Welcome to Monash Engineering

Students learning about an autonomous plane built by the Monash Unmanned Aerial Systems (UAS) team.
As a Monash Engineering student you’ll become part of a world-class team of engineers, driven by the passion and commitment to deliver sustainable solutions for society’s global challenges — including climate, energy, transportation, water, health and communications.

We offer ten engineering specialisations, double degree options and a range of programs and experiences for you to pursue your passions and set you on the path to future career success. Our graduates are dynamic, highly competent and in-demand leaders across the breadth of engineering disciplines and beyond.

At Australia’s top engineering school, you’ll have access to some of the world’s finest facilities and a learning environment that fosters your development as a collaborative and creative problem-solver. We’re here with you all the way with the tools, support and experiences to help you develop your strengths and passions, and become a well-rounded engineer.

PROFESSOR ELIZABETH CROFT
Dean, Faculty of Engineering
MONASH ENGINEERING
A GLOBAL LEADER

TOP 100 RANKINGS

#01 ENGINEERING SCHOOL IN AUSTRALIA
(Times Higher Education World University Rankings 2019)

TOP 50 IN THE WORLD FOR ENGINEERING AND TECHNOLOGY
(QS World University Rankings 2019)

#25 REUTER TOP 75 ASIA PACIFICS MOST INNOVATIVE UNIVERSITY

#59 QS EMPLOYABILITY RANKINGS

WORLD-WIDE CONNEXIONS

100+ PARTNER UNIVERSITIES

26K+ ALUMNI FROM MORE THAN 75 COUNTRIES (2018)

OUR STUDENTS AND STAFF

562 STAFF (2018)

8302 STUDENTS (2018)

OUR LOCATIONS

Clayton
Clayton, in Melbourne’s rapidly growing southeast corridor, is our biggest campus, home to 38,000 students and eight of our 10 faculties. Everything you need is on campus – food outlets, sporting facilities, health services and more.

Kuala Lumpur
Close to fast-paced Kuala Lumpur, Monash University Malaysia is our third-largest campus, with 7000 students undertaking courses offered across eight schools.

Prato
In the heart of Tuscany and close to Florence, Prato is our European base where eight of our faculties offer units covering design, law, business and more.

Suzhou
The Southeast University-Monash University Joint Graduate School in the heart of one of China’s biggest innovation precincts, offers master’s and PhD study options in areas ranging from engineering, industrial design and IT to business.

Mumbai
Bustling Mumbai is home to the IITB-Monash Research Academy, a collaboration that gives PhD students opportunities to work closely with industry to find solutions to global problems.
A DEGREE TAILORED TO YOUR FUTURE

Engineering is a diverse profession with many options. That’s why we’ve created an engineering degree that gives you maximum choice and flexibility.

The common first year
The Bachelor of Engineering (Honours) kicks off with a common first year, where you’ll gain a better understanding of scientific and design fundamentals, and the interaction between engineering and society. You’ll also get a taste of the ten engineering specialisations on offer before deciding which to pursue from the second year.

Double degrees
Many of our students study a double degree, combining engineering with another area for flexibility and diversity. Whether it’s architectural design, arts, biomedical science, commerce, computer science, design, information technology, law, pharmaceutical science or science, Monash allows you to study engineering while pursuing other passions and interests.

Scholarships
Monash celebrates academic excellence and supports students who are disadvantaged. We offer a range of scholarships and awards to help ensure money and circumstances aren’t barriers to you accessing a world leading engineering education. For details and a full list of scholarships, bursaries and awards available, visit monash.edu/scholarships

The finest facilities
Engineering is a hands-on discipline where learning goes beyond the classroom, so it’s important to choose a university with the best facilities to support your studies. Monash has some of the world’s finest, such as the CAVE2 immersive visualisation platform, significant capability in 3D printing of metals, polymers and multimaterials, the largest wind tunnel in the Southern Hemisphere, one of the world’s most powerful electron microscopes, and the ground-breaking New Horizons centre, which brings together the best of Monash Engineering and the CSIRO under one roof. monash.edu/engineering/facilities

New facilities opening soon
A creative, collaborative maker-space is coming. The dedicated space is for students of all engineering disciplines to come together to build, design and create and encourage entrepreneurial activities.

The new Technology Education and Design Building will be completed in 2020, providing a world-class learning environment with the latest dynamic and interactive learning spaces, labs and technology.

Research experience
You can experience Monash Engineering’s renowned research while studying your degree. Participate in innovative, interdisciplinary research through various student teams, such as Monash Motorsport, our undergraduate Summer Research Program, and in your final year project. Using the latest concepts in engineering, you’ll learn from lecturers who are leading researchers in their field.

Professional recognition
Monash Engineering degrees are accredited by various professional engineering bodies. Recognised by the Washington Accord, our graduates can work in any other signatory country, without the need to requalify.

• Engineers Australia
• The Institution of Chemical Engineers (Bachelor of Chemical Engineering (Honours) only)
• Engineering Accreditation Council Malaysia (Malaysian Engineering degrees only)
• Australian Computer Society (Bachelor of Software Engineering (Honours) only).
monash.edu/engineering/professional-accreditation
A CAREER IN ENGINEERING

Engineers are creative, imaginative, analytical and technical, with excellent teamwork skills. As an engineer, you’ll apply science and mathematics in a practical way to design and develop new technologies and improve existing ones.

Engineers solve problems, figure out how things work and create solutions. They’re key to the development of society and solving the challenges faced by our world, such as climate change, natural resource depletion, food shortages, supply of clean drinking water and increased demands on energy. Engineers possess a rare combination of skills and qualities that place them in demand in many industries. An engineer’s career is diverse, interesting and can be anywhere in the world.

As a qualified engineer, you’ll also be equipped to work in many areas outside of engineering, such as management, banking and consulting. Some engineers go on to become CEOs of major corporations. Problem-solving and planning skills, combined with a focus on the future and continuous improvement, make engineers excellent business leaders.

Consider a career in engineering if you:
• are curious about how things work
• have an interest in improving the quality of human life
• enjoy designing and building things
• like analysing and solving problems
• are interested in maths and science
• enjoy challenges
• are goal-oriented
• like working with lots of different people in multidisciplinary teams.

Career outcomes

Engineers design, build and test everything we use to create a liveable and sustainable world. Their unique skills are needed in nearly every industry. With hundreds of different types of engineering jobs the possibilities are endless.

Some of our graduates have gone on to successful careers as:
• Biomaterials or nanotechnology engineer in a medical development company
• Global development engineer for a non-governmental organisation (NGO)
• Chemical process engineer in the food and agriculture industry
• Project manager, consultant or industrial designer in building and construction
• Computer scientist or wireless network engineer in telecommunications
• Artificial Intelligence or software engineer in the defence force
• Capital works engineer in sustainability, water and energy field
• Executive Director of access and operations in a global mining company
• Robotics or avionics engineer for an international space agency
• Director of transport modelling and mapping for a government infrastructure authority
• Entrepreneur and business owner in a start-up tech company
• CEO or Chief Engineer in the automotive industry.

Average Australian engineering salary $111,033*

An engineering degree from Monash University gives you a competitive edge. As a Monash Engineering graduate, you’ll be a highly sought after industry professional when you first enter the workforce and throughout your career.

34 OF THE TOP 100 CEOS IN THE WORLD ARE ENGINEERS

I’m studying a double degree of Materials Engineering and Science, majoring in Chemistry and minoring in Astrophysics (I really like space).

My Co-operative Education program intern placement at Ensign Laboratories has been a valuable learning experience. The greatest source of learning has come from the people I have interacted with, from line setters to formulators to engineers and managers, as they have taught me many amazing things over the last few months – procedures and insights that are near unobtainable from regular university classwork.

I have gained a new appreciation of the recyclability of products thanks to a research project I was given to complete for the program. My project was to investigate a client’s business need, which was environmentally-friendly packaging solutions and present my findings to the executive of a leading toothpaste brand.

In all, the entire Co-op program has been an immensely valuable eye opener to true workplace life and I have been offered a position with the company after I graduate.

