STUDIES WILL YOU TAKE?

EAE will qualify you for many exciting careers as future leaders in applied or fundamental science, in industry or academia. Earth Scientists earn some of the highest graduate salaries, in applied or fundamental science, in industry or academia.

WHERE WILL YOUR STUDIES TAKE YOU?

We have our eye on your future and we work collaboratively with industry so our students develop an early link with real-world problems. EAE has links with employers including the Bureau of Meteorology, Melbourne Water, Snowy Hydro, Hydro Tasmania, DISERI, ISSO, Rio Tinto, Mount Isa Mines, MMG, AusIMM, Naavaire Minerals, Agnew Gold, ANSTO, MTEC, Shell International, Geoscience Australia, Victorian Department of Land, Water and Planning, Victorian Department of Economic Development, Jobs, Transport and Resources, and a number of Co-operative Research Centres.

WHAT YOU’LL STUDY

In 2017 the majors offered are Earth Science (consisting of 3 streams), Atmospheric Science, and extended majors in Earth Science and Geographical Science. There are also many electives to choose from. Environmental and climate units offered by EAE also form part of the Environmental Science extended major managed by the School of Biological Sciences. For further details about the units you will study, as well as the electives available, visit the handbook: monash.edu/pubs/handbooks.

<table>
<thead>
<tr>
<th>Majors</th>
<th>Prerequisites</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Science</td>
<td>EAE1011: Earth Atmosphere and Environment 1</td>
<td>Earth Sciences is a broad discipline that addresses the major processes that have shaped our planet over time and continue to pose natural hazards to society, but also provide resources that we need to sustain a modern society. You will learn about geological processes (plate tectonics, basin formation, volcanology, earthquakes), and the formation of ore-deposits; the Earth’s physical environment (such as rivers, groundwater, soils, and landscapes) and the interaction of physical systems with the biosphere; and the Earth’s climate and how we understand and predict natural and anthropogenic climate change.</td>
</tr>
<tr>
<td>The Earth’s Physical Environment</td>
<td>EAE1022: Earth Atmosphere and Environment 2</td>
<td>EAE1022: Earth Atmosphere and Environment 2 Elective SCI1300</td>
</tr>
<tr>
<td>The Earth’s Climate</td>
<td>SCI1300</td>
<td></td>
</tr>
<tr>
<td>Geosciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmospheric Science</td>
<td>EAE1011: Earth Atmosphere and Environment 1</td>
<td>Atmospheric Science is an interdisciplinary science that draws on the strengths of Environmental Science, Applied Mathematics and Physical Geography. It also applies concepts derived from Physics and Chemistry. Atmospheric Science explains how the weather and climate system works, from a gust of wind to global-scale climate change. Weather and climate are both critical to understanding the natural environment and how it is changing with human influence.</td>
</tr>
<tr>
<td>The Earth’s Physical Environment</td>
<td>EAE1022: Earth Atmosphere and Environment 2</td>
<td>EAE1022: Earth Atmosphere and Environment 2 Elective SCI1300</td>
</tr>
<tr>
<td>Geographical Science</td>
<td>SCI1300</td>
<td></td>
</tr>
</tbody>
</table>

Some career options include

- Weather and climate prediction
- Environmental management and consulting
- Resource, energy and finance sectors
- Agriculture sector, including agribusiness
- Emergency services
- Data analytics
- Research and development
- Government agencies
- Risk management
- Science communication and education
- University sector
- Mineral exploration and mining

What you’ll study in first year

EAE1011: Earth Atmosphere and Environment 1

Provides an introduction to the science involved in studying the Earth, including explanations of how and why our planet has changed since its formation 4.56 billion years ago. We will study the formation, history and anatomy of the Earth and the processes that drive change within our planet and its environmental systems, from the formation of the core to its crust, to the systems driving and sustaining the planet’s living surface to the forces and processes involved in the formation of mountains and oceans, and our changing atmosphere and climate.

EAE1022: Earth Atmosphere and Environment 2

This unit will expand your knowledge of the environmental, geological and atmospheric processes that create the unique physical environment in which we live, and will demonstrate how these processes influence our lives from the provision of resources to natural disasters. You will examine how and why the Earth’s surface, atmosphere and vegetation have changed in the past, and are predicted to change in the future, as a result of human influences such as deforestation, agricultural practices and human-induced climate change.

