathcal{F}^0_t)_{t \geq 0}$. All random variables are defined on $(\Omega, \mathcal{F}, \mathbb{P})$. We denote by $|x|$ the Euclidean norm of $x \in \mathbb{R}^n$; the integer $n \geq 1$ is given by the context. Unless otherwise specified, inequalities involving random variables are taken in the \mathbb{P}-a.s. sense. We use the convention $x/0 = \text{sign}(x) \times \infty$ with $\text{sign}(0) = +$.

2. **Model and hedging problem.** This section is dedicated to the derivation of the dynamics and the description of the gamma constraint. We also explain in detail how the pricing equation can be obtained and state our main result.

2.1. **Impact rule and discrete time trading dynamics.** We consider the framework studied in [4]. Namely, the impact of a strategy on the price process is modeled by an impact function f: the price variation due to buying an (infinitesimal) number $\delta \in \mathbb{R}$ of shares is $\delta f(x)$, given that the price of the asset is x before the trade. The cost of buying the additional δ units is

$$\delta x + \frac{1}{2} \delta^2 f(x) = \delta \int_0^\delta \frac{1}{\delta} (x + \iota f(x)) d\iota,$$

in which

$$\int_0^\delta \frac{1}{\delta} (x + \iota f(x)) d\iota$$

can be interpreted as the average cost for each additional unit.

Between two trading instances τ_1, τ_2 with $\tau_1 \leq \tau_2$, the dynamics of the stock is given by the strong solution of the stochastic differential equation

$$dX_t = \mu(X_t) dt + \sigma(X_t) dW_t.$$

Throughout this paper, we assume that

$$f \in C^2_b \quad \text{and} \quad \inf f > 0,$$

$$(\mu, \sigma) \text{ is Lipschitz and bounded,} \quad \inf \sigma > 0.$$

The above regularity assumptions are used in [4] to derive the dynamics of Proposition 2.2 below. The lower bound on σ is used later on, in particular to express the hedging policy in terms of a gamma, which is crucial for our analysis; see (8) and the equation that precedes it. Relaxing these assumptions in the form of local conditions or by only assuming that f is C^1 with Lipschitz derivative should be feasible. This, however, would significantly increase the complexity of our proofs, and we leave this to future research.

As in [4], the number of shares the trader would like to hold is given by a continuous Itô process Y of the form

$$Y = Y_0 + \int_0^\cdot b_s ds + \int_0^\cdot a_s dW_s.$$
We say\footnote{In [4], \((a,b)\) is required only to be progressively measurable and essentially bounded. The additional restrictions imposed here will be necessary for our results in section \ref{sec:3.2}.} that \((a,b)\) belongs to \(A^*_{k} \) if \((a,b)\) is continuous, \(\mathbb{F}\)-adapted,
\[
a = a_0 + \int_0^t \beta_s \, ds + \int_0^t \alpha_s \, dW_s,
\]
where \((\alpha,\beta)\) is continuous, \(\mathbb{F}\)-adapted, and \(\zeta := (a,b,\alpha,\beta)\) is essentially bounded by \(k\) and such that
\[
E[\sup \{|\zeta_{s'} - \zeta_s|, \ t \leq s \leq s' \leq s + \delta \leq T\} | \mathcal{F}^n_t] \leq k\delta
\]
for all \(0 \leq \delta \leq 1\) and \(t \in [0, T - \delta]\).

We then define
\[
A^* := \bigcup_k A^*_{k}.
\]

To derive the continuous time dynamics, we first consider a discrete time setting and then pass to the limit. In the discrete time setting, the position is rebalanced only at times
\[
t^n_i := iT^n, \quad i = 0, \ldots, n, \ n \geq 1.
\]
In other words, the trader keeps the position \(Y^n_t\) in stocks over each time interval \([t^n_i, t^n_{i+1})\). Hence, his position in stocks at \(t^n\) is
\[
Y^n_t := \sum_{i=0}^{n-1} Y^n_{t^n_i} 1_{\{t^n_i \leq t < t^n_{i+1}\}} + Y^n_{t^n_i} 1_{\{t = T^n\}},
\]
and the number of shares purchased at \(t^n_{i+1}\) is
\[
\delta^n_{t^n_{i+1}} := Y^n_{t^n_{i+1}} - Y^n_{t^n_i}.
\]

Given our impact rule, the corresponding dynamics for the stock price process is
\[
X^n = X_0 + \int_0^t \mu(X^n_s) \, ds + \int_0^t \sigma(X^n_s) \, dW_s + \sum_{i=1}^{n} 1_{\{t^n_i \leq t < t^n_{i+1}\}} \frac{1}{2} \delta^n_{t^n_i}^2 f(X^n_{t^n_i}),
\]
in which \(X_0\) is a constant.

The portfolio process is described as the sum \(V^n\) of the amount of cash held and the potential wealth \(Y^n X^n\) associated to the position in stocks:
\[
V^n = \text{cash position} + Y^n X^n.
\]
It does not correspond to the liquidation value of the portfolio, except when \(Y^n = 0\). This is due to the fact that the liquidation of \(Y^n\) stocks does not generate a gain equal to \(Y^n X^n\) because of the price impact. However, one can infer the exact composition in cash and stocks of the portfolio from the knowledge of the pair \((V^n, Y^n)\).

Throughout this paper, we assume that the risk-free interest rate is zero (for ease of notation). Then,
\[
V^n = V_0 + \int_0^T Y^n_s \, dX^n_s + \sum_{i=1}^{n} 1_{\{t^n_i \leq t < t^n_{i+1}\}} \frac{1}{2} \delta^n_{t^n_i}^2 f(X^n_{t^n_i}).
\]
This wealth equation is derived as in [4] following elementary calculations. The last term on the right-hand side comes from the fact that, at time t^n_i, δ^n_i shares are bought at the average execution price $X^n_i - \frac{1}{2} \delta^n_i f(X^n_i)$, and the stock’s price ends at $X^n_i - \delta^n_i f(X^n_i)$, whence the additional profit term. However, one can check that a profitable round trip trade cannot be built; see [4, Remark 3].

Remark 2.1. Note that in this work we restrict ourselves to a permanent price impact; no resilience effect is modeled. We shall explain in section 4 below why taking resilience into account does not affect our analysis. See in particular Proposition 4.1.

2.2. Continuous time trading dynamics. The continuous time trading dynamics is obtained by passing to the limit $n \to \infty$, i.e., by considering strategies with increasing frequency of rebalancement.

Proposition 2.2 (see [4, Proposition 1]). Let $Z := (X, Y, V)$, where Y is defined as in (2) for some $(a, b) \in A^o$, and (X, V) solves

$$X = X_0 + \int_0^T \sigma(X_s) dW_s + \int_0^T f(X_s) dY_s + \int_0^T (\mu(X_s) + a_s \sigma f')(X_s)) ds$$

(6)

$$= X_0 + \int_0^T \sigma_X^a(X_s) dW_s + \int_0^T \mu_X^{a_s b_s} (X_s) ds$$

with

$$\sigma_X^a := (\sigma + a_s f), \quad \mu_X^{a_s b_s} := (\mu + b_s f + a_s \sigma f'),$$

and

(7) $$V = V_0 + \int_0^T Y_s dX_s + \frac{1}{2} \int_0^T a_s^2 f(X_s) ds.$$

Let $Z^n := (X^n, Y^n, V^n)$ be defined as in (3)–(5). Then, there exists a constant $C > 0$ such that

$$\sup_{[0,T]} \mathbb{E}[|Z^n - Z|^2] \leq C n^{-1}$$

for all $n \geq 1$.

For the rest of the paper, we shall therefore consider (6)–(7) for the dynamics of the portfolio and price processes.

Remark 2.3. As explained in [4], the previous analysis could be extended to a nonlinear impact rule in the size of the order. To this end, we note that the continuous time trading dynamics described above would be the same for a more general impact rule $\delta \mapsto F(x, \delta)$ whenever it satisfies $F(x, 0) = \partial^2_{\delta \delta} F(x, 0) = 0$ and $\partial_\delta F(x, 0) = f(x).$ For our analysis, we only need to consider the value and the slope of the impact function at the origin.

2.3. Hedging equation and gamma constraint. Given $\phi = (y, a, b) \in \mathbb{R} \times A^o$ and $(t, x, v) \in [0, T] \times \mathbb{R} \times \mathbb{R}$, we now write $(X^{t,x,\phi}, Y^{t,\phi}, V^{t,x,v,\phi})$ for the solution of (6), (2), and (7) associated to the control (a, b) with time-t initial condition (x, y, v).

In this paper, we consider covered options, in the sense that the trader is given at the initial time t the number of shares $Y_t = y$ required to launch his hedging strategy and can pay the option’s payoff at T in cash and stocks (evaluated at their time-T
value). Therefore, he does not exert any immediate impact at time \(t \) nor time \(T \) due to the initial building or final liquidation of his position in stocks. Recalling that \(V \) stands for the sum of the position in cash and the number of held shares multiplied by their price, the superhedging price at time \(t \) of the option with payoff \(g(X_{T}^{t,x,\phi}) \) is defined as

\[
v(t, x) := \inf \{ v = c + yx : (c, y) \in \mathbb{R}^2 \text{ s.t. } G(t, x, v, y) \neq \emptyset \},
\]

in which \(G(t, x, v, y) \) is the set of elements \((a, b) \in A\) such that \(\phi := (y, a, b) \) satisfies

\[
V_{T}^{t,x,v,\phi} \geq g(X_{T}^{t,x,\phi}).
\]

In order to understand what the associated partial differential equation is, let us first rewrite the dynamics of \(Y \) in terms of \(X \):

\[
dY_{t,\phi} = \gamma_{Y}^{a_{t}}(X_{t}^{t,x,\phi})dX_{t}^{t,x,\phi} + \mu_{Y}^{a_{t},b_{t}}(X_{t}^{t,x,\phi})dt
\]

with

\[
(8) \quad \gamma_{Y}^{a_{t}} := \frac{a}{\sigma + f(a)} \quad \text{and} \quad \mu_{Y}^{a_{t},b_{t}} := b - \gamma_{Y}^{a_{t}}\mu_{X}^{a_{t},b_{t}}.
\]

Assuming that the hedging strategy is to track the superhedging price, as in classical complete market models, then one should have \(V_{t,x,v,\phi} = v(\cdot, X_{t}^{t,x,\phi}) \). If \(v \) is smooth, recalling (6)–(7) and applying Itô's lemma twice implies

\[
(9) \quad Y_{t,\phi} = \partial_{x}v(\cdot, X_{t}^{t,x,\phi}), \quad \gamma_{Y}^{a_{t}}(X_{t}^{t,x,\phi}) = \partial_{xx}^{2}v(\cdot, X_{t}^{t,x,\phi}),
\]

and

\[
(10) \quad \frac{1}{2}a^{2}f(X_{t}^{t,x,\phi}) = \partial_{t}v(\cdot, X_{t}^{t,x,\phi}) + \frac{1}{2}(\sigma_{X}^{a})^{2}(X_{t}^{t,x,\phi})\partial_{xx}^{2}v(\cdot, X_{t}^{t,x,\phi}).
\]

Then, the right-hand side of (9) combined with the definition of \(\gamma_{Y}^{a_{t}} \) leads to

\[
a = \frac{\sigma\partial_{xx}^{2}v(\cdot, X_{t}^{t,x,\phi})}{1 - f\partial_{xx}^{2}v(\cdot, X_{t}^{t,x,\phi})}, \quad \sigma_{X}^{a_{t}} = \frac{\sigma}{1 - f\partial_{xx}^{2}v(\cdot, X_{t}^{t,x,\phi})},
\]

and (10) simplifies to

\[
(11) \quad \left[-\partial_{t}v - \frac{1}{2} \frac{\sigma^{2}}{(1 - f\partial_{xx}^{2}v)}\partial_{xx}^{2}v \right](\cdot, X_{t}^{t,x,\phi}) = 0 \quad \text{on } [t, T).
\]

This is precisely the pricing equation obtained in [1, 18].

Equation (11) needs to be considered with some precautions due to the singularity at \(f\partial_{xx}^{2}v = 1 \). Hence, one needs to enforce that \(1 - f\partial_{xx}^{2}v \) does not change sign. We choose to restrict the solutions to satisfy \(1 - f\partial_{xx}^{2}v > 0 \), since having the opposite inequality would imply that \(a \) does not have the same sign as \(\partial_{xx}^{2}v \), so that, having sold a convex payoff, one would sell when the stock goes up and buy when it goes down, a very counterintuitive fact.