ASHLEE EVANS
Bachelor of Materials Engineering (Honours) and Bachelor of Science
Outstanding academic performance isn’t always first on an employer’s must-have list – they want graduates who are highly-skilled, well-rounded individuals. Many place interpersonal and communication skills, critical reasoning and problem-solving, together with passion, at the top of their list.

At Monash we open your eyes to a world outside the classroom. As a Monash Engineering graduate, you leave prepared for leadership, success and – most importantly – life. The following are just a few examples of the activities you can get involved in while studying Engineering at Monash.

Co-operative Education Program
The new Co-operative Education Program provides relevant work experience opportunities through internships with our partner organisations. Undertake a three, six or 12 month paid internship and explore different industry sectors, understand what it is to be a working engineer and connect the experience to your studies in a practical way. You’ll enhance your technical and professional skills, build industry connections and gain skills to give you the edge in a competitive employment market.

monash.edu/engineering/coop

Engineering Leadership Program
The Monash Engineering Leadership Program is a development program that prepares you to be an engineering leader. It’s an opportunity to engage with industry professionals from the private sector, with seminars, interactive workshops and industry site visits. Through the program you’ll establish valuable networks and develop ‘soft skills’ such as communication, leadership and teamwork, that are highly regarded by employers and gives you a competitive edge. Successful applicants may also be eligible to apply for a generous scholarship thanks to the support of industry partners and donors.

monash.edu/engineering/leadership-program

Monash Industry Team Initiative (MITI)
The MITI program provides an invaluable experience that’ll equip you for life’s challenges by offering insights into the business world, practical learning, leadership and teamwork opportunities. Students are competitively selected from a range of fields to form multidisciplinary teams. Working as part of a team, you’ll be placed alongside industry experts and given a challenging but well-defined real-world project to deliver, pushing you to use all of your problem-solving, innovation and design skills. This may even be in a company based overseas.

miti.monash.edu

MONASH MOTORSPORT
Taking it beyond the classroom. Currently ranked #2 in the world, Monash Motorsport is a highly competitive student-run team with almost 100 engineering, science and commerce students.
Mentoring

Mentoring can offer support and encouragement to help you succeed and enjoy your studies and gain insights into a career in engineering. The Friends and Mentors in Engineering (FaME) group mentoring program helps new students settle into university, make friends and get the best out of study and life at Monash. The program also provides FaME peer mentors the opportunity to expand and develop leadership and other valuable skills.

The alumni group mentoring program is available in your final years of study. Meet successful industry alumni who’ve had a similar student journey as you, seek career advice and learn from their experiences.

Continuous Professional Development

The Continuous Professional Development (CPD) Program is a compulsory requirement for all undergraduate Monash Engineering students. It’s an online collection of all work, volunteering, and personal and professional development opportunities you experience throughout your time studying your degree. There are numerous opportunities to help you develop these skills and experiences and build your CPD hours to complete the minimum of 420 hours required. When you graduate, your CPD Completion Certificate makes an impressive addition to your CV, demonstrating highly sought-after attributes in the professional world and supports Engineers Australia certification.

monash.edu/engineering/CPD

Summer Research Program

At Monash, we undertake innovative, multidisciplinary research addressing national and international priorities. Monash Engineering has a highly-regarded research profile with extensive links to both industry and the research community worldwide. As an undergraduate engineering student, you’ll have the opportunity to complete 12 weeks of paid research training over the University’s summer break, which counts towards your Continuous Professional Development requirements. You’ll work closely with academic staff on a broad range of fascinating research projects.

monash.edu/engineering/summer-research-program

Study abroad and exchange

Spending part of your engineering degree overseas on exchange will expose you to new ways of learning and living. You’ll also build an international network, develop independence and enjoy a cross-cultural experience. Monash has exchange agreements with more than 150 universities in over 30 countries, allowing you to have an international study experience. While you’re overseas your studies are credited towards your degree. As an engineering student, you’ll also have the chance to study at Monash Malaysia. Students from Monash Malaysia can also apply to spend a semester at Clayton.

monash.edu/study-abroad/outbound
The Nova Rover Team were the first Australian team to be selected for entry in the University Rover Challenge in Utah.

STUDENT CLUBS AND SOCIETIES

Clubs, teams and societies give you the chance to get more out of your uni experience. All engineering departments and the faculty have active student clubs and teams. Some of the groups available are:

Engineers Without Borders (EBW)

EBW is an international volunteer organisation that aims to improve the knowledge and physical resources of people in need around the world. EBW works with developing communities to achieve environmentally sustainable, socially responsible and economically viable solutions to engineering problems, with an emphasis on education. The Monash University chapter is involved in a wide range of projects, and is increasing its membership every year.

Female Engineers at Monash (FEM)

FEM supports, inspires and connects female engineering students with women working in the faculty and the profession. The student-run society delivers events and industry guides to give you easy access to information that helps you make the most of your uni experience, and make a smooth transition into the workplace.

Monash Engineering Students’ Society (MESS)

MESS is a student-run, not-for-profit organisation that’ll enrich your Monash experience through social and academic experiences that are engaging and fun. MESS also produces an annual engineering careers guide — a useful resource to help you secure employment when you graduate.

Monash Motorsport (MMS)

Join the MMS team and help conceive, design, build and race a formula-style racing car. The MMS team, currently ranked 2nd in the world, has a mission to create the most competitive and well-designed combustion, electric and driverless cars possible. Build strong links with the local engineering industry and make use of innovative facilities and leading research.
Nova Rover Team
The Nova Rover Team was the first Australian student group to be selected to compete in The Mars Society University Rover Challenge. The annual robotics competition held at the Mars Desert Research Station in the United States, challenges teams to design and build a rover to be used by explorers on Mars. The team was made up of students from Engineering, Science, Law, Business and Medicine and were placed top 20 in the world.

Precious Plastic Monash
Precious Plastic is a global community to encourage more plastic recycling. Their mission is to tackle plastic pollution by designing machines that recycle waste into valuable goods. The Monash chapter is a multidisciplinary team of students from Engineering, Arts and Design. They build, design and modify machines that turn plastic into pellets and are integrating the machines into a single transportable unit that can be used for production and community education and engagement.

Robogals Monash
Robogals Monash is a not-for-profit, student-run organisation that aims to encourage more young women to pursue STEM career opportunities, with a focus on engineering. Robogals offers opportunities to strengthen your communication and leadership skills, and gives volunteers access to professional development opportunities within an international organisation.

Other engineering clubs, teams and societies you can be involved with are:
- Monash Association of Civil Engineering Students
- Gay and Lesbian Engineers at Monash
- Materials Engineering Society
- Mechatronics Engineering Clayton Club
- Monash Aerospace and Mechanical Engineering Club
- Monash BrewLab
- Monash Connected Autonomous Vehicle
- Monash Engineering & Pharmaceutical Science Society
- Monash Environmental Engineering Society
- Monash Forge
- Monash High Powered Rocketry
- Monash Human Power Team
- Monash Solar Decathlon Team
- Monash Unmanned Aerial Systems
- Monash Young Medtech Innovators
- Resources Engineering Student Society
- Society of Monash Electrical Engineers
- Society of Monash University Chemical Engineers
- Transport Engineers at Monash

For information on all of our clubs and societies visit monashclubs.org
OUR COURSES

Bachelor of Engineering (Honours) Degree
At Monash you can become a fully qualified and accredited engineer in just four years. Your degree kicks off with a ‘common first year’ that allows you to explore the ten engineering disciplines before specialising from second year. We also offer you the opportunity to broaden your options with a double degree, which can be completed in just one additional year. See page 12.

EXTEND YOUR STUDIES
At Monash you have the option of furthering your studies through a graduate research degree or the Master of Advanced Engineering following your Bachelor degree studies.

Engineering (Honours) and Masters Degree Package
This is pathway program for high-achieving students to be on track to earn, in just five years, both a Bachelor of Engineering (Honours) and an expert master’s degree in advanced engineering. The Masters Accelerated Pathway program allows you to gain practical and theoretical skills for a career in engineering. There’s a rich selection of specialist electives to choose from, and the course offers strong links to industry and a focus on leadership skills to strengthen your critical reasoning and strategic thinking skills.