ATS1301: Extreme Earth!

This unit will focus on the catastrophes of our world today, such as droughts, earthquakes, epidemics, fires, floods, hurricanes, landslides, tsunamis and weather extremes. It seeks to understand the mechanics and dynamics of these environmental phenomena and how they interact with the social contexts in which these disasters occur. We will also investigate the role of international aid and risk management using local and international case studies.

ATS1309: The Global Challenge

What can you do in a world that is challenged by questions of poverty, environmental degradation, social inequality and economic exclusion? Insight gained into the new and emerging forces of social, economic and environmental change. The unit examines how changing population and migration dynamics, urban development, patterns of consumption and growth, and labour markets interact at local, national and global scales.

SCI1300: Climate Change: From Science to Society (Elective Unit)

This unit provides the scientific background to climate change, and assesses the environmental and societal impacts, and community and political responses to climate change. Starting from the basic principles and processes that define and govern the Earth’s climate, the unit explores how the different spheres on Earth interact to produce the rich past and current variability of climate in space and time and how human influences are shaping the future of the Earth’s climate. The unit investigates what options humankind has to respond to the economic, ethical and political challenges of climate change, including global and national governance models required to mitigate and adapt to its effects. The unit will provide students with the foundation and knowledge to respond to climate change challenges throughout their career, independent of their specific discipline.
In 2017 you will be among the first students to be taught in a world first teaching space ‘The Monash Earth Sciences Garden’. Our Garden is designed to enhance and accelerate your learning by providing on-site training for skills you will require in a career as a geoscientist, atmospheric scientist, environmental scientist or geographical scientist. You will be able to master skills and concepts early in your studies that could otherwise take years to develop. The garden reflects the Earth’s activity over the last 600 million years.

Our state-of-the-art teaching laboratories and practical classes are also complemented by innovative field experiences. Some of the places you can visit include the Western Volcanic Plains of Victoria, the You Yangs, Cape Liptrap, Mt Aka, Wilsons Promontory and Lake Eldon in Victoria, and Broken Hill in New South Wales. We even have one field unit based in Italy in the Cinque Terre, Liguria.

Our students have the opportunity to accompany senior researchers on fieldwork expeditions, to places including Antarctica and Africa. Our students can also take in a student exchange program with the University of Oklahoma—the perfect place to chase storms.

UNIQUE LEARNING SPACES

APPLY YOUR PASSION FOR ALL SCIENCES WITH EAE

CHEMISTRY OF THE EARTH
The first chemists were geochemists. Studying geochemistry will give you an understanding of the building blocks of our planet, from minerals to mountains and from our ever changing environment to the beginning of our solar system.

Geochemistry has many applications in industry and scientific research. At EAE we study the chemistry of rocks, sediments, soils and waters so we can expand our understanding of our environment, how and when rocks or ores form, and processes to make use of geo-materials.

BIOLOGY OF THE EARTH
Combine your love of Biology with Earth Science to understand how life and planets develop together. The biology of the Earth embraces the investigation of all life (animals, plants, microorganisms) and its dynamic ecosystems, from our first record of fossils ~3.7 billion years ago to the present.

By studying the Biology of the Earth, you’ll examine how and why ecosystems move and change. You will search for signs of early life in the far reaches of the planet through fossil records, painting a vivid picture of ancient and unfamiliar worlds.

You’ll also learn how plants and microorganisms can restore damaged and contaminated environments and how life in extreme environments on Earth informs our ongoing search for biology elsewhere in our Solar System.

PHYSICS OF THE EARTH
Did you know that the Earth behaves as one big magnet? Have you ever considered that the Earth’s resources are a consequence of the interaction between the deep mantle interior of the Earth and the movement of thin plates that form the skin of the Earth. These same plate movements are responsible for many of the natural disasters that affect modern society.

By studying the Physics of the Earth in the School of Earth, Atmosphere and Environment, you will be able to understand the world you live on and what lies below our feet. You can use your curiosity to become part of one of the great scientific challenges—how we manage our magnificent planet and its natural resources for future generations.

