Hail climatology for Brisbane derived from single-polarization radar and insurance data

Rob Warren1

Justin Peter2, Steve Siems1, Hamish Ramsay1

1School of Earth, Atmosphere and Environment, Monash University
2International Centre for Applied Climate Sciences, University of Southern Queensland
Location, location, location
<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Radar</th>
<th>ω (°)</th>
<th>r_{max} (km)</th>
<th>Δr (m)</th>
<th>N_θ</th>
<th>T (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>Mt Stapylton</td>
<td>Meteor1500S</td>
<td>1.0</td>
<td>150</td>
<td>250</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td>Marburg</td>
<td>WSR74S</td>
<td>1.9</td>
<td>256</td>
<td>1000</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>28</td>
<td>Grafton</td>
<td>WSR74S</td>
<td>1.9</td>
<td>256</td>
<td>1000</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>08</td>
<td>Gympie</td>
<td>DWSR8502S</td>
<td>2.0</td>
<td>300</td>
<td>500</td>
<td>14</td>
<td>10</td>
</tr>
</tbody>
</table>
Radar Calibration

\[\Delta t \leq 5 \text{ mins} \]
Maximum for oversampled points
Interpolation otherwise (nearest neighbour in range direction, bilinear in azimuth-elevation plane)

\[w = w_{\text{remap}} \times w_{\text{mosaic}} \times w_t \]

\[w_{\text{mosaic}} = \exp(-r/r_{\text{scale}}) \]

\[r_{\text{scale}} = \sqrt{\frac{4V}{\pi \omega^2 \Delta r_0}} \quad V = 1 \text{ km}^3 \]
\[\Delta r_0 = 1 \text{ km} \]
Hail Kinetic Energy Flux:
\[\dot{E} = 5 \times 10^{-6} W_Z 10^{0.084Z} \]

Severe Hail Index:
\[\text{SHI} = 0.1 \int_{z_0}^{z_t} W_T \dot{E} \, dz \]

Maximum Expected Size of Hail:
\[\text{MESH} = 2.54 (\text{SHI})^{0.5} \]

\(z_0 \) = freezing level height
\(z_t \) = storm top (18 dBZ threshold)
\(W_T \) = temperature weight
\(W_Z \) = reflectivity weight
\(Z \) = reflectivity

Insurance data

• Home and contents insurance data provided by Suncorp Group Ltd. for a total of 19 known hail days

• Entries consist of address and lat–lon coordinates of property, claim flag, amount claimed, and total sum insured

• Used to create daily “damage indicator” fields – grid boxes assigned one of the follow values:
 • Damage if # claims ≥ 3
 • No Damage if # claims = 0 and # contracts ≥ 3
 • Unknown otherwise

• Total of 521 Damage grid boxes, but 258 of these from a single day (27/11/2014)
Example Hail Event: 27/11/2014
Choosing an optimum MESH threshold

\[\text{Hit Rate} = \frac{a}{a + c} \]
\[\text{False Alarm Ratio} = \frac{b}{b + d} \]
\[\text{Critical Success Index} = \frac{a}{a + b + c} \]

\(a = \text{Hit} \)
\(b = \text{False Alarm} \)
\(c = \text{Miss} \)
\(d = \text{Correct Null} \)
Choosing which days to process

Storm day criterion:
≥ 50 lightning strikes in domain

Data availability criteria:
Marburg data essential
Maximum no. missing times < 12
Maximum no. missing times in $1 \text{ h} < 3$
Hail climatology

Damaging Hail Count

Maximum MESH
Comparison with Soderholm et al. (2016)
Future Work

• Explore methods of improving skill of MESH
• Extend climatology back to 2006 (if possible) and forward to 2016
• Examine seasonal and diurnal variations in hail occurrence
• Investigate the large-scale and local environments characterising hail days using reanalyses and soundings
• Repeat analysis for Sydney region

Would be interesting to perform high-resolution simulations of SEQ storms and their interactions with the sea breeze...