You’ll graduate as a fully qualified engineer after four years with a Bachelor of Engineering (Honours). You can take two master’s level units in your bachelor degree and cross-credit them towards your master’s course. This pathway is available for the following specialisations: aerospace, chemical, civil, electrical and computer systems, materials, mechanical or mechatronics engineering.

monash.edu/engineering/masters-accelerated-pathway

Master of Advanced Engineering
The Master of Advanced Engineering is an inspiring study experience, designed to take everything you’ve achieved in your undergraduate degree to the next level. The expert master’s program further deepens knowledge in your chosen specialisation and is designed to foster innovative thinking, entrepreneurship and leadership. The masters also offers a competitive advantage that positions you to lead innovation and drive industry change in your field of engineering.

monash.edu/engineering/masters

Graduate Research Degree
A research degree allows you to pursue your particular interests, work on an original idea, have your ideas published, solve a real-world problem, and have the opportunity to work with some of Australia’s leading researchers.
DOUBLE DEGREES

Enrol in two degrees at the same time, in two completely different areas. Often organisations seek engineering graduates with expertise in other disciplines. They’re continually impressed by the breadth of knowledge and insight evident in double-degree graduates from Monash.

A double degree course allows you to pursue a career in either area, or to take up one of the many opportunities emerging at the intersection of disciplines. An engineering double degree offers diversity, more career choices and flexibility, all with only one extra year* of study.

Architectural Design
The building industry needs engineering professionals with strong architectural knowledge. The combination of architectural design with civil engineering is an exploration of creative solutions to a wide variety of engineering and social problems.

You’ll graduate with valuable skills for transforming the built environment, from the design of buildings or bridges to renovating existing structures to work more efficiently. The ability to provide solutions through creative thinking and realistic applications will make you attractive to architectural and engineering firms in Australia and overseas.

Arts
Combining an engineering degree with an arts degree provides complementary skills in technology and communications. You’ll develop the transferable skills employers are looking for: communication, teamwork, research and critical thinking.

Arts at Monash provides your comprehensive gateway to about 40 areas of study across the arts, humanities and social sciences. With this dual degree you’ll have a portfolio uniquely tailored to meet your interests and aspirations.

Biomedical Science
If you’re eager to explore a career in biological/biomedical engineering, consider a double degree in engineering and biomedical science. Advances in biological sciences and demand for technological solutions are creating opportunities for engineers. In the coming years engineering will be transformed, as it parallels and fuses with developments in biomedical science.

Commerce
Do you dream of making it big in the business world? If so, engineering and commerce is a powerful combination. Many CEOs of major corporations have engineering qualifications. People with sound business skills and a strong technological background are consistently in demand across many industries and organisations.

Computer Science
Computer science provides solutions to the ever-increasing information challenges in the modern world. Industry needs people who can extract and analyse information from the massive datasets generated by engineering processes and devices. Big data is the new challenge and opportunity in engineering practice across industries from construction and manufacturing, to transport and the energy sector. This double degree integrates theoretical and practical skills to solve engineering problems and create innovative solutions across the IT spectrum, from hardware to software.

Design†
Have an eye for form and function? Like to build things? Consider combining mechanical engineering with design to become a product design engineer. Product design engineers design and develop manufactured products that are functional, ergonomic, beautiful and well-engineered.

This double degree integrates the technical and project management skills of an engineer with the creativity and manufacturing know-how of an industrial designer.

Information Technology
In an age of increasing technological advancements, the synergy between engineering and information technology (IT) will only become stronger. IT underpins engineering practice in all disciplines, and industry needs graduates with skills and expertise spanning both. You could do anything from designing a stunning visualisation of engineering data, to building an app for data collection, to setting up the business IT processes to deliver an engineering product via the internet. This double degree combines creative and problem-solving skills to use IT in engineering applications.

Laws (Honours)*
An engineering and law double degree bridges the gap between technological and legal issues. This double degree combination produces engineers who are sensitive to the legal, corporate and political implications of technology and its applications. As an engineering and law graduate, you’re eligible to practise as a solicitor; alternatively, you might join the legal team of an engineering, manufacturing or technology firm.

* Additional 2.25 years for engineering and laws double degree.
† Industrial design only.
* No double degrees are available with the resources engineering specialisation.
There’s an increasing demand for pharmaceutical scientists with the expertise to take products from the design and formulation stage through to manufacturing. Chemical engineers can design, run and troubleshoot production facilities, but their training typically excludes the skills to develop pharmaceutical and related products. Similarly, formulation scientists can invent and test products such as pharmaceuticals, food and cosmetics, but they lack the know-how to manage the product process beyond the laboratory stage. This double degree combines chemical engineering and pharmaceutical science to produce professionals capable of covering the full spectrum of the pharmaceutical product design and development processes.

Science
Engineering is concerned with the application of science, however many engineers are fascinated by scientific investigation and eager to enhance their understanding of the pure sciences. You may choose to combine engineering with food science or technology, or explore the fundamentals of the cosmos through astrophysics. Or you may be interested in the most fascinating machine of all – the human body.

For more information, visit monash.edu/engineering/double-degrees

DOUBLE DEGREE COMBINATIONS
The following table shows double degree combinations and the Engineering specialisations with which they’re available:

<table>
<thead>
<tr>
<th>Specialisation</th>
<th>Architectural Design</th>
<th>Arts</th>
<th>Biomedical Science</th>
<th>Computer Science</th>
<th>Computer Science*</th>
<th>IT</th>
<th>Law (Honours)*</th>
<th>Pharmaceutical Science†</th>
<th>Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical and computer systems</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechatronics</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I’ve always been a very inquisitive and curious individual – always questioning how things work and how things are put together. Maths has also always been one of my favourite subjects, alongside visual communication and design. Finding this double degree was the perfect combination of the two. I love that I can use my engineering and design skills to develop creative solutions. Monash always offers the most incredible opportunities to its students; whether it’s student internships, graduate positions or even the opportunity to work with real industry partners whilst undertaking units.”

MARINA ABDELMALEK
Structural Engineer, Arup.
Bachelor of Civil Engineering (Honours) and Bachelor of Architectural Design.
AEROSPACE ENGINEERING

Aerospace engineering is concerned with the design, airworthiness, development and maintenance of flight vehicles. It’s a multidisciplinary combination of aerodynamics, aero-structures, avionics, propulsion, materials engineering and computational simulation.

As an aerospace engineer, you’ll have the opportunity to tackle many of tomorrow’s global challenges. You may be involved in the creation of a more environmentally-friendly aircraft, or even help build a vehicle capable of exploring our solar system and beyond. Project work includes the use of wind tunnels for aerodynamic testing, computational modelling for predicting structural behaviour, advanced manufacturing, and materials and structural testing.

Career options
When you graduate you’re likely to work in aircraft design and maintenance, aerospace control systems, aerodynamics, sustainable energy and conservation, lightweight materials, big data analytics, or new manufacturing techniques. You might join a large aerospace company or a manufacturer that contracts to the aerospace industry. Or you might work at an airline, a government aerospace laboratory or research centre. Formula One teams also employ aerospace engineers. It might also lead you to a career in management consulting or finance. Join a thrilling profession in the midst of developing the next generation of flight vehicles.

The Airbus A350, A400M and the Boeing 787 Dreamliner are just some of the advances led by aerospace engineers. Career specialisations include:

• aircraft design and testing
• avionics and control systems
• airport operations and management
• aircraft fleet management
• manufacturing
• research and development
• defence industries
• renewable energy
• transportation aerodynamics
• building and structure design and testing.

It’s an amazing experience to be on the set of feature films but even more amazing is being able to see that work on the big screen at the movies.”

Aaron works at an aerial cinematography company that design, test and operate unmanned aerial vehicles with high end cameras. XM2 work around the world on TV shows, commercials and feature films, including Pirates of the Caribbean, Pacific Rim Uprising, Thor Ragnarok, Lion and Aquaman.