PHYSICS OF THE ATMOSPHERE
Ever wondered why we can make accurate weather forecasts? Do you want to know how a tornado works? What does the science really say about human-induced climate change? The answers lie in physics, and every day you are witnessing it in action in our atmosphere! By studying with EAE, you will be able to understand how the atmosphere works to make our weather and climate. You will learn the skills to do anything from weather forecasting, to untangling the intricacies of climate science for decision making in an era of human-induced climate change.

UNIQUE LEARNING SPACES

In 2017 you will be among the first students to be taught in a world first teaching space ‘The Monash Earth Sciences Garden’. Our Garden is designed to enhance and accelerate your learning by providing on-site training for skills you will require in a career as a geoscientist, atmospheric scientist, environmental scientist or geographical scientist. You will be able to master skills and concepts early in your studies that could otherwise take years to develop. The garden reflects the Earth’s activity over the last 600 million years.

Our state-of-the-art teaching laboratories and practical classes are also complemented by innovative field experiences. Some of the places you can visit include the Western Volcanic Plains of Victoria, the You Yangs, Cape Liptrap, Mt Aka, Wilsons Promontory and Lake Eldon in Victoria, and Broken Hill in New South Wales. We even have one field unit based in Italy in the Cinque Terre, Liguria.

Our students have the opportunity to accompany senior researchers on fieldwork expeditions, to places including Antarctica and Africa. Our students can also take in a student exchange program with the University of Oklahoma—the perfect place to chase storms.

NATURAL HAZARDS
SUSTAINABLE RESOURCES
PRESERVING ECOLOGY
WEATHER PREDICTION
WATER AND FOOD SUPPLIES
CLIMATE CHANGE
I have travelled to the USA to work with international researchers, determined how fires create tornado strength winds, and learned valuable skills in visualisation to communicate my research to a broader audience.

DAVID KINNIBURGH

"In my PhD, I am studying ‘Coupled fire-atmosphere interactions’. The aim of my work is to use numerical modeling and high performance computing to determine what atmospheric conditions lead to erratic and sudden bursts in fire spread and intensity. I have travelled to the USA to work with international researchers, determined how fires create tornado strength winds, and learned valuable skills in visualisation to communicate my research to a broader audience."

"My PhD project focuses on the extra-tropical influences on monsoon rainfall bursts. The monsoon season in the tropical north of Australia is fundamentally important to the environment and economy."

SUGATA NARSEY

"I am studying the influence of atmospheric waves on rainfall in Northern Australia. Like waves in the ocean, atmospheric waves have peaks and troughs. You can see the waves in the picture below, where red shows peaks and blue shows troughs. When these atmospheric waves travel over the Australian continent they influence weather all over Australia, from Melbourne to Darwin. Some of the weather phenomena associated with these waves include atmospheric fronts, rainfall, heat waves, and even tropical cyclones. Our research has found that these waves are very important for rainfall over Northern Australia. Understanding this relationship will help in predicting important water resources, and preparing Australia for the future."

SUGATA NARSEY

The School of Earth, Atmosphere and Environment has an extensive and highly successful research program with research strengths in Atmosphere and Climate, Geography and Environment and Solid Earth. You can become part of our vibrant research community and undertake an Honours, Masters or PhD, being mentored by some of Australia’s best scientists.

SOLID EARTH

GEOGRAPHY AND ENVIRONMENT
Geography and Environment research includes water resources, human impact on the planet, climate, soils, protecting living landscapes, environmental change, GIS and remote sensing.

ATMOSPHERE AND CLIMATE
Atmosphere and Climate focuses on weather climate and oceans. You can research clouds, climate change, bushfires, oceans, tornadoes, cyclones, the physics and maths driving weather and climate.

PROJECT: HOW DO WAVES IN THE ATMOSPHERE CAUSE NORTHERN AUSTRALIAN RAINFALL?
PHD CANDIDATE: SUGATA NARSEY
Further information

monash.edu/earth-atmosphere-environments

1800 MONASH (1800 666 274)

facebook.com/monasheae

twitter.com/monasheae