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ABSTRACT 1 
Passenger path choice in highly congested metro systems is affected by crowding in vehicles and 2 

denied boarding to trains. This paper deals with a special situation where passengers choose to 3 

stay in the train longer than what would be preferable under normal conditions and transfer at a 4 

station further along the line in order to travel backwards and pass the same station which has 5 

already been passed. 6 

An earlier study have identified that some passengers take advantage of this reverse routing 7 

behavior in the MTR metro system in Hong Kong, which serves as the case study for this paper. 8 

Smart card data and a passenger-to-train assignment model combining the automatic fare 9 

collection data to automatic vehicle location data are used for analyzing the underlying causes 10 

for this behavior. A detailed model for passenger path choice developed by Ma et al. (2019) is 11 

used to determine the fractions of reverse routing passengers.  12 

The case study is used to analyse the fractions and underlying causes of reverse routing. The 13 

results show that 35%-55% of passengers in the case study in the peak hour from 18:00-19:00 14 

are reverse routing. The passengers who travel furthest after transferring have a significantly 15 

higher probability of doing reverse routing. The analysis also shows that more experienced 16 

passengers have lower journey times than less experienced passengers indicating lower 17 

probability of doing reverse routing because of their system knowledge. The results can help 18 

agencies evaluating new operational strategies and reduce the crowding levels ultimately 19 

benefitting the passengers. 20 

 21 

Keywords: Transit, Metro systems, Crowding, Reverse routing, Travelling backwards  22 



Eltved, Koutsopoulos, Wilson, Tuncel and Ma  

3 

 

INTRODUCTION 1 
Ridership in transit systems are constrained by the capacity of the system and overcrowding in 2 

peak hours on these systems can lead to special circumstances where the passenger can gain an 3 

advantage by choosing paths, which under normal conditions would be dominated alternatives. 4 

This paper deals with the special situation where passengers choose to stay in the train longer 5 

than what would be preferable under normal conditions and transfer at a station further along the 6 

line in order to travel backwards and pass the same station which has already been passed. The 7 

principle of reverse routing is illustrated in Figure 1 below. A passenger travelling from O to D 8 

would under normal conditions transfer at station T if the transfer at station T is as convienient as 9 

the transfer at station A. Transferring at station T minimizes the in-vehicle time and in high-10 

frequent systems almost certainly allows the passenger to board an earlier departing train than if 11 

the transfer was made at station A. However, if the passenger risks to be denied boarding several 12 

times at station T or have a higher probability of obtaining a seat by transferring at station A, the 13 

passenger might choose to stay on line X until station A and transfer here and thus perform what 14 

in this paper is defined as reverse routing.  15 

 16 

 17 
FIGURE 1 - Concept of reverse routing 18 
 19 
It is well-known in the literature that crowding in public transport is not comfortable for 20 

passengers (see e.g. Li and Henscher, 2013, Tirachini et al., 2017, Haywood, Koning & 21 

Monchambert, 2017 or Batarce, Muñoz & Ortúzar, 2017). Under very crowded situations 22 

passengers experience the in-vehicle time up to 2.5 times the actual in-vehicle time (Batarce, 23 

Muñoz & Ortúzar, 2017), however, it is also important to note that some passengers experience 24 

crowding with a high degree of discomfort while others experience it less uncomfortable 25 

(Tirachini et al., 2017). 26 

Given the high discomfort of in-vehicle crowding passengers also react to this in their path 27 

choice in metro systems. Kim et al., 2015 investigated the effect of crowding on passenger path 28 

choice and found that not only does crowding and the resulting increased travel time affect the 29 

path choice, but the discomfort of crowding itself does also affect the path choice. This shows 30 

that passengers do not solely base their path choice on travel time, but also take into account the 31 

comfort of the trip including well-known parameters such as waiting time, walking time and 32 

number of transfers (see e.g. Raveau et al., 2014). 33 
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Literature on unusual path choice behavior 1 
Although many studies have focused on evaluating the cost of crowding and investigated the 2 

effect on path choice in transit systems, very few studies have dealt with unusual path choices 3 

such as reverse routing. No studies have specifically dealt with the example of reverse routing as 4 

shown in Figure 1, however a handful of studies have considered the concept of “travelling 5 

backwards”. This concept is a slightly different case than explained on Figure 1, where 6 

passengers instead board a train in the “backwards” direction of the direction they want to travel 7 

to transfer at a station further up the line and pass the origin station in the “forward” direction. 8 