AARON CORERA
Remote Pilot and Safety Manager, XM2 Aerial.
Bachelor of Aerospace Engineering (Honours).
Monash Unmanned Aerial Systems team.
CHEMICAL ENGINEERING

Chemical engineering blends chemistry with engineering and other fields including biological science, environmental science, nanotechnology, pharmaceutical science, mathematical modelling, mineral processing, management and economics. Many everyday items involve chemical engineering during some stage of their production: pharmaceuticals, computer chips, mobile phones, catalysts, food and water, and our fossil fuel and renewable energy sources, to name just a few.

Chemical engineers invent, develop, design and improve processes that convert raw materials into useful products, with minimal environmental impact. They’re also involved with pollution control, energy generation and conservation, recovering energy from waste, and protection of the environment.

A selection of high-achieving students are given the opportunity to undertake integrated industrial training in their final year. You’ll have the benefit of expert industry lecturers teaching several units in third and fourth year, in addition to frequent industry guest lecturers in all year levels.

Career options
As a chemical engineer, you might:
• develop alternative fuels and renewable sources for chemicals, pharmaceuticals and power production
• design, develop or improve industrial processes and equipment for large-scale chemical and biochemical manufacturing
• plan and test methods of manufacturing
• improve energy efficiency or reduce water use at manufacturing sites
• develop methods for the treatment of byproducts and waste from manufacturing processes
• devise production processes that are safe, efficient, profitable and environmentally sound
• research naturally-occurring chemical reactions so that these processes can be copied for human benefit
• conduct environmental impact studies
• develop and implement lower emission production technologies
• research and develop new processes and products including mathematical modelling
• design, develop and use new materials.

Clayton, Malaysia
4 years full-time
8 years part-time
February and July
ATAR: 91.80*
IB: 34*
MG: 86
Specialist

DEGREE AWARDED
Bachelor of Chemical Engineering (Honours)

DOUBLE DEGREES
• Arts
• Biomedical Science
• Commerce
• Laws (Honours)
• Pharmaceutical Science
• Science

CRICOS: 001722B

* The scores provided are to be used as a guide only, and are either the lowest selection rank to which an offer was made in 2019 or an estimate (E). MG: Monash Guarantee.

I love the concept of engineering because it is ultimately the application of science to find solutions which benefit society. Problem solving using real-world processes is inherent in my engineering classes and there is rarely a single ‘correct’ solution – just an answer than is the most justifiable and logical given the initial problem.”

LAURA DE RANGO
Graduate Process Engineer, GHD.
Bachelor of Chemical Engineering and Bachelor of Science.
Past-President Society of Monash University Chemical Engineers (SMUCE).
Meg’s career has seen her take part in multibillion dollar highway projects and major infrastructure works, including working on the Woolgoolga to Ballina Pacific Highway upgrade.

“It’s exciting to be a part of one of Australia’s largest infrastructure improvement works. I can’t wait until one day I can go on a road trip to Queensland and see my project a reality.”

MEG PANIZZO

Engineer – NSW & ACT Transport, Arup.
Bachelor of Civil Engineering (Honours) and Bachelor of Arts.

Civil engineers design and improve infrastructure systems and processes that allow humans and nature to coexist with minimal impact. Modern society couldn’t function without them. We need civil engineers to design and build higher-capacity transportation systems. We need them to construct larger commercial and industrial complexes. We need them for water supply and pollution control.

We need efficient, cost-effective and innovative repair or replacement of civil infrastructure such as roads, bridges and buildings. At Monash we help you prepare for your civil engineering career early, with a focus on the fundamentals and a taste of industry experience through opportunities in the major fields.

As a civil engineer, you can be involved in:

- **Structures** – design and oversee construction of buildings, bridges, airports, railways, commercial complexes, towers, offshore platforms, and tunnels. Ensure structures remain sound under extreme conditions such as heavy traffic, high winds and earthquakes.

- **Water** – plan and manage water supply and drainage systems for communities, agriculture, and industry. Develop projects to control flood waters, design dams, spillways, and pipe networks. Manage rivers and develop systems to collect and treat wastewater, and develop urban water systems.

- **Transport** – plan for the future travel needs of cities and rural areas. Investigate alternative transport technologies to make existing road and traffic systems safer, more efficient, and user-focused.

- **Geomechanics** – design and analysis of foundations and support structures, slopes, waste containment facilities, dams and tunnels, as well as engineering of geomaterials for infrastructure projects.

Career options

When you graduate as a civil engineer, you’ll find challenging and rewarding opportunities in the following areas:

- government infrastructure projects
- private industry
- construction and mining
- roads and traffic industries
- marine and resort developments
- property and land development
- consulting firms.
ELECTRICAL AND COMPUTER SYSTEMS ENGINEERING

Electrical and computer systems engineering is an extremely diverse field, encompassing biomedical, computer systems, electronics, electrical power, AI, robotics and telecommunications. Electrical and computer systems engineers investigate, plan, design, develop, construct, test, market and maintain a wide range of products and systems.

Monash will give you the hands-on training and theoretical insight you need for an exciting future as an electrical and computer systems engineer.

You’ll experience industry-standard reprogrammable chips in the laboratories from first year onwards. By third year you’ll be building miniaturised machines with very powerful processing on board. In fourth year you may apply this knowledge to a ‘product’ of your own.

Career options
As an electrical and computer systems engineer, you might design and develop digital products such as smartphones, virtual reality systems or computer games, or maybe robotic medical devices to assist in surgery and rehabilitation. You could work locally or internationally in a wide range of industries, including:

- power generation
- industrial and power electronics
- wireless communications
- optical communications
- the ‘internet of things’
- embedded systems
- computer programming
- robotics
- healthcare.

Many Monash graduates work in large public and private telecommunications, manufacturing and electrical-power companies. Others work for defence and intelligence organisations. You could also work in banking and finance, or with any organisation that creates, stores, encodes and transmits big data or manages complex systems.

Clayton, Malaysia
4 years full-time
8 years part-time
February and July
ATAR: 91.80*
IB: 34*
MG: 86
Specialist

DEGREE AWARDED
Bachelor of Electrical and Computer Systems Engineering (Honours)

DOUBLE DEGREES
- Arts
- Biomedical Science
- Commerce
- Computer Science
- Information Technology
- Laws (Honours)
- Science

CRICOS: 001722B
* The scores provided are to be used as a guide only, and are either the lowest selection rank to which an offer was made in 2019 or an estimate (E). MG: Monash Guarantee.

Working for Ford has taken John around the world. John leads a multidisciplinary research team in discovering new user experiences through wireless connected hardware — the Internet of Things.

“As part of Ford Smart Mobility initiative, we’re the entrepreneurial, experimental, fast-paced, risk-taking side of an established global organisation.”

JOHN LUO
Manager, Emerging Technology Integration & Wireless Connectivity, Ford, Silicon Valley, San Francisco US.
Bachelor of Electrical and Computer Systems Engineering (Honours).
ENVIRONMENTAL ENGINEERING

Few branches of engineering have such a profound impact on our health, quality of life and the future wellbeing of the planet as environmental engineering. It’s all about the implementation and management of solutions and programs in keeping with the principles of sustainable development. It involves reducing energy and resource use and both minimising and managing waste and pollution, while providing the community with the development opportunities it needs to grow.

Environmental engineering encompasses water and air-pollution control, recycling, water supply, waste disposal, land management, transport and the built environment, process engineering, and public health issues.

Career options

Environmental problems exist in all countries and industries, so your opportunities are broad and far-reaching. You might work in air-pollution control, water supply, land management, impact assessment, hazardous-waste management, energy production, stormwater and wastewater management, environmental management systems and much more.

Organisations employing environmental engineers include:

- power generation
- engineering consulting firms
- industries that need cleaner production systems
- private and municipal agencies that supply drinking water and treat wastewater
- companies treating and disposing of hazardous waste
- environmental agencies and companies responsible for mine-site rehabilitation
- organisations helping to account for carbon and implementing low-carbon solutions
- government agencies monitoring and regulating environmental issues
- universities that teach and conduct sustainability research
- international agencies that aid developing nations.

University is much more than taking exams and completing assignments. My experience in MITI broadened my outlook, and sparked some life-changing friendships.”

Through various extracurricular activities, Hillary gained a huge amount of knowledge not possible through book learning and discovered her own potential. As part of the Monash Industry Team Initiative (MITI), Hillary helped supply clean drinking water to a fishing village in the Philippines, improving living conditions and ultimately saving lives.

