Course progression map for 2019 commencing students This progression map provides advice on the suitable sequencing of units and guidance on how to plan unit enrolment for each semester of study. It should be used in conjunction with the requirements of the course as specified in the <u>Handbook</u>. Last update: 18 December 2023 ## E3010 Bachelor of Engineering (Honours) and Bachelor of Computer Science ### Common first year | Year | Sem | Units | | | | | |------|-----|---|---------------------------------|--------------------------------------|--|--| | 1 | 1 | ENG1001 Engineering design: lighter, faster, stronger | ENG1005 Engineering mathematics | ENG1060 Computing for engineers | FIT1045 Algorithms
and programming
fundamentals in
Python | | | | 2 | ENG1002 Engineering design: cleaner, safer, smarter | ENG1003 Engineering mobile apps | First year engineering elective unit | FIT1008 Introduction to computer science | | | If you need to enrol in foundation physics and maths*: | | | | | | | | |--|---|---|---------------------------------|---------------------------------|--|--|--| | 1 | 1 | ENG1002 Engineering design: cleaner, safer, smarter | PHS1001 Foundation physics | ENG1090 Foundation mathematics | FIT1045 Algorithms
and programming
fundamentals in
Python | | | | | 2 | ENG1003 Engineering mobile apps | ENG1005 Engineering mathematics | ENG1060 Computing for engineers | FIT1008 Introduction to computer science | | | - Double degree students requiring two foundation units will need to take the remaining core unit ENG1001 Engineering design: lighter, faster, stronger in semester one of year two as an overload, and increase the total credit points needed for the double by 6 points You cannot swap the semesters of any of the units. - Students wanting to complete Software Engineering must complete ENG1003 Engineering mobile apps in Year 1 (Semester 1) and PHYS1001 Foundation physics in Year 2 (Semester 1) as an overload. | If you need to enrol in foundation maths: | | | | | | | |---|---|---|---------------------------------|---------------------------------|--|--| | 1 | 1 | ENG1002 Engineering design: cleaner, safer, smarter | ENG1003 Engineering mobile apps | ENG1090 Foundation mathematics | FIT1045 Algorithms
and programming
fundamentals in
Python | | | | 2 | ENG1001 Engineering design: lighter, faster, stronger | ENG1005 Engineering mathematics | ENG1060 Computing for engineers | FIT1008 Introduction to computer science | | | Tip: You can swap the semesters of ENG1003 and FIT1008. | | | | | | | | If you need to enrol in foundation physics: | | | | | | | |---|---|---|---------------------------------|---------------------------------|--|--| | 1 | 1 | ENG1002 Engineering design: cleaner, safer, smarter | ENG1003 Engineering mobile apps | PHS1001 Foundation physics | FIT1045 Algorithms
and programming
fundamentals in
Python | | | | 2 | ENG1001 Engineering design: lighter, faster, stronger | ENG1005 Engineering mathematics | ENG1060 Computing for engineers | FIT1008 Introduction to computer science | | #### Note: ### Page 1 of 3 All students are required to complete at least 420 hours of Continuous Professional Development (CPD) in order to graduate. For further information refer to the CPD webpage. [·] For enrolment advice, please refer to the Course advisers webpage. This course map is recommended as a guide only and subject to updates. # Course progression map for 2019 commencing students This progression map provides advice on the suitable sequencing of units and guidance on how to plan unit enrolment for each semester of study. It should be used in conjunction with the requirements of the course as specified in the <u>Handbook</u>. Last update: 18 December 2023 ## E3010 Bachelor of Engineering (Honours) and Bachelor of Computer Science ### Specialisation - Electrical and Computer Systems Engineering and Advanced Computer Science | | Bachelor of Electrical an
Engineering | | Bachelor of Con | nputer Science | | |----------------------|---|---|---|--|---| | YEAR 1
Semester 1 | | Common first year | | FIT1045 Algorithms
and programming
fundamentals in
Python | | | YEAR 1
Semester 2 | | Common mot year | | FIT1008
Introduction to
computer science | | | YEAR 2
Semester 1 | ENG2005 Advanced
engineering
mathematics | ECE2071 Computer organisation and programming | FIT1047 Introduction
to computer systems,
networks and security | MAT1830 Discrete
mathematics for
computer science | If two foundation units