This behavior has been identified in the metro systems in Singapore (Chakirov & Erath, 2011, 9 

Othman et al., 2015 and Tirachini et al., 2016) and Bejing (Li et al., 2017 and Xu et al., 2018). 10 

The behavior is typically seen at penultimate stations (stations near the start of a line), where 11 

passengers at the second or third station travel to the starting station of the line and in this way 12 

has a very high probability of obtaining a seat.  13 

Chakirov & Erath (2011) was the first paper to verify the unusual behavior of travelling 14 

backwards based on data from Singapore. They used estimations of waiting times calculated 15 

based on the fastest possible person through the system to find that the distribution of waiting 16 

times at stations close to the starting station was bimodal. Since no denied boarding was 17 

observed at these stations they were able to justify that this bimodal distribution must then stem 18 

from passengers travelling backwards. Based on this finding, they concluded that some 19 

passengers were in this case willing to offer ten minutes of extra in-vehicle time in exchange of a 20 

seat. Othman et al. (2015) also studied the case of Singapore and focused on the development of 21 

an agent-based model to estimate effects of crowding in the metro system. They developed a 22 

simple model to replicate the empirically observed bimodal journey time distributions, which 23 

took into account the number of stations the passenger had to travel on a given line and how 24 

many stations the passenger travelled backwards. This improved their model and gave a more 25 

realistic determination of the crowding levels in the system. The final study which used 26 

Singapore as the case was Tirachini et al. (2016). They specifically used the observations of 27 

passengers travelling backwards and quantified the standing multiplier to be around 1.2 28 

compared to being seated with the current crowding levels.  29 

The studies in Bejing focused on analyzing the fraction of passengers travelling backwards, also 30 

focusing on cases where passengers at penultimate stations travel backwards to the first station of 31 

the line. Li et al. (2017) developed a clustering methodology to group passengers based on their 32 

journey times. By comparing the results to observed travel behavior at some stations, they were 33 

able to estimate that up to 10% of passengers travelled backwards in some OD relations in peak 34 

hours and that the proportion of passengers travelling backwards increased with the distance 35 

between origin and destination. Xu et al. (2018) refined the methodology developed in Li et al. 36 

(2017) and developed a clustering methodology determining if the passenger travelled 37 

backwards or not. They were able to identify specific stations on a specific line, where up to 10% 38 

of passengers travel backwards. 39 

This paper extends the knowledge on unusual path choices and investigates the underlying 40 

causes for why passengers are doing reverse routing and uses a detailed path choice model to 41 

estimate the fraction of reverse routing passengers in the MTR metro system in Hong Kong. The 42 

next section presents the methodology used to analyse the problem. This is followed by the case 43 

study and the results of the analyses and finally a conclusion wrap up the findings. 44 

 45 
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METHODOLOGY 1 
The methodology builds on two available data sources: automatic fare collection (AFC) data 2 

with tap-in and tap-out information and automatic vehicle location (AVL) data with departure 3 

and arrival times to stations. Passengers in closed metro systems only tap-in at the origin and tap-4 

out at the destination and no information on the transfer stations is recorded in the AFC data. The 5 

idea for analyzing the potential factors affecting the reverse routing behavior is therefore to 6 

benefit of passenger-to-train assignment models to identify which trains passengers have boarded 7 

and in this way eliminating some uncertainty in the journey times from tap-in to tap-out time. As 8 

this paper is only focusing on reverse routing cases, where passengers choose to transfer at a 9 

station further from the station where passengers would mostly transfer at under normal 10 

conditions, the aim of the passenger-to-train assignment is to determine the specific train that the 11 

passenger boarded. For the first part of the analysis the focus is solely on determining the train 12 

that passengers boarded on the second leg of their trip. Returning to the sketch in Figure 1 this 13 

means, that the time which is analysed is the time from tap-in at station O to when the passenger 14 

leaves station T. The time spent on line Y between station T and D can be eliminated from the 15 

journey time since the passenger is assigned to a specific train where the departure time from 16 

station T is known. Below the passenger-to-train assignment methodology is described in further 17 

detail.  18 

Passenger-to train assignment 19 
The passenger to train assignment utilizes the egress time on the destination station. It is assumed 20 

that each group of passengers who boarded different trains have the same egress time 21 

distribution. Thus the egress times of passengers tapping-out in different time intervals is 22 

assumed to be generated from the same distribution that is specific to the destination platform. 23 