KUNYAO “HILLARY” WU
Assistant Project Manager and Advisor, iBuild Building Solutions.
Bachelor of Environmental Engineering (Honours).
Past-President Female Engineers at Monash (FEM).
MATERIALS ENGINEERING

Materials engineering is all about making new materials and improving existing ones. It’s about making things stronger, lighter and more functional, sustainable and cost-effective. It underpins much of engineering – if we want to make things, we need to have materials with the right properties. Whether it’s a next-generation jet engine, a biodegradable tissue scaffold to grow organs from stem cells, or new types of solar cells and batteries, the structure, properties and processing of materials are crucial to the final product.

Materials engineers work with everything from the thermal protection of space shuttles to high-tech artificial hip and cochlear implants, and nanoparticles that seek and destroy cancer. Materials engineering is truly interdisciplinary. It involves physics, mathematics, biology and chemistry, culminating in a groundbreaking research field and a thriving job market.

As a materials engineer, your expertise will be sought after in the emerging fields of additive manufacturing, nanotechnology, biomedical materials, electronic materials, recycling and energy generation, the development of lightweight metal alloys and in traditional industries such as metallurgy and mining.

Career options

Demand for materials engineers continues to outstrip supply, with Monash graduates receiving an exceptional response in the employment market. Working across a range of exciting industries including aerospace, biomedical, mining, future manufacturing, 3D printing and recycling, materials engineers become:

• biomedical engineers
• consultants
• technology managers
• metallurgists
• materials designers
• energy scientists and future renewable energy engineers
• forensic engineers, aircraft forensics and defence scientists
• failure analysts
• materials selection specialists (aero, auto, structural)
• process engineers
• corrosion or durability engineers
• research engineers.

I have been provided countless opportunities to demonstrate my skills from my course in the real world. I have worked in the Woodside Innovations Lab, worked at HP in the US and have 3D printed prosthetic hands and recycled plastic.”

GABRIELLE NEWMAN
Bachelor of Materials Engineering (Honours) and Bachelor of Biomedical Science. Materials Manager, Precious Plastic Monash. Secretary, E-Nable Australia – a charity organisation that design and 3D print prosthetic hands for individuals (mainly children) to overcome the prohibitive costs of traditional prostheses.
MECHANICAL ENGINEERING

Mechanical engineering is about the efficient use of energy in the design and function of all types of mechanisms, from the simplest to the most complex. It builds on physics, chemistry, materials, mathematics and biology to achieve this goal. Growth industries include advanced manufacturing, smart buildings, renewable energy, medical engineering and consulting practice.

Mechanical engineers are increasingly engaged in the design and operation of devices that require skills that cross traditional discipline boundaries. As a mechanical engineer, you might design automatic control systems, or create efficiently heated and cooled buildings. You could manage the water supply for a whole state, take charge of the operation of a smart building, design wind turbines or highly efficient, low-cost products for the developing world.

You might be called on to optimise the aerodynamics of trucks and trains, work with the medical profession to create robots that can operate with greater precision than a human, or be at the cutting edge of advanced manufacturing using 3D printers to create aircraft parts with elegance and function.

Career options

Industries employing mechanical engineers include:
- building systems engineering
- advanced manufacturing
- petrochemical
- consulting
- transportation
- aerospace
- mining
- robotics
- renewable energy.

Other than being ranked as one of the top universities in the world in Engineering, the campus life and overall atmosphere were what caught my attention. The sense of community and inclusion is what I enjoy the most. There is always a friendly atmosphere no matter where you go, what you study, how you look, whatever!"

YUWEI CAI
Bachelor of Mechanical Engineering (Honours).
Chassis Engineer & Business Liaison, Monash Motorsport.
MECHATRONICS ENGINEERING

Mechatronics is the nexus between mechanical and electrical engineering, and is at the forefront of the ‘internet of things’. It’s crucial to the development of smart products and intelligent devices.

As a mechatronics engineer you could design the control systems for autonomous vehicles or robots for medical applications. Or you might take an everyday household product and turn it into a truly clever device.

Mechatronics engineers design devices and the programs that control those devices. They’re adept at handling vast amounts of data and creating systems that make sense of data in real time so that a fully automated manufacturing facility can operate safely and efficiently, or a car can drive completely autonomously.

Mechatronics engineers are in high demand as the need for professionals in this space is increasing. They’re needed in the advanced manufacturing and aerospace industries as well as by the manufacturers of robots and in data analysis.

Career options

You’ll be equipped with the knowledge and skills to design, develop, manufacture and operate the intelligent products and complex systems of today and tomorrow.

Opportunities exist in:
- robotics and automation
- aerospace systems and flight control
- bioengineering
- intelligent systems for motor vehicles
- manufacturing systems and processes
- telecommunications
- medical systems
- software engineering
- mining systems and processes
- nanotechnology.

There are also opportunities in consulting, management and finance. You may also pursue a career in research and development, in academia, research institutions or advanced industry sectors.

I am very interested in robotics and design, and my research allows me to focus on both. I enjoy the creativity. Watching the world become more “automatic” and “futuristic” as I grew up, drew me to this area of research. I wanted to be a part of it.”

As part of his PhD, Keenan is developing an agricultural robot for apple picking with an adaptive gripper for use in complex outdoor environments.

KEENAN GRANLAND
Bachelor of Mechatronics Engineering (Honours),
PhD student in Mechanical Engineering, Monash.
Resources engineering includes two streams, mining and renewable energy, that meet the ever-changing global challenges and future demands of industry and society. From third year you’ll develop expertise in your stream of choice and be provided with the opportunities to enhance your skills in leadership and management, opening up a wide range of exciting career opportunities to choose from.

Resources engineers take a leading role in solving complex and multidisciplinary engineering problems. They find innovative, and sustainable ways to make the extraction of natural resources cleaner and safer, and create advancements in new renewable technologies to meet the energy needs for generations to come.

Resources engineering streams

MINING

Mining engineering aims to provide sustainable solutions for the safe extraction and processing of minerals with a minimal environmental and energy footprint. As a practical discipline with strong industry engagement, it covers exploration, resource estimation, mine design, mineral processing, financial, economic and risk assessment, and management. Mining companies often provide career opportunities to fill their managerial positions with mining engineers experienced in the life cycle of mining projects and day-to-day operations.

RENEWABLE ENERGY

Renewable energy engineering focuses on the fundamental conversion of solar radiation, wind, hydro, and bioenergy resources into electricity by designing, building and operating energy plants such as wind farms, solar farms and hydro power facilities. These engineers run the large-scale energy system incorporating renewables, and they provide expert advice in the development of energy policy to facilitate the transformation of the energy system, both domestically and internationally.

Career opportunities

Resources engineers are in high demand and there is a diverse range of potential career paths available, in Australia or overseas. You could work in a wide range of areas including:

- environmental protection
- mining and exploration
- tunnelling, road and railway construction
- consulting and technical specialists
- numerical modelling
- government policy
- conventional energy generation
- hydropower design and operation
- wind and solar farm design and operation
- emerging technology research and design.

A highlight of my course was doing a summer internship, working on a mine site for three months in Western Australia. I can honestly say that this was extremely challenging, however I have never learnt so much so quickly.”

BRETT COSGRIFF
Graduate Mining Engineer, MMG Limited. Bachelor of Mining Engineering (Honours), Past President Resources Engineering Student Society (RESS). Monash Engineering Leadership Program.

^ The mining specialisation is now offered under the Bachelor of Resources Engineering (Honours)
SOFTWARE ENGINEERING

Software is everywhere. It does everything from dispensing medicine to controlling flight paths to monitoring and shaping our shopping habits. The world’s major companies, governments and organisations depend on smartly designed and well-built software. And they rely on the expertise of skilled software engineers to make it happen.

As a software engineer, you’ll apply engineering principles to systematically analyse, develop and improve software to ensure it runs effectively, safely and securely. You’ll acquire high-level programming expertise, but software engineering goes well beyond writing code.

Most modern IT systems are so complicated that teams of people must work together to create them. This specialisation’s emphasis on collaborative studio-based learning will give you strong skills in teamwork, project management and communication.