In the following, we impose that the constraint

\[
(12) \quad -k \leq \gamma_{Y}^{a_{t}}(X_{t}^{t,x,\phi}) \leq \gamma(X_{t}^{t,x,\phi}) \quad \text{on } [t, T] \ \mathbb{P}\text{-a.e.},
\]
should hold for some $k \geq 0$, in which $\bar{\gamma}$ is a bounded continuous map satisfying
\begin{equation}
\iota \leq \bar{\gamma} \leq \frac{1}{f} - \iota \quad \text{for some } \iota > 0.
\end{equation}

We now denote by $A_{k,\bar{\gamma}}(t,x)$ the collection of elements $(a,b) \in A_k^\circ$ such that (12) holds. Define
\begin{equation}
A_{\bar{\gamma}}(t,x) := \bigcup_{k \geq 0} A_{k,\bar{\gamma}}(t,x),
\end{equation}
and let $v_{\bar{\gamma}}$ be defined as v but with
\begin{equation}
G_{\bar{\gamma}}(t,x,v,y) := G(t,x,v,y) \cap A_{\bar{\gamma}}(t,x)
\end{equation}
in place of $G(t,x,v,y)$. More precisely,
\begin{equation}
v_{\bar{\gamma}}(t,x) := \inf \{ v = c + yx : (c,y) \in \mathbb{R}^2 \text{ s.t. } G_{\bar{\gamma}}(t,x,v,y) \neq \emptyset \}.
\end{equation}

Then, (11) has to be modified to take the gamma constraint into account. This equation needs to impose that the second derivative is lower than the bound $\bar{\gamma}$. On the other hand, the above informal analysis shows that the pricing function $v_{\bar{\gamma}}$ needs at least to be a supersolution of (11) to guarantee that a hedging strategy can be found. Then, the equation associated to the gamma constraint should read
\begin{equation}
F[v_{\bar{\gamma}}] := \min \left\{ -\partial_t v_{\bar{\gamma}} - \frac{\sigma^2}{2} \left(\frac{1}{f} - \partial_{xx} v_{\bar{\gamma}} \right) - \partial_{xx} v_{\bar{\gamma}}, \bar{\gamma} - \partial_{xx} v_{\bar{\gamma}} \right\} = 0 \quad \text{on } [0,T) \times \mathbb{R}.
\end{equation}

As for the T-boundary condition, we know that $v_{\bar{\gamma}}(T,\cdot) = g$, by definition. However, as usual, the constraint on the gamma in (15) should propagate up to the boundary, and g has to be replaced by its face-lifted version \hat{g}, defined as the smallest function above g that is a viscosity supersolution of the equation $\bar{\gamma} - \partial_{xx} \varphi \geq 0$. It is obtained by considering any twice continuously differentiable function $\bar{\Gamma}$ such that $\partial_{xx} \bar{\Gamma} = \bar{\gamma}$, and then setting
\begin{equation}
\hat{g} := (g - \bar{\Gamma})^{\text{conc}} + \bar{\Gamma},
\end{equation}
in which the superscript conc means concave envelope; cf. [22, Lemma 3.1]. Hence, we expect that
\begin{equation}
v_{\bar{\gamma}}(T,\cdot) = \hat{g} \quad \text{on } \mathbb{R}.
\end{equation}

From now on, we assume that
\begin{equation}
\hat{g} \text{ is uniformly continuous,}
\end{equation}
\begin{equation}
g \text{ is lower-semicontinuous, } g^- \text{ is bounded, and } g^+ \text{ has linear growth.}
\end{equation}

We are now in a position to state our main result. In what follows,
\begin{equation}
v_{\bar{\gamma}}(T,x) \text{ stands for } \lim_{(t',x') \to (T,x)} \lim_{t' < T} v_{\bar{\gamma}}(t',x')
\end{equation}
whenever it is well defined.

\footnote{Obviously, adding an affine map to $\bar{\Gamma}$ does not change the definition of \hat{g}.}
The value function v_γ is continuous with linear growth. Moreover, v_γ is the unique viscosity solution with linear growth of
\begin{equation}
F[\varphi]1_{[0,T]} + (\varphi - \hat{g})1_{\{T\}} = 0 \quad \text{on } [0,T] \times \mathbb{R}.
\end{equation}

We conclude this section with additional remarks.

Remark 2.5. Note that \hat{g} can be uniformly continuous without g being continuous. Take, for instance, $g(x) = 1_{\{x \geq K\}}$ with $K \in \mathbb{R}$, and consider the case where $\bar{\gamma} > 0$ is a constant. Then, $\hat{g}(x) = [1_{\{x \geq x_o\}} \frac{\bar{\gamma}}{2}(x-x_o)^2] \wedge 1$ with $x_o := K - (2/\bar{\gamma})^{\frac{1}{2}}$.

Remark 2.6. The map \hat{g} inherits the linear growth of g. Indeed, let $c_0, c_1 \geq 0$ be constants such that $|g(x)| \leq w(x) := c_0 + c_1|x|$. Since $\hat{g} \geq g$ by construction, we have $\hat{g}^- \leq w$. On the other hand, since $\bar{\gamma} \geq \iota > 0$ by (13), it follows from the arguments in [22, Lemma 3.1] that $\hat{g} \leq (w - \tilde{\Gamma})^{\text{conc}} + \tilde{\Gamma}$, in which $\tilde{\Gamma}(x) = ix^2/2$. Now, one can easily check by direct computations that
\begin{equation}
(w - \tilde{\Gamma})^{\text{conc}} = (w - \tilde{\Gamma})(x_o)1_{[-x_o,x_o]} + (w - \tilde{\Gamma})1_{[-x_o,x_o]} =
\end{equation}
with $x_o := c_1/\iota$. Hence, $(w - \tilde{\Gamma})^{\text{conc}} + \tilde{\Gamma}$ has the same linear growth as w.

Remark 2.7. As will appear in the rest of our analysis, one could very well introduce a time dependence in the impact function f and in γ. Another interesting question studied by the second author in [18] concerns the smoothness of the solution and how the constraint on $\partial^2_{xx} v$ gets naturally enforced by the fast diffusion arising when $1 - f \partial^2_{xx} v$ is close to 0.

Remark 2.8 (existence of a smooth solution to the original partial differential equation). When the pricing equation (17) admits smooth solutions (cf. [18]) that allow us to use the verification theorem, then one can construct exact replication strategies from the classical solution. By the comparison principle of Theorem 3.11 below, this shows that the value function is the classical solution of the pricing equation and that the optimal strategy exists and is an exact replication strategy of the option with payoff function \hat{g}. We will explain in Remark 3.18 below how almost optimal superhedging strategies can be constructed explicitly even when no smooth solution exists.

Remark 2.9 (monotonicity in the impact function). Note that the map $\lambda \in \mathbb{R} \mapsto \sigma^2(x,M) \frac{M}{1-\lambda M}$ is nondecreasing on $\{\lambda : \lambda M < 1\}$ for all $(t, x, M) \in [0,T] \times \mathbb{R} \times \mathbb{R}$. Let us now write v_γ as v_γ^f to emphasize its dependence on f, and consider another impact function \tilde{f} satisfying the same requirements as f. We denote by $v_\gamma^{\tilde{f}}$ the corresponding superhedging price. Then, the above considerations combined with Theorem 2.4 and the comparison principle of Theorem 3.11 below imply that $v_\gamma^{\tilde{f}} \geq v_\gamma^f$ whenever $\tilde{f} \geq f$ on \mathbb{R}. The same implies that $v_\gamma^{\tilde{f}} \geq v$, in which v solves the heat-type equation
\begin{equation}
-\partial_t \varphi - \frac{1}{2}\sigma^2 \partial^2_{xx} \varphi = 0 \quad \text{on } [0,T] \times \mathbb{R},
\end{equation}
with terminal condition $\varphi(T, \cdot) = g$ (recall that $\hat{g} \geq g$). See section 5.2 for a numerical illustration of this fact.

3. Viscosity solution characterization. In this section, we provide the proof of Theorem 2.4. Our strategy is the following.
1. First, we adapt the partial differential equation smoothing technique used in [5] to provide a smooth supersolution $\bar{v}_{\gamma}^{\epsilon,K,\delta}$ of (17) on $[\delta,T] \times \mathbb{R}$, with $\epsilon > 0$, from which superhedging strategies can be constructed by a standard verification argument. In particular, $\bar{v}_{\gamma}^{\epsilon,K,\delta} \geq \bar{v}_{\gamma}$ on $[\delta,T] \times \mathbb{R}$. Moreover, this sequence has uniform linear growth and converges to a viscosity solution \bar{v}_{γ} of (17) as $\delta,\epsilon \to 0$ and $K \to \infty$. See section 3.1.

2. Second, we construct a lower bound \underline{v}_{γ} for v_{γ} that is a supersolution of (17). It is obtained by considering a weak formulation of the superhedging problem and following the arguments of [8, section 5] based on one side of the geometric dynamic programming principle; see section 3.2. It is shown that this function has linear growth as well.

3. We can then conclude by using the above and the comparison principle for (17) of Theorem 3.11 below: $\underline{v}_{\gamma} \leq v_{\gamma}$ and $\bar{v}_{\gamma} = \underline{v}_{\gamma} = v_{\gamma}$ is a viscosity solution of (17) and has linear growth.

4. Our comparison principle, Theorem 3.11 below, allows us to conclude that v_{γ} is the unique solution of (17) with linear growth.

As already mentioned in the introduction, unlike [8], we could not prove the required geometric dynamic programming principle that should directly lead to a subsolution property (thus avoiding use of the smoothing technique mentioned in point 1 above). This is due to the strong interaction between the hedging strategy and the underlying price process through the market impact. Such a feedback effect is not present in [8].

3.1. A sequence of smooth supersolutions. We first construct a sequence of smooth supersolutions $\bar{v}_{\gamma}^{\epsilon,K,\delta}$ of (17), which appears to be an upper bound on the superhedging price v_{γ}, by a simple verification argument. For this, we adapt the methodology introduced in [5]: we first construct a viscosity solution of a version of (17) with shaken coefficients (in the terminology of [15]) and then smooth it out with a kernel. The main difficulty here is that our terminal condition \hat{g} is unbounded, unlike [5]. This requires additional nontrivial technical developments.

3.1.1. Construction of a solution for the operator with shaken coefficients. We start with the construction of the operator with shaken coefficients. Given $\epsilon > 0$ and a (uniformly) strictly positive continuous map κ with linear growth, that will be defined later on, let us introduce a family of perturbations of the operator appearing in (17):

$$F_{\kappa}^\epsilon(t,x,q,M) := \min_{x' \in D_{\kappa}(x)} \min \left\{ -q - \frac{\sigma^2(x')M}{2(1 - f(x')M)}, \bar{\gamma}(x') - M \right\},$$

where

$$D_{\kappa}(x) := \{ x' \in \mathbb{R} : (x - x')/\kappa(x') \in [-\epsilon, \epsilon] \}. \quad (18)$$

For ease of notation, we set

$$F_{\kappa}^\epsilon[\varphi](t,x) := F_{\kappa}^\epsilon(t,x,\partial_t \varphi(t,x), \partial_{xx} \varphi(t,x))$$

whenever φ is smooth.

Remark 3.1. For later use, note that the map $M \in (-\infty, \bar{\gamma}(x)] \mapsto \frac{\sigma^2(x)M}{2(1 - f(x)M)}$ is nondecreasing and convex, for each $x \in \mathbb{R}$; recall (13). Hence, $(q,M) \in \mathbb{R} \times (-\infty, \bar{\gamma}(x)] \mapsto F_{\kappa}^\epsilon(\cdot, q,M)$ is concave and nonincreasing in M for all $\epsilon \geq 0$. This is fundamental for our smoothing approach to go through.
We also modify the original terminal condition \(\hat{g} \) by using an approximating sequence whose elements are affine for large values of \(|x| \).

Lemma 3.2. For all \(K > 0 \) there exists a uniformly continuous map \(\hat{g}_K \) and \(x_K \geq K \) such that

- \(\hat{g}_K \) is affine on \([x_K, \infty)\) and on \((-\infty, -x_K]\),
- \(\hat{g}_K = \hat{g} \) on \([-K, K]\),
- \(\hat{g}_K \geq \hat{g} \).

\(\hat{g}_K - \Gamma \) is concave for any \(C^2 \) function \(\Gamma \) satisfying \(\partial_{xx}^2 \Gamma = \gamma \).

Moreover, \((\hat{g}_K)_{K > 0} \) is uniformly bounded by a map with linear growth and converges to \(\hat{g} \) uniformly on compact sets.

Proof. Fix a \(C^2 \) function \(\Gamma^0 \) satisfying \(\partial_{xx}^2 \Gamma = \hat{\gamma} \). By definition, \(\hat{g} - \Gamma^0 \) is concave.

Let us consider an element \(\Delta^+ \) (resp., \(\Delta^- \)) of its superdifferential at \(K \) (resp., \(-K \)). Set

\[
\hat{g}_K^\circ(x) := \hat{g}(x)1_{[-K,K]}(x) + \left[\hat{g}(K) + (\Delta^+ + \partial_x \hat{\Gamma}^0(K))(x - K) \right]1_{(K,\infty)}(x) + \left[\hat{g}(-K) + (\Delta^- + \partial_x \hat{\Gamma}^0(-K))(x + K) \right]1_{(-\infty,-K]}(x).
\]

Consider now another \(C^2 \) function \(\hat{\Gamma} \) satisfying \(\partial_{xx}^2 \hat{\Gamma} = \hat{\gamma} \). Since \(\Gamma^0 \) and \(\hat{\Gamma} \) differ only by an affine map, the concavity of \(\hat{g}_K^\circ - \hat{\Gamma} \) is equivalent to that of \(\hat{g}_K^\circ - \Gamma^0 \). The concavity of the latter follows from the definition of \(\hat{g}_K^\circ \), as the superdifferential of \(\hat{g}_K^\circ - \Gamma^0 \) is nonincreasing by construction. In particular, \(\hat{g}_K^\circ - \Gamma^0 \geq \hat{g} - \Gamma^0 \), and therefore \(\hat{g}_K^\circ \geq \hat{g} \).

We finally define \(\hat{g}_K \) by

\[
\hat{g}_K := \min\{\hat{g}_K^\circ, (2c_0 + c_1|\cdot| - \hat{\Gamma}^0)^{\text{conc}} + \hat{\Gamma}^0\},
\]
with \(c_0 > 0 \) and \(c_1 \geq 0 \) such that

\[-c_0 \leq \hat{g}(x) \leq c_0 + c_1|x|, \quad x \in \mathbb{R};\]

recall Remark 2.6. The function \(\hat{g}_K \) has the same linear growth as \(2c_0 + c_1|\cdot| \), by the same reasoning as in Remark 2.6. Since \(2c_0 > c_1 \), \(\hat{g}_K = \hat{g}_K^\circ = \hat{g} \) on \([-K,K]\).