Based on this assumption, a sample of egress times can be acquired by looking at the passengers 24 

who have single feasible trains in their feasible itineraries and tapped-in on the same line. 25 

However, this is a biased sample since the passengers who have a single feasible train are 26 

conditioned to have an egress time that is smaller than the headway between their boarded train 27 

and the next train. Therefore, some correction for this bias is necessary. This correction is made 28 

using a truncated distribution to represent the observed egress times (Zhu, Koutsopoulos & 29 

Wilson, 2017). Given that the headway of each passenger serves as the upper bound for the 30 

egress time, the egress time distribution can be written as a truncated random variable using the 31 

following equation; 32 

 
𝑓(𝑡𝑒|𝑡𝑒 < 𝐻) =

𝑔(𝑡𝑒)

𝐹(𝐻)
 

 

(1) 

where te is the egress time, H is the headway, f(x) is the probability density function associated 33 

with the egress time and F(x) is the cumulative distribution function associated with the egress 34 

time. Also, g(x) = f(x) for all x<H and g(x) = 0 for other values. Using this formulation, any 35 

continuous probability distribution can be fitted to the observed egress times using the following 36 

likelihood function; 37 

 𝐿 =  ∏ 𝑓(𝑡𝑖
𝑒|𝑡𝑖

𝑒 < 𝐻𝑖)

𝑖

 (2) 
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where 𝑡𝑖
𝑒is the egress time for ith passenger. Based on the corrected egress time distribution, we 1 

can evaluate all the possible egress time values that can be associated with a passenger. Then, it 2 

is trivial to assign each passenger to the train with the highest probability within her feasible train 3 

set. A posterior probability can be calculated for each passenger and each feasible train using the 4 

possible egress times; 5 

 
𝑃𝑖𝑗 =  

𝑓(𝑡𝑖𝑗
𝑒 )

∑ 𝑓(𝑡𝑖𝑘
𝑒 )𝑘

 

 

(3) 

where 𝑃𝑖𝑗 is the probability of passenger i boarding train j and  𝑡𝑖𝑗
𝑒  is the egress time associated 6 

with passenger i, if that passenger boarded train j. Thus 𝑓(𝑡𝑖𝑗
𝑒 ) is the pdf value of observing that 7 

egress time value. For the purposes of this study, lognormal distribution is used to represent the 8 

egress time distribution since it is known to be used to represent walking times (Zhu, 9 

Koutsopoulos & Wilson, 2017). In Figure 2 an example of the passenger-to-train assignment is 10 

shown. The egress time distribution is modelled in a previous step and based on this distribution 11 

the most likely train the passenger boarded on line Y is train Y3. With this knowledge the 12 

departure time from station T can be found using the AVL data and the time from tap-in to 13 

departure from station T denoted 𝜏 is defined by: 14 

 
𝜏 = 𝑡𝑇 − 𝑡𝑂 

 
(4) 

The time 𝜏 does not explain whether the passenger transferred at station T or station A, but can 15 

give an indication whether some passengers spend more time than others given that they 16 

departed with the same train on line Y. 17 
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 1 
FIGURE 2 - Passenger to train assignment 2 

Methodology for determining fraction of reverse routing passengers 3 
The above mentioned methodology will be used analyse the journey times from tap-in to 4 

departure from the transfer station which all passengers have to depart from no matter if they are 5 

reverse routing or not. However, the analysis of journey times only indicates probable causes for 6 

reverse routing and a detailed model developed in Ma et al. (2019) is used to calculate the 7 

fractions of passengers who are reverse routing. The model is an extension to the passenger-to-8 

train assignment model in Zhu, Koutsopoulos & Wilson (2017). The model builds on several 9 

submodels; first the denied boarding rates at each station is calculated and walking time 10 

distributions are defined using the methods in Zhu, Koutsopoulos & Wilson (2017). Then a 11 

multidimensional optimization model is used to determine the route choice parameters for 12 

passenger path choice. The route choice parameters included in the model are in-vehicle time, 13 

out of vehicle time (access, egress, transfer walking time and waiting time at uncongested 14 

periods), number of transfers and waiting time spent due to denied boarding. 15 

CASE STUDY 16 
The case study for this paper is the MTR metro system in Hong Kong. The system has almost 5 17 

million daily passengers (MTR, 2019) and some sections experience severe congestion in peak 18 

hours. The specific case study is concerning two major stations in the central part of Hong Kong, 19 

station 1 and 2 on Figure 3 below. Passengers travelling from stations 27-30 on the blue line 20 

must transfer at either station 1 or 2 to get to stations 3-17 on the red line. 21 
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 1 