are required then
overload is required for
ENG1001 Engineering
design: lighter, faster,
stronger | | YEAR 2
Semester 2 | ECE2191 Probability models in engineering | ECE2072 Digital systems | FIT1049 IT professional practice | FIT elective | | | YEAR 3
Semester 1 | ECE3073 Computer systems | ECE2131 Electrical circuits | FIT2004 Algorithms and data structures | FIT2099 Object-
oriented design and
implementation | | | YEAR 3
Semester 2 | ECE2111 Signals and systems | ECE3121 Engineering electromagnetics Replace ECE3121 with ECE3122 in 2024 | FIT2014 Theory of computation | FIT2102
Programming
paradigms | | | YEAR 4
Semester 1 | ECE3161 Analogue electronics | ECE3141 Information and networks | FIT3171 Databases | Level 3 computer science approved elective | | | YEAR 4
Semester 2 | ECE4132 Control system design | Level 4 or 5 ECE-coded core elective | FIT3155 Advanced
data structures and
algorithms | FIT3143 Parallel computing | | | YEAR 5
Semester 1 | ECE4094 Project A Replace with ENG4701 from 2022. | ECE3051 Electrical energy systems | ECE4099
Professional practice | FIT3161 Computer science project 1 | ENG0001 Continuous
Professional
Development
(0 credit points) | | YEAR 5
Semester 2 | ECE4095 Project B Replace with ENG4702 from 2022 | ECE3091 Engineering design Replace with ECE4191 from 2022 | Level 4 or 5 ECE-coded core elective | FIT3162 Computer science project 2 | | #### Note: All students are required to complete at least 420 hours of Continuous Professional Development (CPD) in order to graduate. For further information refer to the <u>CPD webpage</u>. [·] For enrolment advice, please refer to the Course advisers webpage. This course map is recommended as a guide only and subject to updates. # Course progression map for 2019 commencing students This progression map provides advice on the suitable sequencing of units and guidance on how to plan unit enrolment for each semester of study. It should be used in conjunction with the requirements of the course as specified in the <u>Handbook</u>. Last update: 18 December 2023 ## E3010 Bachelor of Engineering (Honours) and Bachelor of Computer Science ## **Specialisation - Software Engineering and Advanced Computer Science** | | Bachelor of Software I | Engineering (Honours) | | | | |----------------------|---|---|---|--|--| | YEAR 1
Semester 1 | | Common first year | | FIT1045 Algorithms
and programming
fundamentals in
Python | | | YEAR 1
Semester 2 | | | | FIT1008
Introduction to
computer science | | | YEAR 2
Semester 1 | MAT1830 Discrete
mathematics for
computer science | Software engineering approved elective | FIT1047
Introduction to
computer systems,
networks and
security | FIT elective | If two foundation units
are required then
overload is required
for ENG1001
Engineering design:
lighter, faster,
stronger | | YEAR 2
Semester 2 | FIT2004 Algorithms and data structures | FIT2101 Software engineering process and management | FIT1049 IT
professional
practice | FIT elective | | | YEAR 3
Semester 1 | FIT3159 Computer architecture | FIT2099 Object
oriented design and
implementation | Level 2 FIT elective | Any level 3 unit from list B of the advanced computer science specialisation | | | YEAR 3
Semester 2 | FIT2107 Software quality and testing | FIT2100 Operating systems | FIT2014 Theory of computation | FIT2102
Programming
paradigms | | | YEAR 4
Semester 1 | FIT3170 Software | FIT3077 Software
engineering:
architecture and
design | Level 3 computer science approved elective | Level 3 computer science approved elective | | | YEAR 4
Semester 2 | engineering practice
(12 points) | FIT3171 Databases | FIT3155 Advanced
data structures and
algorithms | FIT3143 Parallel computing | | | YEAR 5
Semester 1 | FIT4002 Software
engineering industry
experience studio | FIT4003 Software
engineering research
project
Replace with FIT4701 from 2023 | FIT4165 Computer networks | FIT3161 Computer science project 1 | ENG0001
Continuous
Professional
Development
(0 credit points) | | YEAR 5
Semester 2 | project (12 points) | Replace with <u>FIT4702</u> from 2023 | Level 4 or 5 software
engineering core
elective | FIT3162 Computer science project 2 | | #### Note: All students are required to complete at least 420 hours of Continuous Professional Development (CPD) in order to graduate. For further information refer to the <u>CPD webpage</u>. [·] For enrolment advice, please refer to the Course advisers webpage. This course map is recommended as a guide only and subject to updates.