You have a huge choice of IT electives from Australia’s leading IT faculty, from cyber security to games development to business information systems. You can apply for the highly-regarded IT Industry-Based Learning (IBL) program to do a half-year placement with a leading organisation. Placements count towards your course and are supported by $18,000 scholarships.

Career options
Software engineers work in teams with other software engineers, scientists, managers and business people. These teams might consist of people in the next office or of people in locations all over the world. This project-rich specialisation is designed to address industry demand for tech-savvy graduates with large-scale software systems project capability.

This is a young and exciting field of engineering that’s constantly evolving as new technologies emerge. Specialise in software engineering at Monash for an exciting career designing and creating the innovative IT software systems we all rely on. The Bachelor of Software Engineering (Honours) is also accredited by the Australian Computer Society.

Software engineering is one of those disciplines that keeps you on your toes; you can never know everything in a field that evolves with such rapidity. The demand for software engineers is much higher than the supply, so job opportunities tend to fall into your lap if you have the skills and the potential.”

SALONI SHARMA
Associate (Digital Trust) at PwC.
Bachelor of Software Engineering (Honours).
Industry-Based Learning (IBL) program.
Domestic Admissions and Entry Requirements

ATARS and Prerequisites for Single and Double Degrees

Academic Prerequisite Subjects

The table below outlines the requirements, and the course listing tells you which categories apply to each course. Make sure you check if this applies to your course of choice in this guide.

<table>
<thead>
<tr>
<th>VCE</th>
<th>English</th>
<th>Mathematics</th>
<th>Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>Units 3 and 4: a study score of at least 30 in English (EAL) or 25 in English other than EAL.</td>
<td>Units 3 and 4: a study score of at least 35 in English (EAL) or 30 in English other than EAL.</td>
<td>Units 3 and 4: a study score of at least 25 in one of Mathematical Methods (any) or Specialist Mathematics.</td>
</tr>
<tr>
<td>Level 2</td>
<td></td>
<td></td>
<td>Units 3 and 4: a study score of at least 25 in Chemistry or Physics.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IB</th>
<th>English</th>
<th>Mathematics</th>
<th>Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL subjects:</td>
<td>At least 4 in one of the following</td>
<td>At least 5 in one of the following</td>
<td>At least 4 in one of the following</td>
</tr>
<tr>
<td>• English A: Literature, or</td>
<td>SL subjects:</td>
<td>SL subjects:</td>
<td>SL subjects:</td>
</tr>
<tr>
<td>• English A: Language and Literature, or</td>
<td>• English A: Literature, or</td>
<td>• English A: Literature, or</td>
<td>• Mathematics: Analysis and Approaches, OR</td>
</tr>
<tr>
<td>• Literature and Performance, OR</td>
<td>• English A: Language and Literature, or</td>
<td>• English A: Language and Literature, OR</td>
<td>At least 3 in one of the following</td>
</tr>
<tr>
<td>HL subjects:</td>
<td>At least 4 in one of the following</td>
<td>At least 4 in one of the following</td>
<td>HL subjects:</td>
</tr>
<tr>
<td>• English A: Literature, or</td>
<td>HL subjects:</td>
<td>HL subjects:</td>
<td>• Mathematics: Applications and Interpretations, or</td>
</tr>
<tr>
<td>• English A: Language and Literature, OR</td>
<td>• English A: Literature, or</td>
<td>• English A: Language and Literature, OR</td>
<td>• Mathematics, or</td>
</tr>
<tr>
<td>At least 5 in one of the following SL subjects:</td>
<td>At least 5 in one of the following SL subjects:</td>
<td>At least 5 in one of the following SL subjects:</td>
<td>• Further Mathematics, or</td>
</tr>
<tr>
<td>• English AB, or</td>
<td>• English AB, or</td>
<td>• English AB, or</td>
<td>• Mathematics: Analysis and Approaches.</td>
</tr>
<tr>
<td>• English B, OR</td>
<td>• English B, OR</td>
<td>• English B, OR</td>
<td></td>
</tr>
<tr>
<td>At least 4 in the following HL subject:</td>
<td>At least 5 in the following HL subject:</td>
<td>At least 5 in the following HL subject:</td>
<td></td>
</tr>
<tr>
<td>• English B.</td>
<td>• English B.</td>
<td>• English B.</td>
<td></td>
</tr>
</tbody>
</table>

Undergraduate Courses at a Glance

<table>
<thead>
<tr>
<th>Course</th>
<th>Duration (years)</th>
<th>Prerequisites (refer to table above)</th>
<th>Degree awarded</th>
<th>Location</th>
<th>Indicative ATAR</th>
<th>Indicative IB Score</th>
<th>Monash Guarantee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering [A]</td>
<td>4</td>
<td>Chemistry or Physics</td>
<td>Bachelor of Aerospace Engineering (Honours)</td>
<td>CL</td>
<td>91.90</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Chemical Engineering (Honours)</td>
<td>CL</td>
<td>91.80</td>
<td>34</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Civil Engineering (Honours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Electrical and Computer Systems Engineering (Honours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Environmental Engineering (Honours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Materials Engineering (Honours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Mechanical Engineering (Honours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Mechatronics Engineering (Honours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Resources Engineering (Honours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Software Engineering (Honours)</td>
<td>CL</td>
<td>92</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Chemistry or Physics</td>
<td>Bachelor’s Honours / Master’s Pathway¹</td>
<td>CL</td>
<td>98.10</td>
<td>40</td>
<td>N/A</td>
</tr>
</tbody>
</table>

¹ Bachelor’s Honours / Master’s Pathway is available for students who meet the academic requirements.
Double degree courses at a glance