 2 
FIGURE 3 - Case study network 3 
 4 
In a survey carried out in 2012 and analysed in Li (2014) approximately 30,000 passengers in the 5 

MTR system were asked about their route choice and the survey revealed that around 8% of the 6 

passengers in the evening peak period going from the blue line to the red line transferred at 7 

station 1, whereas all passengers outside the peak period transferred at station 2. This indicates 8 

that denied boarding and crowding leads to a different behavior for some of the passengers. 9 

Since 2012 the number of passengers in the system has increased with 14% until 2017 where 10 

another line also opened with terminal station at station 2 adding more congestion to this already 11 

crowded station (MTR, 2019). The transfer at station 2 is a cross-platform transfer whereas the 12 

passengers at station 1 have to walk up one level to transfer to northbound departures on the red 13 

line. The additional train travel time going to station 1 is around 3 minutes (1.5 minutes in each 14 

direction).  15 

Data description and passenger-to-train assignment 16 
To analyse the factors influencing reverse routing behavior data from three weekdays, 21st-23rd 17 

of March 2017 (Tuesday-Thursday), was used. A decision was made to limit the sample to adult 18 

passengers, as other passenger groups, such as pensioners, might have more heterogenous travel 19 

behavior. The passenger-to-train assignment model was used to assign passengers to a specific 20 

train on the red line and outliers were removed which had a journey time (𝜏) outside two 21 

standard deviations of the mean from a given origin and a specific train departure. Table 1 shows 22 

the number of passengers assigned with the probability of the most likely train on the red line 23 
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with departure from station 2 between 17:30-19:30. In total 20,675 trips were included in the 1 

analysis and 70% of these trips could be assigned with a probability higher than 95%. Following 2 

the passenger-to-train assignment only the passengers with an assignment probability of more 3 

than 95% to the most likely train is included in the analysis. For these passengers the journey 4 

time 𝜏 is calculated based on the tap-in time at the origin station and departure from station 2 of 5 

the assigned train.  6 

TABLE 1 – Statistics of probability of the most likely train 7 
Probability of 

most likely train 

Number of 

pax 

Share of pax 

<50 % 5 0.0% 

50-75% 3,061 14.8% 

75-90% 4,125 20.0% 

90-95% 3,423 16.6% 

95-99.9% 14,819 71.7% 

100% 11,617 56.2% 

Total 37,050 100% 

 8 

Given the journey times 𝜏 it is possible to analyse several factors leading to different behaviors 9 

in terms of reverse routing using a multiple linear regression model. The dependent variable is 10 

the journey time 𝜏, which is explained by the following function:  11 

 12 

 
𝜏 ∼ 𝛽𝑏𝑎𝑠𝑒 + 𝜷𝒅𝒅 + 𝜷𝒐𝒐 + 𝜷𝒌𝒌 + 𝜷𝒙𝒙 

 
(5) 

, where 𝑑 are the destinations, 𝑜 are the origins, 𝑘 is a specific 30-minute timeinterval and 𝑥 is 13 

the travel experience.  14 

In previous studies on reverse routing in metro systems one of the clear tendencies have been 15 

that passengers travelling furthest are more likely to do reverse routing (e.g. Tiranchini et al. 16 

2017, Othman et al., 2015 and Li et al., 2017). This hypothesis is tested by using the destination 17 

stations as explanatory variables for the journey time from tap-in until departure from station 2. 18 

The origins are included in the model, as passengers naturally have higher journey times for trips 19 

with further distance to the transfer stations and the variable for timeintervals is included to 20 

explain the extra travel time imposed from crowding in the peak hours. 21 

The variables regarding passenger experience are included as Kim et al. (2014) showed that 22 

passengers with more experience choose a specific metro car to minimize the walking distance at 23 

the destination station. In the case of reverse routing a hypothesis is that passengers with more 24 

experience have lower journey times as they are able to observe the current conditions and 25 

choose whether to transfer at the normal transfer station (1) or do reverse routing using station 2. 26 

The passengers experience is given based on the number of times the passenger have travelled 27 

from the blue line to the red line from 17:00-20:00 in March 2017. By testing different 28 

specifications of this variable it was found that intervals of <5, 5-9, 10-19 and >=20 trips in a 29 

month was giving the best fit of the model. 30 
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RESULTS 1 
This section presents the results of the analysis of journey times from the origin to departure 2 

from station 2. First the hypothesis of the journey times being dependent on the destination 3 

station and the passenger experience is explored visually followed by the multiple linear 4 

regression model explaining the journey times. Then the results of applying the model developed 5 

in Ma et al. (2019) is shown with the fractions of reverse routing passengers. 6 

Histograms of journey times dependent on explanatory factors 7 

A simple histogram of the mean journey times 𝜏 shown in Figure 4 reveal that the journey times 8 

from a given origin to the departure from station 2 is increasing the further the passenger has to 9 

go on the red line. The journey time for passengers going to station 3 is higher than for 10 

passengers going to station 4 and 5, but never higher than the time for passengers going to station 11 

17.  12 

 13 

 14 
FIGURE 4 - Histogram of mean journey times from tap-in to departure from station 2 by origin and destination 15 

 16 

When considering the other factor, passenger experience, Figure 4 clearly shows that passengers 17 

with more experience have lower journey times compared to less experienced passengers on this 18 

specific path. It is also clear that passengers with 20 or more trips during March 2017 on this 19 

path, i.e. mostly commuters, have a much lower travel time. Although these histograms does not 20 

provide any statistical test of significance of passenger experience, it seems that the factors 21 

influence the journey times.  22 
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 1 
FIGURE 5 - Histogram of mean journey times from tap-in to departure from station 2 by traveler experience 2 

Statistical model for journey times indicating potential reverse routing 3 

Table 2 below shows the final model explaining the journey time 𝜏 from origin to departure from 4 

station 2. The intercept of 8.36 minutes explains the journey time from station 27 to destination 5 

station 3 (closest destination to transfer) for a passenger in the interval 17.30-18.00 and with less 6 

than five trips on this route in March 2017. The train travel times including dwell time is 7 

approximately 2 minutes between two consecutive stations, which is also reflected in the 8 

estimates for the origins. However, the estimate for station 30 is only around 1.25 minutes higher 9 

than for station 29, but this can be explained by a much shorter access walking distance from tap-10 

in gates to platform at station 30 compared to the other stations.  11 

The variables indicating the different time periods show significant differences between the four 12 

30-minute intervals. As expected, the most congested time period is from 18.30-19.00, where 13 

passengers spend three minutes extra compared to the reference level from 17.30-18.00. The 14 

estimation of the differences between time intervals does not add information on whether reverse 15 

routing is more likely in a given time period, but helps correcting for the extra congestion in the 16 

system, so that the parameters for destinations and travel experience is not affected by the 17 

additional congestion. 18 

Given that the journey time 𝜏 is explaining the time from tap-in to departure from station 2 there 19 

should intuitively not be any difference in the journey times for passengers going to different 20 

destinations. However, as it is seen in Table 2 most of the estimates for the destinations are 21 

significantly different from the reference level of destination 3. The estimate for station 5 is not 22 

significantly different from station 3 and the estimate for station 4 is only slightly lower for 23 

station 3 with a difference of 15 seconds. For passengers going to station 6 the journey time is 24 

approximately 20 seconds longer, for station 16 the journey times are around half a minute 25 

higher than station 3 and the journey times for passengers going to station 17 is almost one 26 

minute higher than station 3. This indicates, that passengers travelling further after transferring 27 
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has a higher probability of doing reverse routing, possibly because of a higher preference of 1 

obtaining a seat, as also found in Tiranchini et al. (2017). 2 

When investigating the parameters for travel experience there is a clear tendency, similar to the 3 

histogram, that passengers with more experience have lower journey times. This is in line with 4 

the findings in Kim et al. (2014), where passengers with more experience chose metro cars 5 

minimizing walking distance and thereby their journey time. A very experienced passenger on 6 

the route from the blue line to the red line saves more than one minute compared to 7 

unexperienced passengers. As only data from March 2017 was available for the analysis, it was 8 

not possible to check for whether passengers also travelled many times in other months and 9 

thereby could be determined as commuters, but more elaborate clusterings of different passenger 10 

groups could give more insights to which types of passengers minimize their journey times the 11 

most. Given the lower journey times for experienced passengers, this also indicates that it is 12 

mostly unexperienced passengers who do reverse routing, as transferring at station 1 is in almost 13 

all cases slower than transferring at station 1 under normal peak hour conditions.  14 