Furthermore, as the minimum of two concave functions is concave, so is \(\hat{g}_K - \Gamma \) for any \(C^2 \) function \(\hat{\Gamma} \) satisfying \(\partial_{xx}^2 \hat{\Gamma} = \hat{\gamma} \). The other assertions are immediate. \(\square \)

We now set

\[
\hat{g}_K^\epsilon := \hat{g}_K + \epsilon
\]
and consider the equation

\[
F^\epsilon_\kappa[\varphi]1_{[0,T]} + (\varphi - \hat{g}_K^\epsilon)1_{\{T\}} = 0.
\]

We then choose \(\kappa \) and \(\epsilon_0 \in (0,1) \) such that

\[
\kappa \in C^\infty \text{ with bounded derivatives of all orders,}
\]

\[
\inf \kappa > 0 \text{ and } \kappa = |\hat{g}_K| + 1 \text{ on } (-\infty, -x_K] \cup [x_K, \infty), \quad -1/\epsilon_0 < \partial_x \kappa < 1/\epsilon_0,
\]

in which \(x_K \geq K \) is defined in Lemma 3.2. We omit the dependence of \(\kappa \) on \(K \) for ease of notation.
Remark 3.3. For later use, note that the condition $|\partial_x \kappa| < 1/\epsilon_0$ ensures that the maps $x \mapsto x + \epsilon \kappa(x)$ and $x \mapsto x - \epsilon \kappa(x)$ are uniformly strictly increasing for all $0 \leq \epsilon \leq \epsilon_0$. Also observe that $x_n \to x$ and $x'_n \in D^e_\kappa(x_n)$, for all n, imply that x'_n converges to an element $x' \in D^e_\kappa(x)$, after possibly passing to a subsequence. In particular, F^e_κ is continuous.

When $\kappa \equiv 1$ and $\tilde{\gamma}^e_K \equiv \tilde{\gamma} + \epsilon$, (21) corresponds to the operator in (17) with shaken coefficients, in the traditional terminology of [15]. The function κ will be used below to handle the potential linear growth at infinity of $\tilde{\gamma}$. The introduction of the additional approximation $\tilde{\gamma}^e_K$ is motivated by the fact that the proof of Proposition 3.7 below requires an affine behavior at infinity. As already mentioned, these additional complications do not appear in [5] because their terminal condition is bounded.

We now prove that (21) admits a viscosity solution that remains above the terminal condition $\tilde{\gamma}$ on a small time interval $[T - c^K_\epsilon, T]$. As already mentioned, we will later smooth this solution out with a regular kernel, so as to provide a smooth supersolution of (17).

Proposition 3.4. For all $\epsilon \in [0, \epsilon_0]$ and $K > 0$ there exists a unique continuous viscosity solution $\tilde{v}^{\epsilon,K}_\gamma$ of (21) that has linear growth. It satisfies

$$
\tilde{v}^{\epsilon,K}_\gamma \geq \tilde{\gamma}^e_K + \frac{\epsilon}{2} \text{ on } [T - c^K_\epsilon, T] \times \mathbb{R}
$$

for some $c^K_\epsilon \in (0, T)$.

Moreover, $\{\tilde{v}^{\epsilon,K}_\gamma^+, \epsilon \in [0, \epsilon_0], K > 0\}$ is bounded by a map with linear growth, and $\{\tilde{v}^{\epsilon,K}_\gamma^-, \epsilon \in [0, \epsilon_0], K > 0\}$ is bounded by $\sup g^-$.

Proof. The proof is mainly a modification of the usual Perron’s method; see [10, section 4].

Step 1. We first prove that there exists two continuous functions \tilde{w} and \tilde{w} with linear growth that are respectively super- and subsolutions of (21) for any $\epsilon \in [0, \epsilon_0]$.

Since $\tilde{\gamma}^e_K = \tilde{\gamma} + \epsilon \geq g$ by Lemma 3.2, it suffices to set

$$
\tilde{w} := \inf g > -\infty;
$$

see (16). To construct a supersolution \tilde{w}, let us fix $\eta \in (0, \epsilon \wedge \inf f^{-1})$ with ϵ as in (13), set $\hat{\Gamma}(x) = \eta \hat{\gamma}^2_\epsilon/2$, and define $\tilde{\gamma} = (\hat{\gamma}^e_K - \hat{\Gamma})^{\text{conc}} + \hat{\Gamma}$. Then, $\tilde{\gamma} \geq \hat{\gamma}^e_K$, while the same reasoning as in Remark 2.6 implies that $\tilde{\gamma}$ shares the same linear growth as $\hat{\gamma}^e_K$; see (20) and Lemma 3.2. We then define \tilde{w} by

$$
\tilde{w}(t, x) = \tilde{\gamma}(x) + 1 + (T - t)A
$$

in which

$$
A := \sup \frac{\sigma^2 \tilde{\gamma}}{2(1 - f \tilde{\gamma})}.
$$

The constant A is finite, and \tilde{w} has the same linear growth as $\tilde{\gamma}$; see (1) and (13). Since a concave function is a viscosity supersolution of $-\partial^2_{xx} \varphi \geq 0$, we deduce that $\tilde{\gamma}$ is a viscosity supersolution of $\eta - \partial^2_{xx} \varphi \geq 0$. Then, \tilde{w} is a viscosity supersolution of

$$
\min \left\{ -\partial_t \varphi - A, \eta - \partial^2_{xx} \varphi \right\} \geq 0.
$$

Since $\tilde{\gamma} \geq \epsilon \geq \eta$, it remains to use Remark 3.1 to conclude that \tilde{w} is a supersolution of (21).
Step 2. We now express (21) as a single equation over the whole domain $[0, T] \times \mathbb{R}$ using the following definitions:

$$
F_{\kappa, \pm}^\epsilon(t, x, r, q, M) := F_{\kappa}^\epsilon(t, x, q, M)1_{[0, T]} + \max \left\{ F_{\kappa}^\epsilon(t, x, q, M), r - \hat{g}_K(x) \right\}1_{[T]},
$$

$$
F_{\kappa, -}^\epsilon(t, x, r, q, M) := F_{\kappa}^\epsilon(t, x, q, M)1_{[0, T]} + \min \left\{ F_{\kappa}^\epsilon(t, x, q, M), r - \hat{g}_K(x) \right\}1_{[T]}.
$$

As usual, $F_{\kappa, \pm}^\epsilon(\cdot, \cdot)(t, x) := F_{\kappa, \pm}^\epsilon(t, x, \varphi(t, x), \partial_t \varphi(t, x), \partial_{xx}^2 \varphi(t, x))$. Recall that the formulations in terms of $F_{\kappa, \pm}^\epsilon$ lead to the same viscosity solutions as (21) (see Lemma 6.1 in the appendix). This is the formulation to which we apply Perron’s method. In view of Step 1, the functions w and \bar{w} are sub- and supersolutions of $F_{\kappa, -}^\epsilon = 0$ and $F_{\kappa, +}^\epsilon = 0$. Define

$$
\bar{v}^\epsilon_{\gamma, K} := \sup \left\{ \nu \in \text{USC} : w \leq \nu \leq \bar{w} \text{ and } \nu \text{ is a subsolution of } F_{\kappa, -}^\epsilon = 0 \right\},
$$

in which USC denotes the class of upper-semicontinuous maps. Then, the upper-(resp., lower-)semicontinuous envelope $(\bar{v}^\epsilon_{\gamma, K})^* \text{ (resp., } (\bar{v}^\epsilon_{\gamma, K})_* \text{)}$ of $\bar{v}^\epsilon_{\gamma, K}$ is a viscosity subsolution of $F_{\kappa, -}^\epsilon[\varphi] = 0 \text{ (resp., supersolution of } F_{\kappa, +}^\epsilon[\varphi] = 0 \text{)}$ with linear growth; recall the continuity property of Remark 3.3 and see, e.g., [10, section 4]. The comparison result of Theorem 3.11 stated below implies that

$$
(\bar{v}^\epsilon_{\gamma, K})^* = (\bar{v}^\epsilon_{\gamma, K})_* \text{ on } [0, T] \times \mathbb{R}.
$$

Hence, $\bar{v}^\epsilon_{\gamma, K}$ is a continuous viscosity solution of (21); recall Lemma 6.1. By construction, it has linear growth. Uniqueness in this class follows from Theorem 3.11 again.

Step 3. It remains to prove (23). For this, we need a control on the behavior of $\bar{v}^\epsilon_{\gamma, K}$ as $t \to T$. It is enough to obtain it for a lower bound $v_{\epsilon, K}$ that we first construct. Let φ be a test function such that

$$
(\text{strict}) \min_{[0, T] \times \mathbb{R}} (\bar{v}^\epsilon_{\gamma, K} - \varphi) = (\bar{v}^\epsilon_{\gamma, K} - \varphi)(t_0, x_0)
$$

for some $(t_0, x_0) \in [0, T] \times \mathbb{R}$. By the supersolution property,

$$
\min_{x' \in D^+_c(x_0)} \left\{ \tilde{\gamma}(x') - \partial_{xx}^2 \varphi(t_0, x_0) \right\} \geq 0.
$$

Recalling (1) and (13), this implies that, for $x' \in D^+_c(x_0),

$$
1 - f(x')\partial_{xx}^2 \varphi(t_0, x_0) \geq \inf f =: \hat{i} > 0.
$$

Using the supersolution property and the above inequalities yields

$$
0 \leq \min_{x' \in D^+_c(x_0)} \left\{ -\partial_t \varphi(t_0, x_0) - \frac{\sigma^2(x')\partial_{xx}^2 \varphi(t_0, x_0)}{2(1 - f(x')\partial_{xx}^2 \varphi(t_0, x_0))} \right\}
$$

$$
\leq \min_{x' \in D^+_c(x_0)} \left\{ -\partial_t \varphi(t_0, x_0) - \frac{\sigma^2(x') \partial_{xx}^2 \varphi(t_0, x_0) - \tilde{\gamma}(x_0)}{2(1 - f(x')\partial_{xx}^2 \varphi(t_0, x_0))} \right\}
$$

$$
\leq -\partial_t \varphi(t_0, x_0) - \frac{\tilde{\sigma}^2 \partial_{xx}^2 \varphi(t_0, x_0)}{2\hat{i}} + \frac{\tilde{\sigma}^2 \tilde{\gamma}(x_0)}{2\hat{i}},
$$

where $\tilde{\sigma} := \sup \sigma$.

Denote by $v_{\epsilon,K}$ the unique viscosity solution of

$$(24) \quad \left\{ -\partial_t \varphi - \frac{\sigma^2 \partial^2_{xx} \varphi}{2\epsilon} + \frac{\sigma^2 \gamma}{2\epsilon} \right\} 1_{[0,T]} + (\varphi - \hat{g}_K) 1_{(T]} = 0.$$

The comparison principle for (24) and the Feynman–Kac formula imply that

$$v_{\gamma,K}^{\epsilon}(t,x) \geq v_{\epsilon,K}(t,x) = \mathbb{E} \left[-\int_0^{T-t} \frac{\sigma^2 \gamma(S^x_{t})}{2\epsilon} dr + \hat{g}_K(S^x_{T-t}) \right],$$

where

$$S^x = x + \frac{\hat{\sigma}}{\sqrt{\epsilon}} W.$$

It remains to show that (23) holds for $v_{\epsilon,K}$ in place of $v_{\gamma,K}^{\epsilon}$. The argument is standard. Since \hat{g}_K is uniformly continuous (see Lemma 3.2), we can find $B^K_\epsilon > 0$ such that

$$|\hat{g}_K(S^x_{T-t}) - \hat{g}_K(x)| 1_{|S^x_{T-t} - x| \leq B^K_\epsilon} \leq \epsilon$$

for all $\epsilon > 0$. We now consider the case $|S^x_{T-t} - x| > B^K_\epsilon$. Let $C > 0$ denote a generic constant that does not depend on (t,x) but can change from line to line. Because \hat{g}_K is affine on $[x_K, \infty)$ and on $(-\infty, -x_K]$ (see Lemma 3.2),

$$\mathbb{E} \left[|\hat{g}_K(S^x_{T-t}) - \hat{g}_K(x)| 1_{S^x_{T-t} \geq x_K} \right] \leq C(T-t)^{\frac{1}{2}} \quad \text{if} \quad x \geq x_K$$

and

$$\mathbb{E} \left[|\hat{g}_K(S^x_{T-t}) - \hat{g}_K(x)| 1_{S^x_{T-t} \leq -x_K} \right] \leq C(T-t)^{\frac{1}{2}} \quad \text{if} \quad x \leq -x_K.$$

On the other hand, by linear growth of \hat{g}_K, if $x < x_K$, then

$$\mathbb{E} \left[|\hat{g}_K(S^x_{T-t}) - \hat{g}_K(x)| 1_{S^x_{T-t} \geq x_K} 1_{|S^x_{T-t} - x| \geq B^K_\epsilon} \right] \leq \mathbb{E} \left[|\hat{g}_K(S^x_{T-t}) - \hat{g}_K(x)|^2 \right]^{\frac{1}{2}} \mathbb{P} \left[|S^x_{T-t} - x| \geq |x_K - x| \vee B^K_\epsilon \right]^{\frac{1}{2}} \leq \frac{C(1 + |x|)(T-t)^{\frac{1}{2}}}{|x_K - x| \vee B^K_\epsilon} \leq \frac{C}{B^K_\epsilon} (T-t)^{\frac{1}{2}}.$$

The (four) remaining cases are treated similarly, and we obtain

$$\mathbb{E} \left[|\hat{g}_K(S^x_{T-t}) - \hat{g}_K(x)| \right] \leq \frac{C}{B^K_\epsilon} (T-t)^{\frac{1}{2}} + \epsilon.$$

Since $\hat{\gamma}$ is bounded, this shows that

$$|v_{\epsilon,K}(t,x) - \hat{g}_K(x)| \leq \frac{C}{B^K_\epsilon} (T-t)^{\frac{1}{2}} + \epsilon$$

for $t \in [T-1, T]$. Hence the required result for $v_{\epsilon,K}$. Since $v_{\gamma,K}^{\epsilon} \geq v_{\epsilon,K}$, this concludes the proof of (23).