<table>
<thead>
<tr>
<th>Course</th>
<th>Duration (years)</th>
<th>English Level 1</th>
<th>English Level 2</th>
<th>English Level 3</th>
<th>Mathematics Level</th>
<th>Mathematics Level</th>
<th>Science Level</th>
<th>Prerequisites</th>
<th>Degree awarded</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Design</td>
<td>5</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Chemistry or Physics</td>
<td>■</td>
<td>■</td>
<td>Bachelor of Aerospace Engineering (Honours) and Bachelor of Architectural Design</td>
<td>CL, CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Mechanical Engineering (Honours) and Bachelor of Arts</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Chemical Engineering (Honours) and Bachelor of Arts</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Chemical Engineering (Honours) and Bachelor of Arts</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Electrical and Computer Systems Engineering (Honours) and Bachelor of Arts</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Environmental Engineering (Honours) and Bachelor of Arts</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Materials Engineering (Honours) and Bachelor of Arts</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Mechanical Engineering (Honours) and Bachelor of Arts</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Mechatronics Engineering (Honours) and Bachelor of Arts</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Software Engineering (Honours) and Bachelor of Arts</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Arts</td>
<td>5</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Chemistry or Physics</td>
<td>■</td>
<td>■</td>
<td>Bachelor of Chemical Engineering (Honours) and Bachelor of Biomedical Science</td>
<td>CL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Mechanical Engineering (Honours) and Bachelor of Biomedical Science</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Electrical and Computer Systems Engineering (Honours) and Bachelor of Biomedical Science</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Biomedical Science</td>
<td>5</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Chemistry</td>
<td>■</td>
<td>■</td>
<td>Bachelor of Chemical Engineering (Honours) and Bachelor of Biomedical Science</td>
<td>CL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Mechanical Engineering (Honours) and Bachelor of Biomedical Science</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Electrical and Computer Systems Engineering (Honours) and Bachelor of Biomedical Science</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Materials Engineering (Honours) and Bachelor of Biomedical Science</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Mechanical Engineering (Honours) and Bachelor of Biomedical Science</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Mechatronics Engineering (Honours) and Bachelor of Biomedical Science</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Software Engineering (Honours) and Bachelor of Biomedical Science</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Commerce</td>
<td>5</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Chemistry</td>
<td>■</td>
<td>■</td>
<td>Bachelor of Aerospace Engineering (Honours) and Bachelor of Commerce</td>
<td>CL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Chemical Engineering (Honours) and Bachelor of Commerce</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Mechanical Engineering (Honours) and Bachelor of Commerce</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Electrical and Computer Systems Engineering (Honours) and Bachelor of Commerce</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Environmental Engineering (Honours) and Bachelor of Commerce</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Materials Engineering (Honours) and Bachelor of Commerce</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Mechanical Engineering (Honours) and Bachelor of Commerce</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Mechatronics Engineering (Honours) and Bachelor of Commerce</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Software Engineering (Honours) and Bachelor of Commerce</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Computer Science</td>
<td>5</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Chemistry</td>
<td>■</td>
<td>■</td>
<td>Bachelor of Electrical and Computer Systems Engineering (Honours) and Bachelor of Computer Science</td>
<td>CL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Software Engineering (Honours) and Bachelor of Computer Science</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>5</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Chemistry</td>
<td>■</td>
<td>■</td>
<td>Bachelor of Mechanical Engineering (Honours) and Bachelor of Industrial Design</td>
<td>CL, CA</td>
<td></td>
</tr>
<tr>
<td>Information Technology</td>
<td>5</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Chemistry</td>
<td>■</td>
<td>■</td>
<td>Bachelor of Electrical and Computer Systems Engineering (Honours) and Bachelor of Information Technology</td>
<td>CL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Software Engineering (Honours) and Bachelor of Information Technology</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Laws</td>
<td>6.25f</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Chemistry</td>
<td>■</td>
<td>■</td>
<td>Bachelor of Laws (Honours) and Bachelor of Aerospace Engineering (Honours)</td>
<td>CL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Laws (Honours) and Bachelor of Chemical Engineering (Honours)</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Laws (Honours) and Bachelor of Civil Engineering (Honours)</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Laws (Honours) and Bachelor of Electrical and Computer Systems Engineering (Honours)</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Laws (Honours) and Bachelor of Materials Engineering (Honours)</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Laws (Honours) and Bachelor of Mechanical Engineering (Honours)</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Science</td>
<td>5</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Chemistry</td>
<td>■</td>
<td>■</td>
<td>Bachelor of Chemical Engineering (Honours) and Bachelor of Pharmaceutical Science</td>
<td>CL, PA</td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>5</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Chemistry</td>
<td>■</td>
<td>■</td>
<td>Bachelor of Chemical Engineering (Honours) and Bachelor of Science</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Civil Engineering (Honours) and Bachelor of Science</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Electrical and Computer Systems Engineering (Honours) and Bachelor of Science</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Environmental Engineering (Honours) and Bachelor of Science</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Materials Engineering (Honours) and Bachelor of Science</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Mechanical Engineering (Honours) and Bachelor of Science</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Mechatronics Engineering (Honours) and Bachelor of Science</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor of Software Engineering (Honours) and Bachelor of Science</td>
<td>■</td>
<td></td>
</tr>
</tbody>
</table>

1 Duration is based on a standard full-time load of 48 credit points per annum.
2 Indicative – The provided score is the 2019 lowest ATAR to which an offer was made or an estimate (E), and is to be used as a guide only.
3 Masters Accelerated pathway is only available to school leavers and is not offered with environmental, resources or software engineering specialisations.
4 Depending on your Arts major, you may take the Arts component at Clayton or Caulfield.
5 This course is an accelerated course where you’ll be required to undertake more than the standard annual load of 48 credit points in year two and/or year three in order to complete the course in six years.
ACADEMIC ENTRY REQUIREMENTS
All Monash undergraduate courses require you to have successfully completed a minimum of an Australian Year 12 qualification (or equivalent) and achieve the required academic entry score.

The table above outlines the academic entry scores (for the listed qualifications) that apply to each undergraduate course.

How to calculate your entry score for the listed qualifications in this guide are calculated as follows:

Australian Year 12 (listed under the ‘2020 ATAR for international students’ column): Final ATAR as awarded by the relevant Australian state Year 12 authority.

GCE A Level: Total score of a maximum of the best three A Level subject examinations taken within two years². Two AS Level subjects can be counted in place of one A Level subject, provided that the subject has not been taken at A Level, and there’s at least one A Level subject included in the calculation. A maximum of 1 bonus point is offered when achieving A* in an A Level subject.

GCE A Levels must be awarded by the following bodies:
- Cambridge Assessment International Examinations (CAIE) (previously known as CIE)
- Pearson Edexcel (previously known as Edexcel)
- Council for the Curriculum, Examinations and Assessment (CCEA)
- Oxford, Cambridge and RSA Examinations (OCR)
- Welsh Joint Education Committee (WJEC)
- Assessment and Qualifications Alliance (AQA).

All India Senior School Certificate: Overall average of the best four academic subjects (excluding Physical Education) and results indicated as ‘PASS’.

American Admission Tests:
- Advanced Placement: Total of the best two Advanced Placement (AP) examinations undertaken during Grades 9 to 12 of the American High School Diploma. If more than two AP examinations have been completed, only the best two AP examinations will be used in the calculation. Minimum accepted score in each AP examination is 3.

The following documents must also be submitted:
- Official final Advanced Placement examination issued by the College Board
- Official final academic transcript and Diploma Certificate for the American High School Diploma (or equivalent Australian Year 12 qualification)².

- Scholaric Aptitude Test (SAT) – total score out of 2400: Total score obtained by adding the highest section scores² (by adding the best scores achieved for ‘Evidence Based Reading and Writing’, ‘Mathematics’ and ‘Writing’) across all SAT examinations submitted to Monash University.

- Scholaric Aptitude Test (SAT) – total score out of 1600: Total score obtained by adding the highest section scores² (by adding the best scores achieved for ‘Evidence Based Reading and Writing’ and ‘Math’) across all SAT examinations submitted to Monash University.

- Official final SAT examination issued by The College Board
- Official final academic transcript and Diploma Certificate for the American High School Diploma (or equivalent Australian Year 12 qualification)².

Additional Requirements for American Admission Tests (SAT and AP):
- The American High School Diploma cannot be accepted independently for admission into Monash University.
- Schools that offer the American High School Diploma in the United States of America must be listed as accredited on the National Center for Education Statistics at nces.ed.gov/globallocator
- Schools that offer the American High School Diploma outside the United States of America must be accredited by the Advanced Ed or an equivalent regional accrediting agency in the United States of America as follows:
 - Middle States Association of Colleges and Schools
 - New England Association of Schools and Colleges
 - North Central Association of Colleges and Schools
 - Northwest Commission on Colleges and Universities
 - Northwest Accreditation Commission
 - Western Association of Schools and Colleges
 - Southern Association of Colleges and Schools.
- If a student has undertaken multiple American Admission Tests (i.e. SAT, AP or ACT), the test with the highest achieved scores will be considered as meeting Monash University undergraduate entry requirements.
Engineering

COURSE DEGREE AWARDED

- Bachelor of Engineering (Honours) / Master’s Accelerated Pathway
- Bachelor of Resources Engineering (Honours)
- Bachelor of Mechatronics Engineering (Honours)
- Bachelor of Mechanical Engineering (Honours)
- Bachelor of Materials Engineering (Honours)
- Bachelor of Electrical and Computer Systems Engineering (Honours)
- Bachelor of Aerospace Engineering (Honours)

Duration
- 1 year

E3001 CL Feb, July A $44,400

Location

Intake

English language level

2019 fee p.a.

Bachelor of Engineering

- Level 1
 - English: 11
 - Mathematics: 87.50
 - Science: 81%

- Level 2
 - English: 1360
 - Mathematics: 8.7
 - Science: 36

Monash College

- Diploma Part 1: 87.50
- Diploma Part 2: 88.75%

Hong Kong Diploma of Secondary Education: Total score of the best five subjects (Category A and C only). Score graded as follows: Level 1–1, Level 2–2, Level 3–3, Level 4–4, Level 5–5 or A–5, B–4, C–3, D–2, E–1. A maximum of 1 bonus point is offered when achieving Level 5** or Level 5* in a HKDSE Category A subject.

Indian School Certificate Examination: Overall average of the best four academic subjects (excluding Physical Education) and results indicated as ‘PASS CERTIFICATE AWARDED’.

International Baccalaureate (IB) Diploma: Total final score as awarded on the final official transcript.