 15 
TABLE 2 - Results of Multiple Linear Regression Model for Journey Time 𝜏 16 
Sig. levels: *0.05, **0.01, ***0.001 17 

Parameter Estimate T-value 

Base (intercept) 8.36 105.80*** 

Origin Station 27 - Ref. Level 

Origin Station 28 2.10 35.02*** 

Origin Station 29 4.05 31.68*** 

Origin Station 30 5.31 57.71*** 

Destination Station 3  -   Ref. Level 

Destination Station 4 -0.26 -3.20** 

Destination Station 5 -0.10 0.28 

Destination Station 6 0.29 3.55*** 

Destination Station 16 0.46 4.81*** 

Destination Station 17 0.79 8.04*** 

Time interval 17.30-18.00 - Ref. Level 

Time interval 18.00-18.30 1.26 15.95*** 

Time interval 18.30-19.00 3.00 38.72*** 

Time interval 19.00-19.30 0.56 6.90*** 

Less than 5 trips in month - Ref. level 

5-9 trips in month -0.47 -6.16*** 

10-19 trips in month -0.73 -10.01*** 

More than 20 trips in month -1.16 -9.70*** 

Number of observations 26,436 

Adj. R-Squared 0.19 

 18 
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Determination of fraction of reverse routing passengers 1 
Using the model developed in Ma et al. (2019) on the case study reveals that passengers to a 2 

large extent do reverse routing in the peak hour. Figure 6 shows the reverse routing fractions for 3 

passengers from station 28, which is the largest of the considered origins, to stations 3-6 on 4 

March 16th1. The results of the model show that in peak shoulder periods less than 10% of 5 

passengers do reverse routing transferring at station 1 and there seems to be no clear dependence 6 

on the fractions for the different destinations. In the period of 18:00-18:30 the fraction of reverse 7 

routing passengers is between 35%-51% and in the peak of the evening peak period between 8 

18:30-19:00 the fraction is even higher between 43%-54%. The results for these periods also 9 

indicate that the fractions is positively correlated with the distance to the destination. These 10 

results show that reverse routing is a behavior extensively utilized by passengers in the MTR 11 

metro network. From an operational perspective the large number of reverse routing passengers 12 

who use station 1 might be a benefit for the operations, as dwell time on the terminal station 1 is 13 

not as critical as on station 2. The high number of reverse routing passengers therefore lowers the 14 

dwell time at station 1 as less passenger have to board at this station to fill up the train. Further 15 

analysis should identify the magnitude of this possible gain for the operations. 16 

 17 
FIGURE 6 – Reverse routing fractions for passengers from station 28 on March 16th 2017 18 

CONCLUSION 19 
This paper deals with the special path choice named reverse routing, where passengers choose to 20 

stay longer on a train and transfer at a station further down the line before travelling backwards 21 

and passing the station where the transfer would under normal conditions take place. By 22 

applying a passenger-to-train assignment model to the second leg of the trip, it is possible to 23 

calculate the time from tap-in to departure from the transfer station, which would be used under 24 

normal conditions. These times are analysed and a model combining multiple data sources and 25 

optimizing the route choice parameters of passengers is used for calculating the fractions of 26 

passengers doing reverse routing. 27 

                                                 
1 Due to time limitations for obtaining walking speed distributions and other distributions needed for the analysis 

March 16th was used for the analysis and stations 16 and 17 was not included in the analysis.  
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The results show that passengers who travel further on the second leg of the trip spends 1 

significantly more time from tap-in to departure from the normal transfer station when correcting 2 

for the time from the origin and the longer travel times during different time intervals in the 3 

evening peak period. The extra time spent is to a large extent the effect of reverse routing 4 

passengers. The results show that less than 10% of passengers in peak shoulder periods are 5 

reverse routing, while these fractions are up to 35%-54% in the peak hour from 18:00-19:00. 6 

The analysis also shows that passengers who travel more during a month have significantly 7 

lower travel times compared to passengers who travel less frequently. This indicates that 8 

passengers to a high degree make decisions based on their previous knowledge and that 9 

passengers with high travel experience can assess the current denied boarding conditions and 10 

choose whether to do reverse routing or not. Future work should include clustering of passengers 11 

to determine the probability of reverse routing for different passenger segments. The revelation 12 

of the high number of reverse routing passengers should also be used to assess the impact of 13 

different operational strategies, which might lower the fraction of up to 50% of passengers doing 14 

reverse routing in the evening peak hour. 15 
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