For later use, note that, by stability, $v_{\gamma,K}^{\epsilon}$ converges to a solution of (17) when $\epsilon \to 0$ and $K \to \infty$.

Proposition 3.5. As $\epsilon \to 0$ and $K \to \infty$, $\bar{v}^{\epsilon,K}_\gamma$ converges to a function \bar{v}_γ that is the unique viscosity solution of (17) with linear growth.

Proof. The family of functions $\{\bar{v}^{\epsilon,K}_\gamma, \epsilon \in (0, \epsilon_\circ], K > 0\}$ is uniformly bounded by a map with linear growth; see Proposition 3.4. In view of the comparison result of Theorem 3.11 below, it suffices to apply [2, Theorem 4.1].

Remark 3.6. The bounds on \bar{v}_γ can be made explicit, which can be useful for designing a numerical scheme; see section 5.1 below. First, as a by-product of the proof of Proposition 3.4, $\bar{v}^{\epsilon,K}_\gamma \geq \inf g$. Passing to the limit as $\epsilon \to 0$ and $K \to \infty$ leads to

$$\bar{v}_\gamma \geq \inf g := \bar{w}.$$

We have also obtained that

$$\bar{v}^{\epsilon,K}_\gamma \leq (\hat{g}^{\epsilon,K}_K - \hat{\Gamma})^{\text{conc}} + \hat{\Gamma} + 1 + A,$$

in which $x \mapsto \hat{\Gamma}(x) = \eta x^2/2$ for some $\eta \in (0, \iota \land \inf f^{-1})$ with ι as in (13), and $A := T \sup(12\varrho^2/[2(1-f\bar{\gamma})])$. On the other hand, (19) implies

$$\hat{g}^{\epsilon,K}_K \leq 1 + (2c_0 + c_1 |\cdot| - \bar{\Gamma})^{\text{conc}} + \bar{\Gamma} \circ \hat{\Gamma}$$

for $\bar{\Gamma}$ such that $\partial^2_{xx} \bar{\Gamma} = \gamma$. Then,

$$\bar{v}^{\epsilon,K}_\gamma \leq \left(1 + (2c_0 + c_1 |\cdot| - \bar{\Gamma})^{\text{conc}} + \bar{\Gamma} \circ \hat{\Gamma} - \hat{\Gamma}\right)^{\text{conc}} + \hat{\Gamma} + 1 + A$$

$$= \left(1 + 2c_0 + c_1 |\cdot| - \hat{\Gamma}\right)^{\text{conc}} + \hat{\Gamma} + 1 + A =: \bar{w}$$

and

$$\bar{v}_\gamma \leq \bar{w}.$$

The function \bar{w} defined above can be computed explicitly by arguing as in Remark 2.6.

Also note that (19) and the arguments of Remark 2.6 imply that there exists a constant $C > 0$ such that

$$\limsup_{|x| \to \infty} \frac{|\bar{v}^{\epsilon,K}_\gamma(x)|}{1 + |\hat{g}^{\epsilon,K}_K(x)|} \leq C$$

for all $\epsilon \in (0, \epsilon_\circ]$ and $K > 0$.

3.1.2. Regularization and verification. Prior to applying our verification argument, it remains to smooth out the function $\bar{v}^{\epsilon,K}_\gamma$. This is similar to [5, section 3], but here again the fact that \hat{g} may not be bounded incurs additional difficulties. In particular, we need to use a kernel with a space dependent window.

We first fix a smooth kernel

$$\psi_\delta := \delta^{-2} \psi \left(\frac{\cdot}{\delta} \right)$$

in which $\delta > 0$ and $\psi \in C^\infty_b$ is a nonnegative function with the closure of its support $[-1,0] \times [-1,1]$ that integrates to 1, and such that

$$\int y\psi(\cdot, y)dy = 0.$$

(26)
Let us set

\[(27) \quad \tilde{v}_{\gamma}^{e,K,\delta}(t, x) := \int_{\mathbb{R} \times \mathbb{R}} \tilde{v}_{\gamma}^{e,K}([t'], x') \frac{1}{\kappa(x)} \psi_\delta \left(t' - t, \frac{x' - x}{\kappa(x)} \right) dt' dx'.\]

We recall that \(\kappa\) enters into the definition of \(F^e_\gamma\) and satisfies (22).

The following shows that \(\tilde{v}_{\gamma}^{e,K,\delta}\) is a smooth supersolution of \((17)\) with a space gradient admitting bounded derivatives. This is due to the space dependent rescaling of the window by \(\kappa\) and will be crucial for our verification arguments.

Proposition 3.7. For all \(0 < \epsilon < \epsilon_0\) and \(K > 0\) large enough there exists \(\delta_0 > 0\) such that \(\tilde{v}_{\gamma}^{e,K,\delta}\) is a \(C^\infty\) supersolution of \((17)\) for all \(0 < \delta < \delta_0\). It has linear growth, and \(\partial_x \tilde{v}_{\gamma}^{e,K,\delta}\) has bounded derivatives of any order.

Proof.

Step 1. It follows from (22) and (25) that

\[
\limsup_{|x| \to \infty} \frac{|\tilde{v}_{\gamma}^{e,K}(x)|}{1 + |\kappa(x)|} < \infty.
\]

Direct computations and (22) then show that \(\tilde{v}_{\gamma}^{e,K,\delta}\) has linear growth and that all derivatives of \(\partial_x \tilde{v}_{\gamma}^{e,K,\delta}\) are uniformly bounded.

Step 2. We now prove the supersolution property inside the parabolic domain. Since the proof is very close to that of [5, Theorem 3.3], we only provide the arguments that need to be adapted, and refer to their proof for other elementary details. Fix \(\ell > 0\) and set

\[
v_{\ell}(t, x) := \tilde{v}_{\gamma}^{e,K,\delta}(t, (-\ell) \vee x \wedge \ell).
\]

We omit the superscripts that are superfluous in this proof. Given \(k \geq 1\), set

\[
v_{\ell,k}(z) := \inf_{z' \in [0,T] \times \mathbb{R}} \left(v_{\ell}(z') + k|z - z'|^2 \right).
\]

Since \(v_{\ell}\) is bounded and continuous, the infimum in the above is achieved by a point \(\hat{z}_{\ell,k}(z) = (\hat{t}_{\ell,k}(z), \hat{x}_{\ell,k}(z))\), and \(v_{\ell,k}\) is bounded, uniformly in \(k \geq 1\). This implies that we can find \(C_{\ell} > 0\), independent of \(k\), such that

\[(28) \quad |z - \hat{z}_{\ell,k}(z)|^2 \leq \frac{C_{\ell}}{k} =: (\rho_{\ell,k})^2.
\]

Moreover, a simple change-of-variables argument shows that, if \(\varphi\) is a smooth function such that \(v_{\ell} - \varphi\) achieves a minimum at \(z \in [0,T) \times (-\ell, \ell)\), then

\[
(\partial_t \varphi, \partial_x \varphi, \partial^2_{xx} \varphi)(z) \in \mathcal{P}^- v_{\ell}(\hat{z}_{\ell,k}(z)),
\]

where \(\mathcal{P}^- v_{\ell}(\hat{z}_{\ell,k}(z))\) denotes the closed parabolic subjct of \(v_{\ell}\) at \(\hat{z}_{\ell,k}(z)\); see, e.g., [10] for the definition. Then, Proposition 3.4 implies that \(v_{\ell,k}\) is a supersolution of

\[
\min_{x' \in D_{x'}(\hat{z}_{\ell,k}(z))} \min \left\{ -\partial_t \varphi(z) - \frac{\sigma^2(x') \partial^2_{xx} \varphi(z)}{2(1 - f(x') \partial^2_{xx} \varphi(z))}, \bar{\gamma}(x') - \partial^2_{xx} \varphi(z) \right\} \geq 0,
\]

\(z \in [\rho_{\ell,k}, T - \rho_{\ell,k}) \times (-\ell + \rho_{\ell,k}, \ell - \rho_{\ell,k})\). We next deduce from (28) that \(x' \in D_{x'}^{e/2}(x)\) implies

\[
\frac{\epsilon}{2} \kappa(x') - \frac{C_{\ell}}{k^2} \leq \hat{z}_{\ell,k}(t, x) - x' \leq \frac{\epsilon}{2} \kappa(x') + \frac{C_{\ell}}{k^2}.
\]
Since $\inf \kappa > 0$, this shows that $x' \in D^c_\gamma(x_\ell,k(t,x))$ for k large enough with respect to ℓ. Hence, $v_{\ell,k}$ is a supersolution of
\[
\min_{x' \in D^c_\gamma} \min_{\phi \in \mathcal{D}'(D^c_\gamma)} \left\{ -\partial_t \phi - \frac{\sigma^2(x') \partial^2_{x'x'} \phi}{2(1 - f(x') \partial^2_{x'x'} \phi)} \right\} \geq 0
\]
on $[\rho_{\ell,k}, T - \rho_{\ell,k}] \times (-\ell + \rho_{\ell,k}, \ell - \rho_{\ell,k})$.

We now argue as in [13]. Since $v_{\ell,k}$ is semiconcave there exist $\partial^2_{x'x'} v_{\ell,k} \in L^1$ and a Lebesgue-singular negative Radon measure $\partial^2_{x'x'} v_{\ell,k}$ such that
\[
\partial^2_{x'x'} v_{\ell,k}(dz) = \partial^2_{x'x'} v_{\ell,k}(z)dz + \partial^2_{x'x'} v_{\ell,k}(dz)
\]
in the distribution sense and
\[
(\partial_t v_{\ell,k}, \partial_x v_{\ell,k}, \partial^2_{x'x'} v_{\ell,k}) \in \mathcal{D}^- v_{\ell,k} \text{ a.e. on } [\rho_{\ell,k}, T - \rho_{\ell,k}];
\]
see [14, section 3]. Hence, the above implies that
\[
\min_{x' \in D^c_\gamma} \min_{\phi \in \mathcal{D}'(D^c_\gamma)} \left\{ -\partial_t \phi - \frac{\sigma^2(x') \partial^2_{x'x'} v_{\ell,k}}{2(1 - f(x') \partial^2_{x'x'} v_{\ell,k})} \right\} \geq 0
\]
a.e. on $[\rho_{\ell,k}, T - \rho_{\ell,k}] \times (-\ell + \rho_{\ell,k}, \ell - \rho_{\ell,k})$, or equivalently, by (18),
\[
\min \left\{ -\partial_t v_{\ell,k} - \frac{\sigma^2(x) \partial^2_{x'x'} v_{\ell,k}}{2(1 - f(x) \partial^2_{x'x'} v_{\ell,k})} \right\} (t', x') \geq 0
\]
for all x and for a.e. $(t', x') \in [\rho_{\ell,k}, T - \rho_{\ell,k}] \times (-\ell + \rho_{\ell,k}, \ell - \rho_{\ell,k})$ such that $2|a' - x| \leq \varepsilon \kappa(x)$. Take $0 < \delta < \varepsilon/2$. Integrating the previous inequality with respect to (t', x') with the kernel function $\psi_\delta(\cdot, \cdot) / \kappa$, using the concavity and monotonicity property of Remark 3.1 and the fact that $\partial^2_{x'x'} v_{\ell,k}$ is nonpositive, we obtain
\[
\min \left\{ -\partial_t v_\delta^{\ell,k} - \frac{\sigma^2 \partial^2_{x'x'} v_\delta^{\ell,k}}{2(1 - f \partial^2_{x'x'} v_\delta^{\ell,k})} \right\} \geq 0
\]
on $[\rho_{\ell,k} + \delta, T - \rho_{\ell,k}] \times (-x^-_{\ell,k}, x^+_{\ell,k})$, in which
\[
v_\delta^{\ell,k}(t, x) := \int_{\mathbb{R} \times \mathbb{R}} v_{\ell,k}(|t'|, x') \frac{1}{\kappa(x)} \psi_\delta \left(t' - t, \frac{x' - x}{\kappa(x)} \right) dt' dx'
\]
and
\[
x^+_{\ell,k} + \frac{\delta}{2} \kappa(x^+_{\ell,k}) = \ell - \rho_{\ell,k} \quad \text{and} \quad -x^-_{\ell,k} - \frac{\delta}{2} \kappa(-x^-_{\ell,k}) = -\ell + \rho_{\ell,k}.
\]
The above are well defined; see Remark 3.3. By Remark 3.3 and (28), $\pm x^+_{\ell,k} \to \pm \infty$ and $\rho_{\ell,k} \to 0$ as $k \to \infty$ and then $\ell \to \infty$. Moreover, $v_\delta^{\ell,k} \to \bar{v}_\gamma^{\ell,K}$ as $k \to \infty$ and then $\ell \to \infty$, and the derivatives also converge. Hence, (29) implies that $\bar{v}_\gamma^{\ell,K}$ is a supersolution of (17) on $[\delta, T) \times \mathbb{R}$.

Step 3. We conclude by discussing the boundary condition at T. We know from Proposition 3.4 that
\[
\bar{v}_\gamma^{\ell,K} \geq \bar{g}_K + \frac{\epsilon}{2} \quad \text{on } [T - c^K_\epsilon, T] \times \mathbb{R}.
\]
Since \hat{g} is uniformly continuous (see (16)), so is \hat{g}_K, and therefore $\bar{v}_{\gamma}^{c,K,\delta}(T, \cdot) \geq \hat{g}_K$ on the compact set $[-2x_K, 2x_K]$ for $\delta > 0$ small enough with respect to c; see Lemma 3.2 for the definition of $x_K \geq K$. Now observe that $x \geq 2x_K$ and $|x' - x| \leq \delta \kappa(x)$ imply that $x' \geq 2x_K(1 - \delta \kappa^2) - \delta \kappa$ in which c^2_0 and c^2_0 are constants. This actually follows from the affine behavior of κ on $[x_K, \infty)$; see (22) and Lemma 3.2. For δ small enough, we then obtain $x' \geq x_K$. Since \hat{g}_K is affine on $[x_K, \infty)$, and since ψ is symmetric in its second argument (see (26)), it follows that

$$\bar{v}_{\gamma}^{c,K,\delta}(T, x) \geq \int_{R \times R} \hat{g}_K(x') \frac{1}{\kappa(x)} \psi_\delta \left(t' - T, \frac{x' - x}{\kappa(x)} \right) dt' dx' = \hat{g}_K(x)$$

for all $x \geq 2x_K$. This also holds for $x \leq -2x_K$, by the same arguments.

We can now use a verification argument and provide the main result of this section.

Theorem 3.8. Let \bar{v}_{γ} be defined as in Proposition 3.5. It has linear growth. Moreover, $\bar{v}_{\gamma} \geq v_\gamma$ on $[0, T] \times R$.

Proof. The linear growth property has already been stated in Proposition 3.5. We now show that $\bar{v}_{\gamma} \geq v_\gamma$ by applying a verification argument to $\bar{v}_{\gamma}^{c,K,\delta}$. From now on, $0 < \epsilon \leq \epsilon_0$, in which ϵ_0 is as in (22). The parameters $K, \delta > 0$ are chosen as in Proposition 3.7.

Fix $(t, x) \in (0, T) \times R$ and $\delta \in (0, t \wedge \epsilon)$. Let (X, Y, V) be defined as in (6), (2), and (7) with $(x, \partial_x \bar{v}_{\gamma}^{c,K,\delta}(t, x), \bar{v}_{\gamma}^{c,K,\delta}(t, x) - \partial_x \bar{v}_{\gamma}^{c,K,\delta}(t, x) \bar{v}_{\gamma}^{c,K,\delta}(t, x))$ as initial condition at t, and for the Markovian controls

$$\hat{\alpha} = \left(\frac{\sigma \partial_x^2 \bar{v}_{\gamma}^{c,K,\delta}}{1 - f \partial_x^2 \bar{v}_{\gamma}^{c,K,\delta}} \right) (\cdot, X),$$

$$\hat{\beta} = \left(\frac{\partial_x^2 \bar{v}_{\gamma}^{c,K,\delta} + \partial_x^2 \bar{v}_{\gamma}^{c,K,\delta}(\mu + \hat{\alpha} \sigma f') + \frac{1}{2} \partial_x^3 \bar{v}_{\gamma}^{c,K,\delta}(\sigma + \hat{\alpha} f)^2}{1 - f \partial_x^2 \bar{v}_{\gamma}^{c,K,\delta}} \right) (\cdot, X).$$

By definition of F, (13), and (1), the above is well-defined as the denominators are always bigger than $\inf f_\infty > 0$. All the involved functions being bounded and Lipschitz (see Proposition 3.7), it is easy to check that a solution to the corresponding stochastic differential equation exists and that $(\hat{\alpha}, \hat{\beta}) \in A^p$. Direct computations then show that $Y = \partial_x \bar{v}_{\gamma}^{c,K,\delta}(\cdot, X)$. Moreover, the fact that $\bar{v}_{\gamma}^{c,K,\delta}$ is a supersolution of $F[\bar{\varphi}] = 0$ on $[t, T] \times R$ ensures that the gamma constraint (12) holds, for some $k \geq 1$, and that

$$-\partial_x \bar{v}_{\gamma}^{c,K,\delta}(\cdot, X) - \frac{1}{2} \sigma(\bar{X}) \hat{\alpha} \geq 0 \quad \text{on } [t, T].$$

The last inequality combined with the definition of $\hat{\alpha}$ implies

$$\frac{1}{2} f(\bar{X}) \hat{\alpha}^2 \geq \partial_t \bar{v}_{\gamma}^{c,K,\delta}(\cdot, X) + \frac{1}{2} (\sigma(\bar{X}) + f(\bar{X}) \hat{\alpha}) \hat{\alpha} \hat{\beta} \bar{v}_{\gamma}^{c,K,\delta}(\cdot, X) + \frac{1}{2} (\sigma(\bar{X})^2) \partial_x^2 \bar{v}_{\gamma}^{c,K,\delta}(\cdot, X) \quad \text{on } [t, T].$$

Hence,

$$V_T = \bar{v}_{\gamma}^{c,K,\delta}(t, x) + \frac{1}{2} \int_t^T f(\bar{X}_u) \hat{\alpha}_u^2 du + \int_t^T \partial_t \bar{v}_{\gamma}^{c,K,\delta}(u, \bar{X}_u) d\bar{X}_u$$

$$\geq \bar{v}_{\gamma}^{c,K,\delta}(t, x) + \int_t^T \bar{v}_{\gamma}^{c,K,\delta}(u, \bar{X}_u) du \geq \bar{v}_{\gamma}^{c,K,\delta}(T, X_T) \geq \hat{g}(X_T),$$
in which the last inequality follows from Proposition 3.7 again.

It remains to pass to the limit $\delta, \epsilon \to 0$. By Proposition 3.4, $\tilde{v}^{l,K}_t$ is continuous, so that $\tilde{v}^{l,K,\delta}_t$ converges pointwise to $\tilde{v}^{l,K}_t$ as $\delta \to 0$. By Proposition 3.5, $\tilde{v}^{r,K}_t$ converges pointwise to \bar{v}_{γ} as $\epsilon \to 0$ and $K \to \infty$. In view of the above, this implies the required result: $\bar{v}_{\gamma} \geq \tilde{v}_{\gamma}$.

Remark 3.9. Note that, in the above proof, we have constructed a superhedging strategy in $A_{k,\gamma}(t, x)$ and starting with $|Y_t| \leq k$, for some $k \geq 1$ which can be chosen in a uniform way with respect to (t, x), while $\tilde{v}^{l,K,\delta}_t$ has linear growth.

3.1.3. Comparison principle. We provide here the comparison principle that was used several times in the above. Before stating it, let us make the following observation, based on direct computations. Recall (1) and (13).

Proposition 3.10. Fix $\rho > 0$. Consider the map

$$
(t, x, M) \in [0, T] \times \mathbb{R} \times \mathbb{R} \mapsto \Psi(t, x, M) = \frac{\sigma^2(x) M}{2(e^{\rho t} - f(x) M)}.
$$

Then, $M \mapsto \Psi(t, x, M)$ is continuous, uniformly in (t, x), on

$$
O := \{(t, x, M) \in [0, T] \times \mathbb{R} \times \mathbb{R} : M \leq e^{\rho t} \gamma(x)\}.
$$

Moreover, there exists $L > 0$ such that $x \mapsto \Psi(t, x, M)$ is L-Lipschitz on O.

Theorem 3.11. Fix $\epsilon \in (0, \epsilon_0]$. Let U (resp., V) be an upper-semicontinuous viscosity subsolution (resp., lower-semicontinuous supersolution) of $F^\gamma_t = 0$ on $[0, T] \times \mathbb{R}$. Assume that U and V have linear growth and that $U \leq V$ on $[T] \times \mathbb{R}$; then $U \leq V$ on $[0, T] \times \mathbb{R}$.

Proof. Set $\hat{U}(t, x) := e^{\rho t} U(t, x)$, $\hat{V}(t, x) := e^{\rho t} V(t, x)$. Then, \hat{U} and \hat{V} are respectively sub- and supersolutions of

$$
\min_{x' \in D^e} \min \left\{ \rho \phi - \partial_t \phi - \frac{\sigma^2(x') \partial_{xx} \phi}{2(e^{\rho t} - f(x') \partial_{xx} \phi)}, e^{\rho t} \gamma(x') - \partial_{xx} \phi \right\} = 0
$$
on $[0, T] \times \mathbb{R}$. For later use, note that the infimum over D^e is achieved in the above, by the continuity of the involved functions.

If $\sup_{[0, T] \times \mathbb{R}} (\hat{U} - \hat{V}) > 0$, then we can find $\lambda \in (0, 1)$ such that $\sup_{[0, T] \times \mathbb{R}} (\hat{U} - \hat{V}_\lambda) > 0$ with $\hat{V}_\lambda := \lambda \hat{V} + (1 - \lambda) w$, in which

$$
w(t, x) := (T - t) A + \left(c_0^U + c_1^U \left| \cdot \right| - \frac{\ell}{4} \left| \cdot \right|^2 \right)^{\text{conc}}(x) + \frac{\ell}{4} |x|^2
$$

with c_0^U, c_1^U two constants such that $e^{\rho T} |U| \leq c_0^U + c_1^U \left| \cdot \right|$ and

$$A := \frac{1}{2} \sup \frac{\sigma^2}{1 - \frac{\ell}{2} f^2} \frac{\ell}{2},$$

where $\ell > 0$ is as in (13). Note that

$$\hat{V}_\lambda(T, \cdot) \geq \hat{U}(T, \cdot)
$$

and that

$$w$$

is a viscosity supersolution of (30)

$$\hat{V}_\lambda$$

is a viscosity supersolution of $\lambda \gamma + (1 - \lambda) \frac{\ell}{2} - \partial_{xx} \phi \geq 0$.

Moreover, by Remark 3.1, \hat{V}_λ is a supersolution of (30). Define for $\varepsilon > 0$ and $n \geq 1$

$$(33) \quad \Theta_n^\varepsilon := \sup_{(t,x,y) \in [0,T] \times \mathbb{R}^2} \left[\hat{U}(t,x) - \hat{V}_\lambda(t,y) - \left(\frac{\varepsilon}{2} |x|^2 + \frac{n}{2} |x - y|^2 \right) \right] =: \eta > 0,$$

in which the last inequality holds for $n > 0$ large enough and $\varepsilon > 0$ small enough. Denote by $(t_n^\varepsilon, x_n^\varepsilon, y_n^\varepsilon)$ the point at which this supremum is achieved. By (31), it must hold that $t_n^\varepsilon < T$, and, by standard arguments (see, e.g., [10, Proposition 3.7]),

$$(34) \quad \lim_{n \to \infty} n|x_n^\varepsilon - y_n^\varepsilon|^2 = 0.$$

Moreover, Ishii's lemma implies the existence of $(a_n^\varepsilon, M_n^\varepsilon, N_n^\varepsilon) \in \mathbb{R}^3$ such that

$$(a_n^\varepsilon, \varepsilon x_n^\varepsilon + n(x_n^\varepsilon - y_n^\varepsilon), M_n^\varepsilon) \in \bar{P}^{2,+}(t_n^\varepsilon, x_n^\varepsilon),$$

$$(a_n^\varepsilon, -n(x_n^\varepsilon - y_n^\varepsilon), N_n^\varepsilon) \in \bar{P}^{2,-}(t_n^\varepsilon, y_n^\varepsilon),$$

in which $\bar{P}^{2,+}$ and $\bar{P}^{2,-}$ denote as usual the closed parabolic super- and subsolutions (see [10]), and

$$\begin{pmatrix} M_n^\varepsilon & 0 \\ 0 & -N_n^\varepsilon \end{pmatrix} \leq R_n^\varepsilon = \frac{1}{n}(R_n^\varepsilon)^2 = 3n \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} + \begin{pmatrix} 3\varepsilon + \frac{\varepsilon^2}{n} & -\varepsilon \\ -\varepsilon & 0 \end{pmatrix}$$

with

$$R_n^\varepsilon := n \begin{pmatrix} 1 + \frac{\varepsilon}{n} & -1 \\ -1 & 1 \end{pmatrix}.$$

In particular,

$$(35) \quad M_n^\varepsilon - N_n^\varepsilon \leq \delta_n^\varepsilon \quad \text{with} \quad \delta_n^\varepsilon := \varepsilon + \frac{\varepsilon^2}{n}.$$

Then, by (32) and (13),

$$(36) \quad 0 < (1 - \lambda) \frac{t}{2} \leq e^{\rho t_n^\varepsilon} \tilde{\gamma}(\hat{y}_n^\varepsilon) - N_n^\varepsilon \leq e^{\rho t_n^\varepsilon} \tilde{\gamma}(\hat{y}_n^\varepsilon) - M_n^\varepsilon + \delta_n^\varepsilon,$$

in which $\hat{y}_n^\varepsilon \in D^\varepsilon_n(\hat{x}_n^\varepsilon)$. In view of Remark 3.3, this shows that $e^{\rho t_n^\varepsilon} \tilde{\gamma}(\hat{x}_n^\varepsilon) - M_n^\varepsilon > 0$ for some $\hat{x}_n^\varepsilon \in D^\varepsilon_n(\hat{x}_n^\varepsilon)$, for n large enough and ε small enough; recall (34). Hence, the super- and subsolution properties of \hat{V}_λ and \hat{U} imply that we can find $u_n^\varepsilon \in [-\varepsilon, \varepsilon]$ together with \hat{y}_n^ε and \hat{x}_n^ε such that

$$(37) \quad \hat{y}_n^\varepsilon + u_n^\varepsilon \kappa(\hat{y}_n^\varepsilon) = y_n^\varepsilon, \quad \hat{x}_n^\varepsilon + u_n^\varepsilon \kappa(\hat{x}_n^\varepsilon) = x_n^\varepsilon$$

and

$$\rho(\hat{U}(t_n^\varepsilon, x_n^\varepsilon) - \hat{V}_\lambda(t_n^\varepsilon, y_n^\varepsilon)) \leq \frac{\sigma^2(\hat{x}_n^\varepsilon) M_n^\varepsilon}{2(e^{\rho t_n^\varepsilon} - f(\hat{x}_n^\varepsilon) M_n^\varepsilon)} - \frac{\sigma^2(\hat{y}_n^\varepsilon) N_n^\varepsilon}{2(e^{\rho t_n^\varepsilon} - f(\hat{y}_n^\varepsilon) N_n^\varepsilon)}.$$

By Remark 3.1 and (35), this shows that

$$\rho(\hat{U}(t_n^\varepsilon, x_n^\varepsilon) - \hat{V}_\lambda(t_n^\varepsilon, y_n^\varepsilon))$$

$$\leq \frac{\sigma^2(\hat{x}_n^\varepsilon)(N_n^\varepsilon + \delta_n^\varepsilon)}{2(e^{\rho t_n^\varepsilon} - f(\hat{x}_n^\varepsilon)(N_n^\varepsilon + \delta_n^\varepsilon))} - \frac{\sigma^2(\hat{y}_n^\varepsilon) N_n^\varepsilon}{2(e^{\rho t_n^\varepsilon} - f(\hat{y}_n^\varepsilon) N_n^\varepsilon)}.$$
It remains to apply Proposition 3.10 together with (36) for n large enough and ε small enough to obtain
\[
\rho(U_n^ε(t_n^ε, x_n^ε) - \bar{V}_n(t_n^ε, y_n^ε)) \leq \frac{\sigma^2(\bar{x}_n^ε)N^ε_n}{2(\varepsilon p_n + f(\bar{x}_n^ε)N^ε_n)} - \frac{\sigma^2(\bar{g}_n^ε)N^ε_n}{2(\varepsilon p_n + f(\bar{g}_n^ε)N^ε_n)} + O^ε_n(1)
\]
\[
\leq L |\dot{x}_n^ε - \dot{g}_n^ε| + O^ε_n(1)
\]
for some $L > 0$ and where $O^ε_n(1) \to 0$ as $n \to \infty$ and then $\varepsilon \to 0$. By continuity and (34) combined with Remark 3.3 and (37), this contradicts (33) for n large enough.

3.2. Supersolution property for the weak formulation. In this part, we provide a lower bound v_γ for $v_\tilde{\gamma}$ that is a supersolution of (17). It is constructed by considering a weak formulation of the stochastic target problem (14) in the spirit of [8, section 5]. Since our methodology is slightly different, we provide the main arguments.

On $C(\mathbb{R}_+)^3$, let us now denote by $(\tilde{\varphi} := (\tilde{a}, \tilde{b}, \tilde{\beta}), \tilde{W})$ the coordinate process, and let $\tilde{\mathbb{F}}^0 = (\tilde{\mathcal{F}}_s^\varphi)_{s \leq T}$ be its raw filtration. We say that a probability measure \tilde{P} belongs to \tilde{A}_k if \tilde{W} is a \tilde{P}-Brownian motion and if for all $0 \leq \delta \leq 1$ and $r \geq 0$ it holds \tilde{P}-a.s. that
\[
\tilde{a} = \tilde{a}_0 + \int_0^\cdot \tilde{\beta}_s ds + \int_0^\cdot \tilde{\alpha}_s d\tilde{W}_s \quad \text{for some } \tilde{a}_0 \in \mathbb{R},
\]
\[
\sup_{\mathbb{R}_+} |\tilde{\zeta}| \leq k,
\]
and
\[
\mathbb{E}^\varphi \left[\sup_{r \leq s \leq s + \delta} \{ |\tilde{\varphi}_{r'} - \tilde{\varphi}_s|, \tilde{\varphi} \in \tilde{\mathbb{F}}_r^\varphi \} \right] \leq k \delta.
\]
For $\tilde{\varphi} := (y, \tilde{a}, \tilde{b})$, $y \in \mathbb{R}$, we define $(\tilde{X}_x^{\tilde{\varphi}}, \tilde{Y}_x^{\tilde{\varphi}}, \tilde{V}_x^{x, v, \tilde{\varphi}})$ as in (6), (2), and (7) associated to the control (\tilde{a}, \tilde{b}) with time-0 initial condition (x, y, v), and with \tilde{W} in place of W.

For $t \leq T$ and $k \geq 1$, we say that $\tilde{P} \in \tilde{G}_{k, \gamma}(t, x, v, y)$ if
\[
[\tilde{V}_{T-t}^{x, v, \tilde{\varphi}} \geq g(\tilde{X}_{T-t}^{x, \tilde{\varphi}}) \text{ and } -k \leq \gamma(\tilde{X}_x^{\tilde{\varphi}}) \leq \gamma(\tilde{X}_x^{\tilde{\varphi}}) \text{ on } \mathbb{R}_+] \quad \tilde{P}\text{-a.s.}
\]
We finally define
\[
\chi^\gamma_k(t, x) := \inf \{ v = c + yx : (c, y) \in \mathbb{R} \times [-k, k], \tilde{A}_k \cap \tilde{G}_{k, \gamma}(t, x, v, y) \neq \emptyset \}
\]
and
\[
\chi^\gamma(t, x) := \liminf_{(k, t', x') \to (\infty, t, x)} \chi^\gamma_k(t', x'), \quad (t, x) \in [0, T] \times \mathbb{R}.
\]

The following is an immediate consequence of our definitions.

PROPOSITION 3.12. $v_\gamma \geq \chi^\gamma$ on $[0, T] \times \mathbb{R}$.

In the rest of this section, we show that χ^γ is a viscosity supersolution of (17). We start with an easy remark.
Remark 3.13. Observe that the gamma constraint in (41) implies that we can find \(\varepsilon > 0 \) such that
\[
\frac{\varepsilon}{1 + k \varepsilon^{-1}} \leq \sigma \tilde{X}(\tilde{X} - \tilde{Y}) \leq \varepsilon^{-1} + \varepsilon^{-2} \quad \text{and} \quad |\bar{a}| \leq \varepsilon^{-1} \ \tilde{P} \text{-a.s.}
\]
for all \(\tilde{P} \in \tilde{A} \cap \tilde{G}_{k, \tilde{\gamma}}(t, x, y) \) and \(k \geq 1 \). Indeed, if \(\bar{a} \geq -\sigma / f \), then \(-k \leq \gamma \bar{Y} - \gamma \) implies
\[
\left(-\frac{k \sigma}{1 + k f}\right) \vee \left(-\frac{\sigma}{f}\right) \leq \bar{a} \leq \frac{\gamma \sigma}{1 - \gamma f} \quad \text{and} \quad \bar{a} f + \sigma \geq \frac{\sigma}{1 + k f}.
\]
Then our claim follows from (1) and (13). On the other hand, if \(\sigma + \bar{a} f < 0 \), then \(\gamma \bar{Y} - \gamma \) implies \(\bar{a} \geq \gamma \sigma / (1 - f \gamma) \geq 0 \) (see (13)), while \(\bar{a} < -f / \sigma < 0 \), a contradiction.

We then show that \(v_k^\gamma \) has linear growth for \(k \) large enough.

Proposition 3.14. There exists \(k_o \geq 1 \) such that \(\{v_k^\gamma, k \geq k_o\} \) is uniformly bounded from above by a continuous map with linear growth.

Proof. Step 1. First note that Remark 3.9 implies that \(\{v_k^\gamma, k \geq k_o\} \) is uniformly bounded from above by a map with linear growth for some \(k_o \) large enough.

Step 2. Let us now fix \(\tilde{P} \in \tilde{A}_k \cap \tilde{G}_{k, \tilde{\gamma}}(t, x, v, y) \). Using Remark 3.13 combined with (1) and the condition that \((\bar{a}, \bar{b}, \alpha, \tilde{\beta}) \) is \(\tilde{P} \)-essentially bounded, one can find \(\tilde{P} \sim \tilde{P} \) under which \(\int_0^T \bar{a} d\tilde{X} = \tilde{P} \) a martingale on \([0, T - t]\). Then, the condition \(\tilde{V}(\tilde{X} - \tilde{Y}, \tilde{\gamma}) \tilde{P} \text{-a.s. implies } v + \tilde{P} \left[\int_0^{T - t} \bar{a} f(\tilde{X} - \tilde{Y}) d\tilde{t} \right] \geq \inf g > -\infty \); recall (16). By Remark 3.13 and (1), \(v \geq \inf g - C > -\infty \) for some constant \(C \) independent of \(\tilde{P} \in \cup_k(\tilde{A}_k \cap \tilde{G}_{k, \tilde{\gamma}}(t, x, v, y)) \). Hence \(\{v_k^\gamma, k \geq k_o\} \) is bounded by a constant.

We now prove that existence holds in the problem defining \(v_k^\gamma \) and that it is lower-semicontinuous.

Proposition 3.15. For all \((t, x) \in [0, T] \times \mathbb{R} \) and \(k \geq 1 \) large enough there exists \((c, y) \in \mathbb{R} \times [-k, k] \) such that \(v_k^\gamma(t, x) = c + xy \) and \(\tilde{A}_k \cap \tilde{G}_{k, \tilde{\gamma}}(t, c + xy, y) \neq \emptyset \). Moreover, \(v_k^\gamma \) is lower-semicontinuous for each \(k \geq 1 \) large enough.

Proof. By [19, Proposition XIII.1.5] and the condition (40) taken for \(r = 0 \), the set \(\tilde{A}_k \) is weakly relatively compact. Moreover, [16, Theorems 7.10 and 8.1] implies that any limit point \((P_n, t_n, x_n, c_n, y_n) \) of a sequence \((P_n, t_n, x_n, c_n, y_n)_{n \geq 1} \) such that \(P_n \in \tilde{A}_k \cap \tilde{G}_{k, \tilde{\gamma}}(t_n, x_n, c_n + x_n y_n, y_n) \) for each \(n \geq 1 \) satisfies \(P_n \in \tilde{A}_k \cap \tilde{G}_{k, \tilde{\gamma}}(t_n, x_n, c_n + x_n y_n, y_n) \). Since \(v_k^\gamma \) is locally bounded, by Proposition 3.14 when \(k \geq k_o \), the announced existence and lower-semicontinuity readily follow.

We can finally prove the main result of this section.

Theorem 3.16. The function \(v_\gamma \) is a viscosity supersolution of (17). It has linear growth.

Proof. The linear growth property is an immediate consequence of the uniform linear growth of \(\{v_k^\gamma, k \geq k_o\} \) stated in Proposition 3.14. To prove the supersolution property, it suffices to show that it holds for each \(v_k^\gamma \), with \(k \geq k_o \), and then to apply standard stability results; see, e.g., [2].

Step 1. We first prove the supersolution property on \([0, T] \times \mathbb{R} \). We adapt the arguments of [8] to our context. Let us consider a \(C_0^\infty \) test function \(\varphi \) and \((t_0, x_0) \in [0, T] \times \mathbb{R} \) such that
\[
(\text{strict}) \min_{[0, T) \times \mathbb{R}} (v_k^\gamma - \varphi) = (v_k^\gamma - \varphi)(t_0, x_0) = 0.
\]
Recall that ψ^k_γ is lower-semicontinuous by Proposition 3.15.

Because the infimum is achieved in the definition of ψ^k_γ, by the aforementioned proposition, there exists $|y_0| \leq k$ and $\tilde{\mathbb{P}} \in \tilde{\mathcal{A}}_k \cap \tilde{\mathcal{G}}_k(t_0, x_0, v_0)$ such that $v_0 := c_0 + y_0 x_0 = \psi^k_\gamma(t_0, x_0)$ for some $c_0 \in \mathbb{R}$. Let us set $(\tilde{X}, \tilde{Y}, \tilde{V}) := (\tilde{X}^{x_0, \tilde{\phi}}, \tilde{Y}^{\tilde{\phi}}, \tilde{V}^{x_0, v_0, \tilde{\phi}})$, where $\tilde{\phi} = (y_0, \tilde{a}, \tilde{b})$. Let θ_0 be a stopping time for the augmentation of the raw filtration $\tilde{\mathbb{F}}^{\circ}$, and define

$$\theta := \theta_0 \wedge \theta_1 \quad \text{with} \quad \theta_1 := \inf\{|\tilde{X}_s - x_0| \geq 1\}.$$

Then, it follows from Proposition 3.17 below that

$$\tilde{V}_{\theta_0} \geq \psi^k_\gamma(t_0 + \theta_0, \tilde{X}_{\theta_0}) \geq \varphi(t_0 + \theta_0, \tilde{X}_{\theta_0}),$$

in which here and hereafter inequalities are taken in the $\tilde{\mathbb{P}}$-a.s. sense. After applying Itô’s formula twice, the above inequality reads

$$\int_0^\theta \ell_s \, ds + \int_0^\theta \left(y_0 - \partial_x \varphi(t_0, x_0) + \int_0^s m_r \, dr + \int_0^s n_r \, d\tilde{X}_r \right) \, d\tilde{X}_s \geq 0,$$

where

$$\ell := \frac{1}{2} \tilde{a}^2 f(\tilde{X}) - \mathcal{L}^{\tilde{a}} \varphi(t_0 + \tilde{X}, \tilde{X}), \quad m := \mu^{\tilde{a}, \tilde{b}}_X(\tilde{X}) - \mathcal{L}^{\tilde{a}} \partial_x \varphi(t_0 + \tilde{X}, \tilde{X}),$$

$$n := \gamma^{\tilde{a}}_X(\tilde{X}) - \partial^2_{xx} \varphi(t_0 + \tilde{X}, \tilde{X}),$$

with

$$\mathcal{L}^{\tilde{a}} := \partial_t + \frac{1}{2} (\sigma^{\tilde{a}}_X)^2 \partial^2_{xx}.$$

For the rest of the proof, we recall (39). Together with (1) and Remark 3.13, this implies that $\sigma^{\tilde{a}}_X(\tilde{X}), \sigma^{\tilde{a}}_X(\tilde{X})^{-1}$ and $\mu^{\tilde{a}, \tilde{b}}_X(\tilde{X})$ are $\tilde{\mathbb{P}}$-essentially bounded. After performing an equivalent change of measure, we can thus find $\tilde{\mathbb{P}} \sim \tilde{\mathbb{P}}$ and a $\tilde{\mathbb{P}}$-Brownian motion \tilde{W} such that

$$\tilde{X} = \int_0^\theta \sigma^{\tilde{a}}_X(\tilde{X}_s) \, d\tilde{W}_s.$$

Clearly, both $\tilde{\mathbb{P}}$ and \tilde{W} depend on $(\tilde{a}, \tilde{b}, y_0)$.

Step 1 a. We first show that $y_0 = \partial_x \varphi(t_0, x_0)$, and therefore

$$\int_0^\theta \ell_s \, ds + \int_0^\theta \int_0^s m_r \, dr \, d\tilde{X}_s + \int_0^\theta \int_0^s n_r \, d\tilde{X}_r \, d\tilde{X}_s \geq 0.$$

Let $\tilde{\mathbb{P}}^\lambda \sim \tilde{\mathbb{P}}$ be the measure under which

$$\tilde{W}^\lambda := \tilde{W} + \int_0^\theta \lambda [\sigma^{\tilde{a}}_X(\tilde{X}_s)]^{-1}(y_0 - \partial_x \varphi(t_0, x_0)) \, ds$$

is a $\tilde{\mathbb{P}}^\lambda$-Brownian motion. Consider the case $\theta_0 := \eta > 0$. Since all the coefficients are bounded, taking expectation under $\tilde{\mathbb{P}}^\lambda$ and using (43) yields

$$C' \eta \geq \lambda (y_0 - \partial_x \varphi(t_0, x_0))^2 \mathbb{E}^{\tilde{\mathbb{P}}^\lambda}[\theta]$$

$$+ \mathbb{E}^{\tilde{\mathbb{P}}^\lambda} \left[\int_0^\theta \left(\int_0^s m_r \, dr + \int_0^s n_r \, d\tilde{X}_r \right) \lambda (y_0 - \partial_x \varphi(t_0, x_0)) \right]$$
for some \(C' > 0 \). We now divide both sides by \(\eta \) and use the fact that \((\eta \wedge \theta_1)/\eta \to 1 \) \(\mathbb{P}^\lambda - \text{a.s.} \) as \(\eta \to 0 \) to obtain

\[
C' \geq \lambda (y_0 - \partial_x \varphi(t_0, x_0))^2.
\]

Then, we send \(\lambda \to \infty \) to deduce that \(y_0 = \partial_x \varphi(t_0, x_0) \).

Step 1b. We now prove that

\[
(46) \quad \partial^2_{xx} \varphi(t_0, x_0) \leq \gamma_{\bar{\theta}}(x_0) \leq \bar{\gamma}(x_0).
\]

We first consider the time change

\[
h(t) = \inf \left\{ r \geq 0 : \int_0^r \left[(\sigma^2_X(\bar{X}_s))^2 1_{[0, \theta_1]}(s) + 1_{[\theta_1, \bar{\theta}]}(s) \right] ds \geq t \right\}.
\]

Again, \(\sigma^\bar{\theta}_X(\bar{X}) \) and \(\sigma^\bar{\theta}_X(\bar{X})^{-1} \) are essentially bounded by Remark 3.13, so that \(h \) is absolutely continuous and its density \(h \) satisfies

\[
0 < \underline{h} t \leq h(t) := \left[(\sigma^\bar{\theta}_X(\bar{X}))^2 1_{[0, \theta_1]}(t) + 1_{[\theta_1, \bar{\theta}]}(t) \right]^{-1} \leq \overline{h} t
\]

for some constants \(\underline{h} \) and \(\overline{h} \) for all \(t \geq 0 \). Moreover, \(\tilde{W} := \tilde{X}_h \) is a Brownian motion in the time changed filtration. Let us now take \(\theta_0 := h^{-1}(\eta) \) for some \(0 < \eta < 1 \). Then, (45) reads

\[
(47) \quad 0 \leq \int_0^{\eta \wedge h(\theta_1)} \ell_h(s) ds + \int_0^{\eta \wedge h(\theta_1)} \int_s^\theta m_h(r) dr d\tilde{W}_s + \int_0^{\eta \wedge h(\theta_1)} \int_0^s n_h(r) dr d\tilde{W}_s.
\]

Since all the involved processes are continuous and bounded, and since \((\eta \wedge h(\theta_1))/\eta \to 1 \) a.s. as \(\eta \to 0 \), the above combined with [8, Theorem A.1.b and Proposition A.3] implies that

\[
\gamma_{\bar{\theta}}(x_0) - \partial^2_{xx} \varphi(t_0, x_0) = \lim_{r \downarrow 0} n_h(r) = \lim_{r \downarrow 0} n_r \geq 0.
\]

Since \(\gamma_{\bar{\theta}}(\bar{X}) \leq \gamma(\bar{X}) \), this proves (46).

Step 1c. It remains to show that the first term in the definition of \(F[\varphi](t_0, x_0) \) is also nonnegative; recall (15). Again, let us take \(\theta_0 := h^{-1}(\eta) \) and recall from Step 1b that \(\lim_{\eta \to 0}(\eta \wedge h^{-1}(\theta_1))/\eta = 1 \mathbb{P}^\lambda - \text{a.s.} \). Note that, \(\bar{\theta} \) being of the form (38) with the condition (39), it satisfies [8, Condition (A.2)], and so does \(n \). Using [8, Theorem A.2 and Proposition A.3] and (48), we then deduce that \(\ell_0 \varphi(0) = \frac{1}{2} n_0 \geq 0 \). Hence, (47) and direct computations based on (8) imply

\[
0 \leq \frac{1}{2} \partial^2_{xx} f(x_0) - 2 \gamma_{\bar{\theta}}(x_0) - \frac{1}{2} \left(\gamma_{\bar{\theta}}(x_0) - \partial^2_{xx} \varphi(t_0, x_0) \right) \left(\sigma^2_X(x_0) \right)^2
\]

\[
= \frac{1}{2} \partial^2_{xx} f(x_0) - \partial_1 \varphi(t_0, x_0) - \frac{1}{2} \gamma_{\bar{\theta}}(x_0) \left(\sigma^2_X(x_0) \right)^2
\]

\[
= -\partial_1 \varphi(t_0, x_0) - \frac{1}{2} \frac{\sigma^2_X(x_0)}{1 - f(x_0) \gamma_{\bar{\theta}}(x_0)} \gamma_{\bar{\theta}}(x_0)
\]

\[
\leq -\partial_1 \varphi(t_0, x_0) - \frac{1}{2} \frac{\sigma^2_X(x_0)}{1 - f(x_0) \partial^2_{xx} \varphi(t_0, x_0)} \partial^2_{xx} \varphi(t_0, x_0),
\]
in which we use the facts that $\partial^2_{xx} \varphi(t_0, x_0) \leq \gamma^0_Y(x_0) \leq \bar{\gamma}(x_0)$ and $z \mapsto z/(1 - f(x_0)z)$ is nondecreasing on $(-\infty, \bar{\gamma}(x_0)] \subset (-\infty, 1/f(x_0))$, for the last inequality.

Step 2. We now consider the boundary condition at T. Since ψ^k is a supersolution of $\tilde{\gamma} - \partial^2_{xx} \psi \geq 0$ on $[0, T) \times \mathbb{R}$, the same arguments as in [11, Lemma 5.1] imply that $\psi^k - \bar{\Gamma}$ is concave for any twice differentiable function $\bar{\Gamma}$ such that $\partial^2_{xx} \bar{\Gamma} = \tilde{\gamma}$. The function ψ^k being lower-semicontinuous, the map

$$x \mapsto G(x) := \liminf_{t' \searrow T, x' \searrow x} \psi^k(t', x')$$

is such that $G \geq g$ and $G - \bar{\Gamma}$ is concave. Hence, $G = (G - \bar{\Gamma})\text{conc} + \bar{\Gamma} \geq (g - \bar{\Gamma})\text{conc} + \bar{\Gamma} = \hat{g}$. □

It remains to state the dynamic programming principle used in the above proof.

Proposition 3.17. Fix $(t, x, v, y) \in [0, T] \times \mathbb{R}^2 \times [-k, k]$, and let θ be a stopping time for the \mathbb{P}-augmentation of \mathbb{F}^ν that takes \mathbb{P}-a.s. values in $[0, T - \theta]$. Assume that $\tilde{\bar{\psi}} \in A_r \cap G_{k, \bar{\Gamma}}(x, v, y)$. Then,

$$\tilde{V}^\nu_{\theta, v, r, b} \geq \bar{\psi}_k(t + \theta, \tilde{X}^\nu_{\theta, r, b}) \quad \mathbb{P}\text{-a.s.,}$$

in which $\tilde{\phi} := (y, \tilde{a}, \tilde{b})$.

Proof. Since ψ^k is lower-semicontinuous and all the involved processes have continuous paths, up to approximating θ by a sequence of stopping times valued in finite time grids, it suffices to prove our claim in the case $\theta \equiv r \in [0, T - t]$. Let $\tilde{\mathbb{P}}_\omega$ be a regular conditional probability given \mathbb{F}^ν_r for \mathbb{P}. It coincides with $\mathbb{P}[\cdot | \mathbb{F}^\nu_r](\omega)$ outside a set N of \mathbb{P}-measure zero. Then, for all $\omega \notin N$, $0 \leq \delta \leq 1$, and $r \geq 0$ the conditions (38)-(40) hold for $\tilde{\mathbb{P}}^r_\omega$ defined on $C(\mathbb{R}_+)$ by

$$\tilde{\mathbb{P}}^r_\omega[\omega' \in A] = \tilde{\mathbb{P}}_\omega[\omega'_{r+} \in A].$$

Moreover, [9, Theorem 3.3] ensures that, after possibly modifying N,

$$\tilde{\mathbb{P}}^r_{\omega'} \left[\tilde{V}^\nu_{\theta - (t + \theta)} \tilde{V}^\nu_{\theta - (t + \theta)} \geq g(\tilde{X}^\nu_{\theta - (t + \theta)}) \right] = 1$$

and

$$\tilde{\mathbb{P}}^r_{\omega} \left[\bar{\psi}_k(\tilde{X}^\nu_{\theta - (t + \theta)}) \leq \tilde{\gamma}(\tilde{X}^\nu_{\theta - (t + \theta)}) \right] = 1$$

for $\omega \notin N$, in which

$$(\xi, \theta, \phi) := (\tilde{X}^x, \tilde{V}^x, \tilde{V}^y, \tilde{Y}^x, \tilde{a}, \tilde{b}).$$

This shows that $\tilde{\theta}^\nu_{\xi, \theta, \phi} \geq \psi^k(t + r, \xi(\omega))$ outside the null set N, which is the required result. □

3.3. Conclusion of the proof and construction of almost optimal strategies.

We first conclude the proof of Theorem 2.4.

Proof of Theorem 2.4. Proposition 3.5 and Theorem 3.8 imply that $\tilde{v}\gamma \geq \psi^\nu_k$, in which $\tilde{v}\gamma$ has linear growth and is a continuous viscosity solution of (17). On the other hand, Proposition 3.12 and Theorem 3.16 imply that $\psi^\nu_k \leq \tilde{v}\gamma$ on $[0, T) \times \mathbb{R}$, in which $\tilde{v}\gamma$ has linear growth and is a viscosity supersolution of (17). By the comparison result of Theorem 3.11 applied with $\epsilon = 0$, $\psi^\nu_k \geq \tilde{v}\gamma$. Hence,

$$v_{\gamma} = \psi^\nu_k \geq \tilde{v}\gamma \quad \text{on } [0, T) \times \mathbb{R} \quad \text{and} \quad \psi^\nu_k \geq \bar{v}\gamma \quad \text{on } [0, T] \times \mathbb{R}.$$
Since \bar{v}_γ is continuous, this shows that
\[
\lim_{(t',x') \to (T,x)} v_\gamma(t',x') = \bar{v}_\gamma(T,x) = v_\gamma(T,x).
\]
Hence, v_γ is a viscosity solution of (17), with linear growth.

Remark 3.18 (almost optimal controls). In the proof of Theorem 3.8, we have constructed a superhedging strategy starting from $\bar{v}_\gamma(K,\delta)(t,x)$. Since $v_\gamma(K,\delta)(t,x) \to \bar{v}_\gamma(t,x) = v_\gamma(t,x)$ as $\delta, \epsilon \to 0$ and $K \to \infty$, this provides a way to construct superhedging strategies associated with any initial wealth $v > v_\gamma(t,x)$.

4. Adding a resilience effect. In this section, we explain how a resilience effect can be added to our model. In the discrete rebalancing setting, we replace the dynamics (4) by
\[
X^n = X_0 + \int_0^T \mu(X^n_s)ds + \int_0^T \sigma(X^n_s)dW^*_s + R^n,
\]
in which R^n is defined by
\[
R^n = R_0 + \sum_{i=1}^n 1_{[t^n_i,T]} \delta^n_i f(X^n_{t^n_i-}) - \int_0^T \rho R^n_s ds
\]
for some $\rho > 0$ and $R_0 \in \mathbb{R}$. The process R^n models the impact of past trades on the price; the last term in its dynamics is the resilience effect. Then, the continuous time dynamics becomes
\[
X = X_0 + \int_0^T \sigma(X_s)ds + \int_0^T f(X_s)dy_s + \int_0^T (\mu(X_s) + a_s(\sigma f')(X_s) - \rho R_s)ds,
\]
\[
R = R_0 + \int_0^T f(X_s)dy_s + \int_0^T (a_s(\sigma f')(X_s) - \rho R_s)ds,
\]
\[
V = V_0 + \int_0^T Y_sdx_s + \frac{1}{2} \int_0^T a^2_s f(X_s)ds.
\]
This is obtained as a straightforward extension of [4, Proposition 1.1].

Let $v_\gamma^n(t,x)$ be defined as the superhedging price $v_\gamma(t,x)$ but for these new dynamics and for $R_t = 0$. The following states that $v_\gamma^n = v_\gamma$; i.e., adding a resilience effect does not affect the superhedging price.

Proposition 4.1. $v_\gamma = v_\gamma^n$ on $[0,T] \times \mathbb{R}$.

Proof. Step 1. To show that $v_\gamma \geq v_\gamma^n$, it suffices to reproduce the arguments of the proof of Theorem 3.8 in which the drift part of the dynamics of X does not play any role. More precisely, these arguments show that $\bar{v}_\gamma \geq v_\gamma^n$. Then, one uses the fact that $v_\gamma = \bar{v}_\gamma$, by (49).

Step 2. As for the opposite inequality, we use the weak formulation of section 3.2 and a simple Girsanov transformation. For ease of notation, we restrict our analysis to $t = 0$. Fix $v > v_\gamma^n(0,x)$ for some $x \in \mathbb{R}$. Then, one can find $k \geq 1$, $(c,y) \in \mathbb{R} \times [-k,k]$ satisfying $v = c + yx$, and $(a,b) \in A_{k,\gamma}(0,x)$ such that $V_T \geq g(X_T)$, with (V,X,Y,R) defined by the corresponding initial data and controls. We let
\[
a = a_0 + \int_0^T \beta_s ds + \int_0^T \alpha_s dW_s
\]
be the decomposition of a into an Itô process; see section 2.1. Let $Q^R \sim P$ be the probability measure under which $W^R := W - \int_0^t (\rho R_s / \sigma(X_s)) ds$ is a Q^R-Brownian motion; recall (1). Then,

$$X = X_0 + \int_0^t \sigma(X_s) dW^R_s + \int_0^t f(X_s) dY_s + \int_0^t (\mu(X_s) + a_s(\sigma f')(X_s)) ds,$$

$$Y = Y_0 + \int_0^t (b_s + a_s \rho R_s / \sigma(X_s)) ds + \int_0^t a_s dW^R_s,$$

$$a = a_0 + \int_0^t (\beta_s + \alpha_s \rho R_s / \sigma(X_s)) ds + \int_0^t \alpha_s dW^R_s,$$

$$V = V_0 + \int_0^t Y_s dX_s + \frac{1}{2} \int_0^t a_s^2 f(X_s) ds.$$

Upon seeing $(a, b + \rho R/\sigma(X), \alpha, \beta + \rho R/\sigma(X), W^R)$ as a generic element of the canonical space $C([0, T])^5$ introduced in section 3.2, we conclude that Q^R belongs to $\mathcal{A}_k \cap \tilde{\mathcal{G}}_{\kappa, \gamma}(t, x, v, y)$, and therefore $v > \mathcal{V}_\gamma(0, x)$. Hence, $v^h_\gamma(0, x) \geq \mathcal{V}_\gamma(0, x)$, and thus $\forall \gamma(0, x) \geq v_\gamma(0, x)$ by (49).

5. Numerical approximation and examples. In this section, we provide an example of a numerical scheme that converges towards the unique continuous viscosity solution of (17) with linear growth. The scheme is then exemplified using two numerical applications in the case of constant market impact and gamma constraint.

5.1. Finite difference scheme. Given a map ϕ and $h := (h_t, h_x) \in (0, 1)^2$, define

$$L^h_1(t, x, y, \phi) := -\frac{\phi(t + h_t, x) - y}{h_t} - \frac{\sigma^2(x) G^h(t, x, y, \phi)}{2(1 - f(x) G^h(t, x, y, \phi))},$$

$$L^h_2(t, x, y, \phi) := \gamma(x) - G^h(t, x, y, \phi),$$

where

$$G^h(t, x, y, \phi) := \frac{\phi(t + h_t, x + h_x) + \phi(t + h_t, x - h_x) - 2y}{h_x^2}. $$

The numerical scheme is set on the grid $\pi_h := \{(t_i, x_j) = (ih_t, \varpi + jh_x) : i \leq n_t, j \leq n_x\}$, with $n_t h_t = T$ for some $n_t \in \mathbb{N}$, and $n_x h_x = \varpi - \varpi$ for some real numbers $\varpi < \varpi$. To paraphrase, v^h_γ is defined on π_h as the solution of

$$S(h, t_i, x_j, v^h_\gamma(t_i, x_j), v^h_\gamma) = 0 \quad \text{for } i < n_t, 1 \leq j \leq n_x - 1,$$

$v^h_\gamma = \tilde{g}$ on $\pi_h \cap \{(T) \times \mathbb{R}) \cup ([0, T] \times \{\varpi, \varpi\})\},$

where

$$S(h, t, x, y, \phi) := (\bar{w} - y) \vee (y - \underline{w}) \land \min_{i=1,2} \{L^h_i(t, x, y, \phi)\}$$

with \bar{w} and \underline{w} as in Remark 3.6.

Theorem 5.1. Equation (50) admits a unique solution v^h_γ for all $h := (h_t, h_x) \in (0, 1)^2$. Moreover, if $h_t / h_x^2 \to 0$ and $h_x^2 \to 0$, then v^h_γ converges locally uniformly to the unique continuous viscosity solution of (17) that has linear growth.

Proof. The existence of a solution, which is bounded by the map with linear growth $|\bar{w}| + |\underline{w}|$, is obvious. We now prove uniqueness. First observe that L^h_2 is
strictly increasing in its y-component, and that

$$\frac{\partial L^h}{\partial y}(t, x, y, \phi) = \frac{1}{h_t} + \frac{\sigma^2(x)}{h_t^2(1 - f(x)G^h(t, x, y, \phi))^2} > 0$$

on the domain \(\{y : L^h(t, x, y, \phi) \geq 0\} \). Uniqueness of the solution follows.

It is easy to see that \(\phi \mapsto S(\cdot, \phi) \) is nondecreasing, so that our scheme is monotone. Consistency is clear. Moreover, it is not difficult to check that the comparison result of Theorem 3.11 extends to this equation (there is an equivalence of the notions of super- and subsolutions in the class of functions \(w \) such that \(w \leq w \leq \bar{w} \)). It then follows from [3, Theorem 2.1] that \(v^\bar{\gamma} \) converges locally uniformly to the unique continuous viscosity solution with linear growth of

$$\left[(\bar{w} - \varphi) \vee (\varphi - w) \wedge F[\varphi] \right]_{[0,T]} + (\varphi - \hat{g})_{[T]} = 0.$$

In view of (49), Remark 3.6, and Theorem 2.4, \(v_{\bar{\gamma}} \) is the unique viscosity solution of the above equation.

5.2. Numerical examples: The fixed impact case. To illustrate the above numerical scheme, we place ourselves in the simpler case where \(f \equiv \lambda > 0 \) and \(\bar{\gamma} \) are constant. The dynamics of the stock is given by the Bachelier model

$$dX_t = \sigma dW_t,$$

with \(\sigma \equiv 0.2 \). In the following, \(T = 2 \).

First, we consider a European butterfly option with three strikes, \(K_1 = -1 < K_2 = 0 < K_3 = 1 \), where \(K_1 + 1/(2\bar{\gamma}) \leq K_2 \leq K_3 - 1/(2\bar{\gamma}) \). Its payoff is

$$g(x) = (x - K_1)^+ - 2(x - K_2)^+ + (x - K_3)^+,$$

and the corresponding face-lifted function \(\hat{g} \) can be computed explicitly:

$$\hat{g}(x) = \frac{\bar{\gamma}}{2}(x - x_1^-)^21_{[x_1^-, x_1^+]} + (x - K_1)1_{[x_1^+, K_2]}$$

$$+ (x - K_1 - 2(x - K_2))1_{[K_2, x_2^-]}$$

$$+ \left(\frac{\bar{\gamma}}{2}(x - x_2^+)^2 + 2K_2 - (K_1 + K_3) \right)1_{[x_2^-, x_2^+]}$$

$$+ (2K_2 - (K_1 + K_3))1_{[x_2^+, \infty]},$$

where \(x_1^\pm = K_1 \pm 1/(2\bar{\gamma}) \) and \(x_2^\pm = K_3 \pm 1/(2\bar{\gamma}) \).

In Figure 1, we separately show the effect of the gamma constraint and of the market impact. As observed in Remark 2.9, the price is nondecreasing with respect to the impact parameter \(\lambda \) and bounded from below by the hedging price obtained in the model without impact or gamma constraint. On the left and right tails of the curves, we observe the effect of the gamma constraint. It does not operate around \(x = 0 \) where the gamma is nonpositive. The effect of the market impact operates only in areas of high convexity (around \(x = -1.5 \) and \(x = 1.5 \)) or of high concavity (around \(x = 0 \)).

In Figure 2, we perform similar computations but for a call spread option, where

$$g(x) = (x - K_1)^+ - (x - K_2)^+,$$
with $K_1 = -1 < K_2 = 1$ such that $K_1 + 1/(2\bar{\gamma}) \leq K_2$. The face-lifted function \hat{g} is given by

$$\hat{g}(x) = \frac{\bar{\gamma}}{2} (x - x^-)^2 1_{[x^-, x^+)} + (x - K_1) 1_{[x^+, K_2)} + (K_2 - K_1) 1_{[K_2, +\infty)}$$

with $x^\pm = K_1 \pm 1/(2\bar{\gamma})$.

6. Appendix. The following is very standard, we prove it for completeness.

Lemma 6.1. An upper-semicontinuous (resp., lower-semicontinuous) map is a viscosity subsolution (resp., supersolution) of

$$F_{\kappa, \varphi}^\epsilon[\varphi] 1_{[0, T)} + (\varphi - \hat{g}_K^\epsilon) 1_{\{T\}} = 0$$

if and only if it is a viscosity subsolution (resp., supersolution) of $F_{\kappa, -}[\varphi] = 0$ (resp., $F_{\kappa, +}[\varphi] = 0$).
Proof. The equivalence on $[0, T)$ is evident; we consider only the parabolic boundary $\{T\} \times \mathbb{R}$. Since $F_{\kappa,+}^{\epsilon,K} \geq F_\kappa^\epsilon$ and $F_{\kappa,-}^{\epsilon,K} \leq F_\kappa^\epsilon$, only one implication is not completely trivial.

Step 1. Let v be a viscosity supersolution of $F_{\kappa,+}^{\epsilon,K}[\varphi] = 0$, and let $\varphi \in C^2$ be a test function such that

$$(\text{strict}) \min_{[0,T] \times \mathbb{R}} (v - \varphi) = (v - \varphi)(T, x_0) = 0$$

for some $x_0 \in \mathbb{R}$. We define a new test function $\phi \in C^2$,

$$\phi(t, x) := \varphi(t, x) - C(T - t),$$

so that $\partial_t \phi = \partial_t \varphi + C$. For $C > 0$ large enough,

$$\min_{x' \in D_0^\kappa} \min_{[0,T] \times \mathbb{R}} \left\{ -\partial_t \phi - \frac{\sigma^2(x') \partial_{xx} \phi}{2(1 - f(x') \partial_{xx} \phi)}, \hat{\gamma}(x') - \partial_{xx} \phi \right\} < 0$$

at (T, x_0). Since

$$(\text{strict}) \min_{[0,T] \times \mathbb{R}} (v - \phi) = (v - \phi)(T, x_0) = 0,$$

it must hold that $F_{\kappa,+}^{\epsilon,K}[\phi](T, x_0) \geq 0$, and therefore

$$v(T, x_0) - \tilde{g}_K(x_0) = \varphi(T, x_0) - \tilde{g}_K(x_0) = \phi(T, x_0) - \tilde{g}_K(x_0) \geq 0.$$

Step 2. Now let v be a viscosity subsolution of $F_{\kappa,-}^{\epsilon,K}[\varphi] = 0$, and $\varphi \in C^2$ be a test function such that

$$(\text{strict}) \max_{[0,T] \times \mathbb{R}} (v - \varphi) = (u - \varphi)(T, x_0)$$

for some $x_0 \in \mathbb{R}$. Then, $F_{\kappa,-}^{\epsilon,K}[\varphi](T, x_0) \leq 0$. By replacing φ by ϕ, defined for $\alpha > 0$ as

$$\phi(t, x) := \varphi(t, x_0 + \alpha(x - x_0)) + C(T - t),$$

we obtain a new test function at (T, x_0). Since $\inf \hat{\gamma} > 0$ (recall (1)), we can take α small enough so that

$$\min_{x' \in D_0^\kappa} \{ \hat{\gamma}(x') - \partial_{xx} \phi(T, x_0) \} > 0.$$

As in the previous step, we can now choose $C > 0$ such that

$$\min_{x' \in D_0^\kappa} \left\{ -\partial_t \phi - \frac{\sigma^2(x') \partial_{xx} \phi}{2(1 - f(x') \partial_{xx} \phi)} \right\} > 0$$

at (T, x_0). Since $F_{\kappa,-}^{\epsilon,K}[\phi](T, x_0) \leq 0$, we conclude that $v(T, x_0) = \phi(T, x_0) \leq \tilde{g}_K(x_0)$. \qed

REFERENCES