Ontario Secondary School Diploma – Grade 12: Overall average of the best six academic subjects (excluding workplace preparation courses and open courses). Students must achieve a minimum total of 30 credits and complete Community Involvement.

SMA3, Indonesia – 100% scale (60% pass): Overall average of all Semester 1 and Semester 2 Grade 12 results.

STPM, Malaysia: Total of the best three subjects, excluding Pengajian Am (General Studies).

UEC, Malaysia: Overall average of the best five subjects. Only grades A1, A2, B3, B4, B5 and B6 to be included in calculation. C7, C8 and F9 cannot be included in the calculation.

Five subjects must be included in the calculation with a score of B6 grade or higher in each subject. Score grades as follows: A1=1, A2=2, B3=3, B4=4, B5=5, B6=6.

It should be noted that a score of A1 is the highest score.

Monash University Foundation Year (MUFY): To calculate the average mark required for the Monash University destination degree, refer to the ‘How to calculate your Foundation Year score’ information available at: monashcollege.edu.au/courses/diplomas/destination-degrees

The undergraduate entry requirements published in this brochure are for students who commence the MUFY program in 2020.

UNSW Foundation Studies: Final grade point average.

The University of Melbourne Trinity College Foundation Studies: Overall average of the best four subjects (excluding English for Academic Purposes).

Monash College Diploma: To calculate the average mark required for the Monash University destination degree, refer to the relevant diploma program information available at monashcollege.edu.au/courses/diplomas/destination-degrees

The Monash College Diploma Part 1 and Part 2 entry requirements published in this guide are for students commencing their undergraduate destination degree in 2021.

Other international qualifications entry requirements can be found at monash.edu/prior-study

PREREQUISITES AND ADDITIONAL REQUIREMENTS

Students need to meet course prerequisites (including English) and additional requirements. It should be noted that required prerequisite subject scores are not listed in this course guide.

ENGLISH ENTRY REQUIREMENTS

When you apply for a Monash University undergraduate course you must satisfy English entry requirements.

<table>
<thead>
<tr>
<th>English test</th>
<th>Academic IELTS</th>
<th>Internet Based TOEFL</th>
<th>Pearson Test of English (Academic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening</td>
<td>A 6.5</td>
<td>6.0</td>
<td>58</td>
</tr>
<tr>
<td>Speaking</td>
<td>6.0</td>
<td>6.0</td>
<td>50</td>
</tr>
<tr>
<td>Reading</td>
<td>6.0</td>
<td>6.0</td>
<td>50</td>
</tr>
<tr>
<td>Writing</td>
<td>6.0</td>
<td>6.0</td>
<td>50</td>
</tr>
</tbody>
</table>

1. Duration is based on a standard full-time load of 48 credit points per annum.
2. Fees are quoted in Australian dollars; each is the annual average fee per 48 credit points of study in this course for 2019. Fees are adjusted annually. Please see monash.edu/fees/course-fee-types/international-full-fee for updates.
3. Masters Accelerated pathway is only available to school leavers and is not offered with environmental, resources or software engineering specialisations.
4. Subject examinations taken within two years may include more than one sitting. For example, subject examinations in June 2013 until June 2015 are acceptable.
5. In order for the final score to be calculated all SAT scores must be marked out of 2400.
6. In order for the final score to be calculated all SAT scores must be marked out of 1600.
7. Students who have undertaken an American Admission Test (i.e. SAT, AP or ACT) with another international qualification (equivalent to an Australian Year 12) will be considered for Monash University undergraduate admission, however the qualification or American Admission Test will be considered whether the student has met the entry requirements. Students who have undertaken an accredited final secondary school leaving award that is not equivalent to an Australian Year 12 may be considered for Monash University undergraduate admission only with an approved American Admissions Test, however higher entry scores will apply.
8. The highest grade will be used in the calculation in the event where individual subject examinations have been sat in multiple sittings.
9. The grade 12 subjects must be taken from the most recent completed Ontario Student Transcript issued by the Ontario Ministry of Education.
10. The Monash College Diploma Part 1 and 2 entry requirements are for students commencing their undergraduate degree in 2021.
HOW TO APPLY

DOMESTIC STUDENTS

Apply through VTAC
If you’re an Australian or New Zealand citizen or an Australian permanent resident, apply through the Victorian Tertiary Admissions Centre (VTAC).

www.vtac.edu.au

Prerequisites
Please check that you meet the prerequisites for your chosen course before submitting your application. Prerequisite details for each course can be found in the admissions table beginning on page 24.

Scholarships
For more information, and to apply for scholarships, visit monash.edu/scholarships

Fees
To estimate your course fees, visit monash.edu/study

Commonwealth Supported Places
Australian citizens, New Zealand citizens, Australian permanent residents and permanent humanitarian visa holders are eligible to apply for a Commonwealth Supported Place (CSP). Visit monash.edu/enrolments/government-loans/commonwealth-supported-place

HECS-HELP/FEE-HELP
Loan options for eligible applicants. Visit monash.edu/enrolments/government-loans/domestic-full-fee

INTERNATIONAL STUDENTS

All international students must apply for a Monash University course online. Visit monash.edu/study/how-to-apply for details.

Note: International students who are undertaking an Australian Year 12 qualification (for example, VCE or equivalent) in Australia or overseas, International Baccalaureate (IB) Diploma in Australia or New Zealand, or National Certificate of Educational Achievement (NCEA) Level 3 in New Zealand must apply through the Victorian Tertiary Admissions Centre (VTAC). Visit www.vtac.edu.au

Fees
A$44,400, 2019 fees pa. Further information on fees for each course can be found at monash.edu/study

Monash College
Monash College is the preferred pathway for students who aspire to study engineering at Monash University but who narrowly miss the academic requirements for direct entry. The course you choose depends on your current level of study and future career plans.

For more information on Monash College academic pathways, visit monashcollege.edu.au/courses
DISCOVER MORE

2019 EVENTS
There’s a range of events held throughout the year for you to visit campus and experience Monash Engineering first-hand. Meet our lecturers, talk to current students, see our innovative facilities and explore the various fields of engineering.

Inside Monash
30 May 2019 and 28 August 2019
Get the inside story of what it’s really like to study engineering at Monash. Find out more about the course and chat to current students, alumni and academics.

Engineering campus tours
12 April, 12 July, 23 September, 4 October 2019
If you would like to take a closer look and see where you could be studying next year, this is a great chance to visit our fantastic engineering facilities and student spaces. Get a feel for campus life, have chat with engineering staff and we can help you with course advice as well. The tour is free and registration is essential. See the website for details.

Year 8 Challenge
1 – 3 July 2019
Dive into the wonderful world of engineering with three days of hands-on workshops designed for Year 8 students. Participate in experiments, develop 3D software, construct electrical gadgets, play with robots and aerial systems and learn from engineering experts.

Open Day
4 August 2019
Discover what it’s like to be a Monash student. Open Day is a chance to talk with current students, meet academics and speak with our student services team about your future. Watch live demonstrations, tour our engineering facilities and soak up the campus atmosphere.

Find out more about upcoming events at monash.edu/engineering/events

Monash Engineering Girls (MEG)
Join our new girls program and gain access to exclusive events and discover the possibilities a career in engineering can offer. The program is open to Year 9 and 10 students in 2019.

Engineering 101
Experience what it’s like to be an engineering uni student for a day. With lectures and hands-on workshops to challenge your creativity, you can explore how things work and learn about the different fields of engineering.

Access All Areas
An exclusive opportunity for MEG members and parents to explore the engineering precinct and facilities on our guided ‘Access All Areas’ tour.

Club Fest
Meet our student-run clubs and project teams and discover what you can achieve as a Monash Engineering student.

For more information, visit monash.edu/engineering/meg
Philanthropic donors: Clive and Helen Weeks, Dr Chang Mong Tay, Dubsky family, Ian and Margaret Polmear, Department of Materials and Science Engineering, Dr Jerry and Ann Ellis, Jenkins family, Barclay family, Birbilis family, Cummins family, Nick Apostolidis.

Monash is proud to have the following industry partners who support our students through scholarships and prizes: