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1. Introduction 

Pesaran (2006) has introduced a very popular panel data model with cross-sectional heterogeneity 

exhibited through a factor structure in the errors in which the unobserved factors also affect the 

observed explanatory variables. The model has been extended in several directions (e.g. Bai (2009), 

Kapetanios, Pesaran and Yamagata (2011) and Pesaran and Tosetti (2011)) and used to analyse, for 

instance, health care expenditures (e.g. Baltagi and Moscone (2010) and Hauck and Zhang (2014)), 

energy policies (e.g. Arouri et al. (2012)) and house prices (e.g. Holly, Pesaran and Yamagata (2010)). 

Economic models are often characterised by endogeneity of some of the explanatory variables, and 

endogeneity usually invalidates estimation methods that do not take it into account. Panel data models 

with endogenous variables and a factor structure in the errors have been studied by Ahn, Lee and 

Schmidt (2001), Harding and Lamarche (2011), Ahn, Lee and Schmidt (2013), Robertson and 

Sarafidis (2015) and Forchini, Jiang and Peng (2015). Ahn, Lee and Schmidt (2001, 2013) and 

Robertson and Sarafidis (2015) derive and study consistent estimators of the structural parameters in 

panel data models in which the factors are not regarded as unobservable random variables but as 

unknown parameters and their results do not extend to the model introduced by Pesaran (2006). 

Harding and Lamarche (2011) introduce endogeneity in the model of Pesaran (2006) and propose a 

two steps instrumental variables procedure to estimate it. In the first step, Pesaran (2006)’s model is 

augmented with the cross-sectional means of the dependent variable and the independent variables 

affected by the shocks; in the second step, the augmented model is estimated using instrumental 

variables with instruments given by the cross-sectional means of the instruments, and the dependent 

variables not affected by the shocks. Forchini, Jiang and Peng (2015) investigate endogeneity in panel 

data with unobservable factors in the errors, in the explanatory variables and in the instruments when 

the time-dimension is fixed and have shown that classical estimators such as the two-stage least 

squares (TSLS) and the limited maximum likelihood estimator are inconsistent when the factor 

loadings in the errors and the exogenous variables are correlated given the common factors. 



3 
 

In this paper, we suggest a class of instrumental variables (IV) estimators for the model of Pesaran 

(2006) when some of the explanatory variables are endogenous. These are analog estimators 

exploiting the compatibility restrictions between the structural equation and reduced form, and extend 

the IV estimators from a standard set-up to the model of Pesaran (2006). We show that estimators in 

this class are consistent and asymptotically normal as the cross-section and time-series dimensions 

tend to infinity. 

The rest of the paper is organized as follows. Section 2 describes the model with endogenous 

explanatory variables, defines its reduced form and discusses their relationship. The assumptions 

needed to construct an asymptotic theory are stated in Section 3 and Section 4 describes the class of 

estimators considered. Consistency and asymptotic normality are obtained in Section 5. Section 6 

investigates the small sample performance of the proposed estimators and Section 7 concludes. Proofs 

of all results are in the appendix. 

2. Model 

Consider the panel data model  

(1) 
( ) ( ) ( ) ( ) ( ) ( ) ( )1 1

1 2 1
1 1 1 1 1 1 1 1

' ' 'it i t i it i it it
n n p p k k

y d y x uλ β θ
× × × × × × ×
= + + + , 

where 1ity  and 2ity  contain observations on the endogenous variables, td  is a vector of observed 

common effects, 1itx  is a vector of observed unit-specific exogenous regressors. In equation (1) and in 

the rest of the paper, the brackets appearing under the vectors or matrices the first time they are used 

denote their dimensions. In order to introduce a multifactor structure we consider the reduced form 

(2) 
( )

( )

( ) ( )

( ) ( )

( )

( )

( )

( )

1 2 1

1 2 2

1 11 21 1 1
1 1 1 1 1 11

12 22 22 2 2
1 1

' ' '

' ''

i i i it it
n k k kit

it t
i i itit i it

p k p k kp n p

x e
y

y d
xy e

α p p

α
× × × × ×

× × ×× ×

     
       = = + +       Π Π       

     

, 

where 2itx  denotes a vector of observed instruments. We assume that the reduced form errors have a 

multifactor error structure of the form 
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(3) 
( )

( )

( )

( )
( )

( )

( )

1 1 1
1 1 1 1 1

12 2 2
1 1

'

'

it i it
m

t
mit i it

p p m p

e
f

e

γ e

γ e
× × ×

×
× × ×

     
     = +     
     
     

, 

in which tf  is a vector of unobserved common effects, 1iγ  and 2iγ  are factor loadings and 1itε  and 

2itε  are errors which are independent of tf , td , 1itx  and 2itx  for each i  and t  . Moreover,  

(4) 
( )

( )

( )

( )

( )

( )

1 1 1

2 2 2

1 1 1
11

2 2 2 2
1

' '

' '

i i it
k n k m kit

it t t
it i i it

k n k m k

A v
x

x d f
x A v

× × ×

× × ×

Γ     
       = = + +       Γ       

     

, 

where 1iA , 2iA , 1iΓ  and 2iΓ  are factor loading matrices and 1itv  and 2itv  are the specific components 

of 1itx  and 2itx . The terms 1itv  and 2itv  are independent of td  and tf .  

Notice that (2), (3) and (4) form a multivariate version of the model of Pesaran (2006). Notice also 

that the factors affect all exogenous variables including the instruments and that we allow for random 

coefficients and for the instruments to depend on the common factors. 

Compatibility of the structural equation (1) and the reduced form (2) implies that 

(5) 21 22i i iπ β= Π   

(6) 1 2i i i iα α β λ= +   

(7) 11 12i i i iπ β θ= Π +   

and  

(8) ( )1 2 1 2 1 2' ' ' ' ' .it it it i i i t it i itu e e fβ γ β γ e β e= − = − + −   

The latter expression shows that the structural error itu  has a factor structure with factor loadings 

1 2i i iγ γ β− . The relationship in (5) expresses the over-identifying restrictions for each individual 

structural parameter iβ , and the vector of coefficients iβ  is identified if and only if 22iΠ  has rank 

2p k≤ ; equation (6) defines the factor loadings associated with the observed common factors in 

terms of the reduced form factor loadings, and equation (7) defines the vector of parameters iγ  in 

terms of the reduced form parameters. 
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3. Assumptions and notation 

We make the same assumptions as Pesaran (2006), apart from Assumption 4 which needs to be 

slightly modified. We use ⋅  to denote the Frobenius norm as in Pesaran (2006). 

 

Assumption 1. The vector of common effects ( )', ' 't t tg d f=  is covariance stationary with absolute 

summable autocovariances, and is distributed independently of the unit-specific errors ( )1 2', ' 'is isεε   

and ( )1 2', ' 'is isv v  for all i , t  and s  .  

 

Assumption 2. The reduced form errors ( )1 2', ' 'it it itεεε  = , and ( )1 2', ' 'is is isv v v=  are independent for all 

i , t  and s . Moreover for each i  , itε  and itv  follow linear stationary processes with absolute 

summable autocovariances, ,
0

it il i t l
l

Aε ς
∞

−
=

=∑  and ,
0

it il i t l
l

v S ν
∞

−
=

=∑ , where ( ), ,', ' 'i t i tς ν  are 

( )1 2 1 1k k p+ + + ×  vectors of identically, independently distributed random variables with mean zero, 

identity covariance matrix, and finite fourth order cumulants. In particular they are such that the 

covariance matrices of ( )1 2, ' 'it it itεεε  =  and ( )1 2', ' 'it it itv v v=  are uniformly bounded. 

 

Assumption 3. The factor loadings ( )1 2 1 2, , ,i i i iγ γ Γ Γ  are independently and identically distributed 

across i, and of the specific errors ( )1 2, ' 'it it itεεε  =  and ( )1 2', ' 'it it itv v v= , the common factors 

( )', ' 't t tg d f=  and they have finite means ( ) ( )1 2 1 2 1 2 1 2, , , , , ,i i i iE γ γ γ γΓ Γ = Γ Γ  and covariance matrices 

that are uniformly bounded. 

 

Assumption 4.  (a) The reduced form parameter 11 12

21 22

i i
i

i i

π
π

Π 
Π =  Π 

 follows the random coefficient 

model i iΠ =Π +Π , where 11 12

21 22

π
π

Π 
Π =  Π 

, ( ) ( )0,ivec iid ΠΠ Ω




 , Π  and ΠΩ


 are uniformly 
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bounded and the deviation iΠ  is distributed independently of jγ , jΓ , jtε , jtv  and tg  for all , ,i j t . 

(b) The structural parameters iβ  and iγ  follow the random coefficient models i iβ β β= +   and 

i iθ θ θ= +   where ( ) ( )0,ivec iid ββ Ω




 , ( ) ( )0,ivec iid θθ Ω




 , β , θ , βΩ


 and θΩ 

 are uniformly 

bounded and the deviations iβ  and iθ  are distributed independently of jγ , jΓ , jtε , jtv  and tg  for all 

, ,i j t .  

 

Let ( )j
ity  be the j -th component of ity , 1,..., 1j p= + , and ( ) ( )( ), ' 'it it

j j
itz y x=  and ( ) ( )

1

N
j j
t l lt

l
z zω ω

=

=∑ . 

Moreover, let D  be the T n×  matrix of observations on td  and ( )jZω  be the ( )1 2 1T k k× + +  matrix of 

observations on ( )j
tzω , iX  be the ( )1 2T k k× +  matrix of observations on the exogenous variables itx , 

and ( )j
iy  be the ( )1T p× +  matrix of observations on the endogenous variables ( )j

ity . Finally let 

( ) ( )( ),j jH D Zω ω=  and ( ) ( ) ( ) ( )( ) ( )' 'j j j j j
TM I H H H Hω ω ω ω ω

−
= −  where ( ) ( )( )'j jH Hω ω

−
 denotes the generalized 

inverse of ( ) ( )'j jH Hω ω . 

Similarly, the j -th components of ( )1 2, ' 'it it itεεε  =  and of ( )1 2,γ γ γ=  are denoted respectively by 

( )j
itε  and ( )jγ . Finally, ( )j

iε  denotes the ( )1T p× +  matrix of the errors ( )j
itε . 

 

Assumption 5. (a) ( )1 ' j
i iX M X

T ω  and 1 'i g iX M X
T

 are non-singular for each 1,..., 1j p= + , where 

( )' 'g TM I G G G G−= − and G  is the ( )T n m× +  matrix of observations on ( )', ' 't t tg d f= , and 

( )'G G −  denotes the generalized inverse of 'G G ; (b) ( )

1

1 '
N

j
i i i

i
X M X

T ωω
=
∑  is non-singular for each 

1,..., 1j p= +  and for scalar weights iω  satisfying 1
i O

N
ω  =  

 
 , 

1
1

N

i
i
ω

=

=∑  and 
1

N

i
i

Kω
=

<∑  where K  

is a finite constant. 

 



7 
 

Assumptions 1, 2, 3 and 5 are the same assumptions used by Pesaran (2006) and they are fully 

discussed in that work. Assumption 4 is different from Assumption 4 of Pesaran (2006) because the 

model we consider involves structural and reduced form parameters for both of which we impose 

random coefficient structures. We discuss what this entails briefly. 

Using the compatibility conditions between structural equation and reduced form (5), (6) and (7), 

we can write 

1
12 12

22 22

1 0 1 0
0 0

i i i i
i

i p i pi iI I
θ p θ p

β β

−
      

Π = =      −Π Π      
 

Due to Assumption 4, this can be rewritten as 

12 12

22 22

12 12 12 12 12

22 22 22 22 22

1 0 0 0
00 0

1 0
.

0

i i
i

p ii

i i i i i i

p i i i i i

I

I

θ p θ p
β β

θ p θ p β p β p β p
β β β β

        
Π +Π = + +           Π Π        

   + + + 
= +    Π Π +Π +Π Π     











  

  

 
  

 

Thus, by taking expectations of both sides of the equation above we must have  

(9) 12

22

1 0
0 pI
θ p

β
  

Π =   Π   
, 

and  

(10) 12 12 12 12

22 22 22 22

.i i i i i i
i

i i i i i

θ π β π β π β π
β β β

 + + +
Π =  

Π +Π +Π Π 

  

  



 
  

 

Notice that the condition ( ) 0iE Π =  holds only if ( )12 0i iE π β =

  and ( )22 0i iE βΠ =
  (cf. Kelejian 

(1974)). Therefore, Assumption 4, entails that iβ  is not correlated to 12iπ  and 22iΠ . Notice also that 

(9) expresses the standard over-identifying restrictions which in this case apply to the means of the 

coefficients rather than the coefficients themselves. 

Finally, the notation ( ),
j

N T →∞  indicates that N  and T  tend to infinity jointly. 



8 
 

4. Estimators 

Provided T  is sufficiently large we can estimate the matrix iΠ  for each unit i  by aggregating the 

common correlated effects (CCE) estimators for the slope coefficients in the reduced form for each 

individual endogenous variable: 

(11) ( )( ) ( ) ( ) ( )( ) ( ) ( )1 11 1 1 1 1 1ˆ ' ' ,...., ' 'p p p
i i i i i i i i iX M X X M y X M X X M yω ω ω ω

− −+ + + Π =   
.  

One possible choice for estimating Π  is the common correlated effects mean group (CCEMG) 

estimator 

(12) ( )( ) ( ) ( ) ( )( ) ( ) ( )1 11 1 1 1 1 1

1 1

1 1ˆ ' ' ,...., ' '
N N

p p p
MG i i i i i i i i

i i
X M X X M y X M X X M y

N Nω ω ω ω

− −+ + +

= =

 
Π =  

 
∑ ∑ .  

An alternative is the common correlated effects pooled (CCEP) estimator: 

(13) ( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1 1 1 1 1

1 1 1 1

ˆ ' ' ,..., ' '
N N N N

p p p
P i i i i i i i i i i i i

i i i i
X M X X M y X M X X M yω ω ω ωω ω ω ω

− −
+ + +

= = = =

    
P =     

     
∑ ∑ ∑ ∑ , 

where we set the aggregating weights equal to the pooling weights (cf. Pesaran (2006, p. 986)). Notice 

that the columns of (12) and (13) are the CCEMG and CCEP estimators applied to the reduced form 

for each individual endogenous variables.  

Partition the CCEMG and CCEP estimators of the reduced form parameters conformably to iΠ  in 

equation (2). The panel instrumental variables (IV) estimators based on, respectively, the CCEMG 

and CCEP estimators of the reduced form parameters are 

(14) ( ) ( )1

22 22 22 21
ˆ ˆˆˆ ˆ' ˆ ' ˆ

MG MG MGIV MG MGH Hβ π
−

− = Π Π Π   

and  

(15) ( ) ( )1

22 22 22 21
ˆ ˆˆˆ ˆ' 'ˆˆ

P P PI P PV H Hβ π
−

− = PPP   , 

where Ĥ  is any positive definite random matrix converging in probability to a positive definite 

matrix H . Similarly, we can estimate the coefficients of the exogenous variables as 

(16) 11 12
ˆˆˆˆ

MG MG MG IV GIV Mπθ β− −= −Π , 

and 



9 
 

(17) 11 12
ˆˆˆ ˆP PI P IV PV π βθ − −= −P . 

Estimators analogous to these have been studied by Forchini, Jiang and Peng (2015) for the case 

where the reduced form parameters are estimated using OLS and T  is fixed. They find that the 

classical panel TSLS and LIML are not consistent if the factor loadings in the errors and the 

exogenous variables are dependent conditional on the factors as in the case considered here. 

It is important to compare the estimators proposed above with the IV estimator proposed by Harding 

and Lamarche (2011). The structural equation (1) is augmented using the cross-sectional means 1y , 

2y  and 1X   

 1 2 2 2 1 1 3 1 1i i i i i iy y y D X X y uβ η λ θ η η= + + + + + +   , 

Notice that the endogenous variables are 2iy  and 2y . The two stage procedure is implemented as 
follows: 

1) [ ]2 2,iy y  is regressed on td , 2X  and the constant to obtain the predicted values 

[ ]
22 2 2 2,1,

ˆˆ , ,i iD Xy y P y y  
  =  ; 

2) 2 2
ˆˆ ,iy y    is replaced in the augmented equation  

 
2 21 2 2 2 1 1 3 1 1,1, ,1,i i i i iD X D Xy P y P y D X X y uβ η λ θ η η      

= + + + + + +  , 

which is estimated using OLS. 
 

In order to estimate 
β
θ
 
 
 

 we premultiply the above equation by
2 1 1,1, 2

, , ,D XP y D y X
M

  
 
  

 to obtain 

 ( )22 1 1 2 1 1,1, ,1,2 2
1 2 1,1,, , , , , ,

ˆ
,

ˆD X D X
i iD XP y D y X P y D y X

M y M P y X
β

θ      
            

 
=   

 
 

Adding up over i  we have 

 ( ) ( ) ( )2 2 22 1 1 2 1 1,1, ,1,2 2
2 1 1 2 1 2 1,1, ,1, ,1,, , , , , ,

1 1

ˆ
, ' , ' ,

ˆD X D X

N N

i i i iD X D X D XP y D y X P y D y Xi i
P y X M y P y X M P y X

β

θ      
                 = =   

 
=   

 
∑ ∑   

or 

( ) ( ) ( )2 2 22 1 1 2 1 1,1, ,1,2 2

1

2 1 2 1 2 1 1,1, ,1, ,1,, , , , , ,1 1

ˆ
, ' , , '

ˆ D X D X

N N

i i i iD X D X D XP y D y X P y D y Xi i
P y X M P y X P y X M y

β

θ       

−

                 = =   

   
=       
∑ ∑

. 
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Notice that the IV estimator proposed by Harding and Lamarche (2011) can be thought of as the 

CCEP estimator of 
2 21 2 2 2 1 1 3 1 1,1, ,1,i i i i itD X D Xy P y P y D X X y uβ η λ θ η η      

= + + + + + +   . 

Some of the estimators in the class we considered can also be interpreted as two stage procedures. 

Suppose that iΠ =Π , iβ β=  and iθ θ=  as in Harding and Lamarche (2011). Then,  

1)  The reduced form for 2y  is estimated using (12) or (13) and the predicted value for 2y  is 

obtained as 2 2 12 1 22 2
ˆˆˆˆ ' ' 'it t it ity d x xα= +Π +Π ; 

2)  The predicted values for 2y  are replaced into (1), which is also augmented as in Pesaran (2006) 

to eliminate cross sectional dependence, 1 2 1 1 1 1 3ˆi i i i iy D y x X y uω ωλ β θ η η= + + + + +  . The last 

equation is then estimated using OLS. 

It is easy to show that this yields an estimator of the form (14) or (15) with  

(18)
2 1 2 1 2 1 2 1

1

2 2 2 1 1 1 1 2, , , , , , , ,
1 1 1 1

ˆ ' ' ' '
N N N N

i i i i i i i iD X y D X y D X y D X y
i i i i

H X M X X M X X M X X M X
−

              
= = = =

 
= −  

 
∑ ∑ ∑ ∑ .  

Notice that the first stage of the procedure of Harding and Lamarche (2011) is different from that in 

our procedure because we take into account the fact that the instruments may also be affected by the 

common shocks.  

5. Main results 

First we show that the CCEMG and the CCEP estimators of the reduced form coefficients are 

consistent and asymptotically normal when both the cross-section and the time dimensions go to 

infinity. Notice that the reduced form is just a multivariate linear model, so that the results of Pesaran 

(2006) apply with obvious modification.  

Proposition 1. Given Assumptions 1-5,  

(a) the CCEMG estimator of the reduced form parameter Π  is consistent and asymptotically normal 

with ( ) ( )ˆ 0,D
MG MGNvec NΠ −Π → Σ  as ( ),

j
N T →∞ and the asymptotic covariance matrix MGΣ  can 

be estimated by ( ) ( )( ) ( ) ( )( )
1

1ˆˆˆˆˆ '
1

N

MG i MG i MG
i

vec vec vec vec
N =

Σ = Π − Π Π − Π
− ∑ ; 
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(b) the CCEP estimator of the reduced form parameter Π  is consistent and asymptotically normal 

with ( ) ( )
1
2

2

1

ˆ 0,
N

D
i P P

i
vec Nω

−

=

 
P −P → Σ 

 
∑  as ( ),

j
N T →∞ and the asymptotic covariance matrix PΣ  

can be estimated by  2 1 1

1

ˆˆˆˆ
N

P i
i

Rω − −

=

 
Σ = Φ Φ 

 
∑  with 

 

( )

( )

1

1

1

1

1 ' 0

ˆ

10 '

N

i i i
i

N
p

i i i
i

X M X
T

X M X
T

ω

ω

ω

ω

=

+

=

 
 
 

Φ =  
 
 
  

∑

∑

  , 

and 

 

( )

( )

( ) ( )( )

( ) ( )( )
( )

( )

1

2

1
1

1

1

1 ' 0

ˆ ˆˆ

10 '

1 ' 0

ˆˆ ' ,
10 '

i i
N

i i P
i

p
i i

i i

i P

p
i i

X M X
T

R vec vec

X M X
T

X M X
T

vec vec

X M X
T

ω

ω

ω

ω

ω
=

+

+

 
 
 

= P − P × 
 
 
 

 
 
 

P − P  
 
 
 

∑ 



  

where 1 2

1
/

N

i i i
i

Nω ω ω−

=

= ∑  . 

 

It follows easily from Proposition 1 that: 

 

Proposition 2. Given Assumptions 1-5 and the over-identifying restrictions  

(a) the CCEMG estimators of the structural parameters β  and θ  are consistent as ( ),
j

N T →∞ , and 

 ( ) ( ) ( ) ( )( )( ) ( )
2

1
22 22 22

ˆ 1, ' ' ' 0, 0,MG k
D

MIV GH H I NN β β β −
− − → − ⊗ Π ΣΠ Π  

and  

 ( ) ( ) ( ) ( ) ( )( )( )( ) ( )
1 212

1
22 22 22

ˆ 1, ' ,0 ' ,' 0, 0M
D

IV Gk kG MH H NN I Iθ θ β −
− − → − ⊗ Π Π−Π ΣΠ . 
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(b) the CCEP estimators of the structural parameters β  and θ  are consistent as ( ),
j

N T →∞ , and 

 ( ) ( ) ( ) ( )( )( ) ( )
2

1
22 22 22

ˆ 1, 0, 0,' ' 'P k
D

IV PH H I NN β β β −
− − → − ⊗ PP  ΣP  

and  

 ( ) ( ) ( ) ( ) ( )( )( )( ) ( )
1 212

1
22 22 22

ˆ 1, ' ,0 ' 0' 0, ,P
D

IV k k PN H NIHIθ θ β −
− − → − ⊗ PP −P ΣP . 

 

 Therefore, if we have endogenous variables in the model of Pesaran (2006) and instruments are 

available, it is possible to use the CCEMG and the CCEP estimators of the reduced form parameters 

to estimate consistently the structural coefficients. These estimators are also asymptotically normal. 

Notice also that the matrices MGΣ  and PΣ  do not have a Kronecker product structures like in the 

classical instrumental variables model in a cross section. Therefore, it is not possible to choose a value 

of H  which makes the IV estimator asymptotically efficient. 

6. Small sample performance 

We now study the small sample performance for two of the IV estimators in the class of estimators 

proposed in the previous sections and compare them with existing estimators. The data generating 

process is described below. We choose 1 1p k n= = = , 2 2k =  and 3m = . 

 

Factors 

The factors are stationary AR(1) processes: ( )10.8 i.i.d. 0,t t ff f N−= + Σ , where fΣ  is an m m×  

positive definite matrix generated at the start of the simulations from a Wishart distribution 

( ),m mW I m  for 50, 1,0,1,2,.., .,t T= − … −  with 50 0f− = .  

Factor loadings 

The factor loadings in the errors and those in the exogenous variables are allowed to be correlated. 

Thus, we assume that  

 ( ) ( )( )22 31 1 2 ~ i.i.d., , , ,k mi i i i mNv Iec iγ γ +Γ Γ Ω⊗   
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where 

 ( )

( )

2

22

2
2 , 2 1

2
, 12 1

1

1 '
k

kk

I

I
γ γ γ

γ γ

σ ρ σ σ

ρ σ σ σ
Γ Γ × +

Γ Γ Γ +× +

 
 Ω =
 
 

. 

The parameter ,1 1γρ Γ− < <  captures the correlation between the factor loadings in the errors and 

those in the exogenous variables. In the simulations we let 2 2 1γσ σΓ= =  and , 0.2,  0.8γρ Γ = . 

Exogenous variables 

The exogenous variables are  

 1 1 11

2 2 2 2

' '
' '

i i itit
t t

it i i it

A vx
d f

x A v
Γ      

= + +       Γ       
  

where ( )10.5 i.i.d. 0,t t dd d N−= + Σ , where 
tdΣ  is generated at the start of the simulations as 

( ),n nW I n  for 50, 1,0,1,2,.., .,t T= − … −  with 50 0d− = . The term ( )1 2, ' 'it itv v  follows a stationary 

process for each unit i  and are independent over i  

 1 1 2 1 2 2

1 2 1 2 2 2 2

2
1 , 1 , 11

2
2 2 , 1 , 1

10
0.5 i.i.d. ,

0 1 '
i t v v v v v kit

it i t v v v v k v k

vv
N

v v I

σ ρ σ σ

ρ σ σ σ
− ×

− ×

       = +                 
, 

for ,0,50, 1,2,...,t T…= −  with 1 , 50

2 , 50

0i

i

v
v

−

−

 
=  

 
 and 

211 k×  is a 21 k×  matrix of ones and 
1 2,1 1v vρ− < < . In 

the simulations we take 
1 2

2 2 1v vσ σ= =  and 
1 2, 0.5v vρ = . The components of 1

2

'
'

i

i

A
A

 
 
 

 are independently 

uniformly distributed over the interval ( )1,2− .  

Error terms 

We use the compatibility conditions to generate the structural error itu  and the reduced form error 

2ite  as follows 

 1 1

2 2 2

'
'

it i it
t

it i it

u
f

e
γ e
γ e

     
= +     

     

 

 

, 
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where 2 2i iγ γ= , 1 1 2' ' ' 'i i i iγ γ β γ= − , 2 2it itεε =  and 1 1 2'it it i itεε  β ε= − . Instead of generating the original 

quantities 1iγ , 2iγ , 1itε  and 2itε  we generate directly 1iγ , 2iγ , 1itε  and 2itε . The idiosyncratic errors 

1

2

it

it

ε
ε
 
 
 





 are generated independently over i  as stationary processes 

 1 1 2 1 2

1 2 1 2 2

2
1 , 1 ,1

2
2 2 , 1 ,

0
0.5 i.i.d. ,

0
i tit

it i t

N εεεεε   

εεεεε   

ε σ ρ σ σε
εε  ρ σ σ σ

−

−

       = +                 

    

    





 

 

for ,0,50, 1,2,...,t T…= −  and 1 0

2 0

0i

i

ε
ε
 

= 
 

. Notice that the square of the quantity 
1 2,1 1εε ρ− < <
 

 

measures the amount of classical endogeneity when no shock is present. We let 
1 2

2 2 1εε σ σ= =
 

 and 

choose 
1 2, 0.2,  0.8εε ρ =
 

 to reflect moderate and strong endogeneity respectively. 

Reduced form for 2y   

The reduced form for 2y  is generated as follows: 

 [ ] 1
2 2 12 22 2

2

' ', ' it
it i t i i it

it

x
y d e

x
α

 
= + Π Π + 

 
  

where the component of 2iα  are generated independently from a uniform distribution over the interval 

( )1,2− . The random coefficients satisfies  

 [ ]
212 22 1

2

1', ' 0, 1 0,
1i i k pc N I

k× Π

   Π Π + ⊗ Σ     +  
  

where ΠΣ  is generated once at the beginning of the simulations as ( )2 21 2 11 ,k kW k IΠ + +Σ + . The 

parameter c  measures the strength of the instruments in the absence of shocks. Moreover, we set 

0.8c =  so that relatively weak instruments are considered. 

Structural equation 

Finally, the structural equation is generated as follows 

  1 2 1'it i t t it ii i ty d y x uλ β= + + + , 

where ( )1 . . . 0,1i i i d Nβ = +  and iλ  are independently uniformly distributed over the interval ( )1,2 . 
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We consider two types of estimators in our class corresponding to different choices of Ĥ . For the 

IV-MG and IV-P estimators, we take Ĥ  equal to identity matrix. For the TSLS-MG and TSLS-P 

estimators, Ĥ  is defined in (18). We compare these estimators with the OLS (which ignores both 

common shocks and endogeneity), the CCEMG and the CCEP estimators of Pesaran (2006) (which 

ignore the classical endogeneity), the panel TSLS of the structural parameters (which does not take 

the common shocks into account), and the estimator of Harding and Lamarche (2011) denoted by IV-

HL. Notice that by neglecting either classical endogeneity or the endogeneity induced by the shocks, 

the OLS, CCEMG, CCEP and TSLS estimators are not consistent. The IV-HL estimator is also 

inconsitent when the shocks affect the instruments. 

The outcomes of the simulation experiments based on 10000 replications are summarized in Tables 

1 to 4. The tables capture different strengths of correlation between the factor loadings in the errors 

and in the exogenous variables and different levels of endogeneity. The IV-MG, IV-P, TSLS-MG and 

TSLS-P have very small bias independently of the degree of endogeneity and correlation between the 

factor loadings. The IV-HL appears to have small bias when the correlation between the factor 

loadings is small but can have very large bias when this is not the case. This is not unexpected since 

the IV-HL implicitly assumes that the instruments do not depend on the common factors. The OLS, 

TSLS, CCEMG and CCEP estimators can be seriously biased as one would expect since they have not 

been devised for this particular model. 

The performance of the IV-MG, IV-P, TSLS-MG and TSLS-P estimators in terms of MSE is not as 

impressive as the one in terms of bias. This is partly due to the choice of the matrix Ĥ  or to the slow 

convergence towards the asymptotic limits. The IV-HL estimator seems to perform well in terms of 

MSE when the sample size and the correlation among the factors are small. The OLS, CCEMG and 

CCEP estimators may have very low MSE. It often happens in structural equations models that an 

estimator like the OLS estimator that does not take into account simultaneity and is thus inconsistent  

has very low MSE due to the fact that it converges quickly as the sample size grows to infinity (and 
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thus has low variability) and the bias is small for certain combinations of the parameters. We suspect 

this is what happens here. 

In order to see what the distributions of the various estimators look like, we plot the densities of the 

difference between the estimator and the true parameter β  in Figures 1 to 4 for 100N T= =  in the 

set-up described above. The densities of the IV-MG and TSLS-MG estimators are almost identical in 

all situations. The same applies to the densities of the IV-P and TSLS-P estimators. They are correctly 

centred around zero. The densities of the other estimators are shifted to the right and their relative 

positions change depending on the situations considered.  

7. Conclusions 

The paper has extended the model of Pesaran (2006) to allow for endogenous explanatory variables 

and for the instruments influenced by the common shocks. We have exploited the compatibility 

conditions between structural equation and reduced form to construct a class of estimators analogous 

to the classical IV estimator in cross-sectional structural equations models. Since the reduced form 

parameters can be estimated consistently using the CCEMG and the CCEP estimators, the structural 

parameters can also be consistently estimated. Moreover, since the estimators in our class have 

asymptotically normal distribution, tests and confidence intervals can be easily constructed. A 

simulation experiment, suggests that in small samples the IV estimators proposed perform reasonably 

well especially in terms of bias. 

Appendix: proofs 

Proof of Proposition 1 

(a) Notice that 
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( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

1
1 1 1

1

1 1
1 1 1

1

1
1 1 1

1

1

1 1 1' '
1ˆ ...

1 1 1' '

1 1 1' '

...

1 1 '

N

i i i i
iN

MG i
i

N
p p p

i i i i
i

N

i i i i
i

p
i i

X M X X M
T TN

Nvec vec
N

X M X X M
T TN

X M X X M F
T TN

X M X
TN

ω ω

ω ω

ω ω

ω

e

e

γ

−

=

= −
+ + +

=

−

=

+

    
    

    
 Π −Π = Π +
 
    
    

    

   
   
   

+

 

 

∑
∑

∑

∑



( ) ( )
1

1 1

1

.

1 '
N

p p
i i

i
X M F

T ω γ
−

+ +

=

 
 
 
 
 
  
   

  
∑

. 

Either equation (56) or the equation just above (60) of Pesaran (2006) can be obtained for each 

component of the matrices above. Thus, as ( ),
j

N T →∞ , ( ) ( )ˆ 0,MG MGNvec NΠ −Π → Σ  and the 

asymptotic covariance matrix MGΣ  can be estimated using ˆ
MGΣ  specified in Proposition 1. 

 (b) Similarly, we can write 

 

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1
1 1 1

1 1

1
1 11

11

1 1

1

1 1

1

1 1' 0 '

ˆ ...
11 '0 '

1 '

...
1 '

N N

i i i i i i i
i i

P
NN p pp

i i i ii i i
ii

N

i i i
i

p p
i i i

i

X M X X M X
T T

vec

X M XX M X TT

X M F
T

X M F
T

ω ω

ωω

ω

ω

ω ω

ωω

ω γ

ω γ

−

= =

−
+ ++

==

=

+ +

=

       P           P −P = × +          P         

∑ ∑

∑∑

∑







( ) ( )

( ) ( )

1 1

1

1 1

1

1 '

...
1 '

N

i i i
i

N N
p p

i i i
i

X M
T

X M
T

ω

ω

ω e

ω e

=

+ +

=

   
   
   
+   
   
   
       

∑

∑ ∑
  

   

Proceeding as in the proof of Theorem 3 of Pesaran (2006), we can conclude that every component of 

( )ˆ
Pvec P −P  satisfies (B.5) of Pesaran (2006), so that asymptotic normality follows by taking 

( ),
j

N T →∞ .□ 

 

 



18 
 

Proof of Proposition 2.  

(a) For the CCEMG estimator, notice that ( ) ( )1

22 22 22 21
ˆ ˆˆˆ ˆ' ˆ ' ˆ

MG MG MGIV MG MGH Hβ π
−

− = Π Π Π  is a 

continuous function of 22
ˆ

MGΠ , 12ˆ MGπ  and Ĥ . By construction ˆ PH H→  and by Proposition 1, 

22 22
ˆ

MG
PP → P  and 21 21 22ˆ MG

Pππ  β→ =P , thus ( ) ( )1
22 22 22 22

ˆ ' 'P
IV MG H Hβ β β−

− → PPPP    = . It 

follows from Proposition 1 and consistency of ˆ
MIV Gβ −  that 

11 12 11 12
ˆˆˆˆ

MG MG MG
P

MGIV IVπ β π β θθ − −= −P −P =→ . 

Notice that if the over-identifying restrictions hold, 

(19) 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

1

22 22 22 21 22

1

22 22 22 21 22 21 22

1ˆ ˆˆˆˆ ˆ' ' ,

1ˆˆˆˆ ˆ' '

ˆˆ

ˆˆ , , ,

MG MG MG MG MG MG

MG MG M

IV

G MG MG

N H H

H H

N

N

β β π
β

ππ
β

−

−

−

 
− = Π Π Π Π  − 

 
= Π Π Π Π − Π  − 

 

so that  

 ( ) ( ) ( ) ( )( )( ) ( ) ( )( )2

1

22 22 22
ˆ ˆˆˆ ˆˆ, ' ' ' 0, ˆ1MG MG MIV G MG k MGH H IN N vec vecβ β β

−

− − = − ⊗ Π Π Π Π − Π   

and the first part of (a) follows. For the estimator of the exogenous variables, using the over-

identifying restrictions and (19) we can write 

 
( ) ( ) ( )( ) ( )

( ) ( ) ( )( )( ) ( )1 2

11

1

22 22 22

12 11 12 12

12

1 ˆˆˆˆ , ,

1ˆˆˆ

ˆ

ˆˆˆ,0 ' ' 0, ˆ .

MG MG MG MG MG

MG MG MG M

IV IV

k kG MG

N N

I

N

H H NI

πθ θ βπ β
β

β

− −

−

 
= Π − Π− −Π − 

 
−Π Π −Π  −

−

Π Π


= Π

  

Noticing that  

( ) ( ) ( ) ( ) ( )( )( ) ( )1 2

1

22 22 2212
ˆ ˆˆˆ1, ' ,0 ' ,ˆˆ 'ˆˆ 0IV kMG MG MG MG MG MGkH HN I NveI cθ θ β

−

− − = − ⊗ Π −Π Π 


Π


Π −Π

 

the result follows. 

(b) The same argument applies to the CCEP estimators of the coefficients of both the endogenous and 

the exogenous variables. □ 
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Tables and figures 

 
 
 

   T  N IV-MG IV-P TSLS-MG TSLS-P OLS CCEMG CCEP TSLS IV-HL 
BIAS 25 25 -0.0192 -0.0263 0.0058 0.0036 0.0965 0.0610 0.0262 0.1527 0.0654 

  
50 -0.0375 -0.0329 -0.0264 -0.0212 0.0942 0.0638 0.0151 0.1465 0.0683 

  
75 -0.0148 -0.0165 -0.0037 -0.0015 0.0963 0.0730 0.0238 0.1722 0.0733 

  
100 -0.0114 -0.0096 -0.0029 -0.0017 0.0893 0.0567 0.0198 0.1456 0.0711 

 
50  25 -0.0233 -0.0070 0.0056 0.0174 0.0936 0.0601 0.0237 0.1509 0.0848 

  
50 -0.0285 -0.0273 -0.0173 -0.0150 0.0957 0.0530 0.0203 0.1557 0.0688 

  
75 -0.0065 -0.0011 0.0024 0.0087 0.0970 0.0718 0.0238 0.1656 0.0776 

  
100 -0.0048 -0.0090 0.0001 -0.0034 0.0938 0.0646 0.0197 0.1594 0.0718 

 
75  25 -0.0268 -0.0164 -0.0018 0.0067 0.0989 0.0718 0.0304 0.1707 0.0754 

  
50 -0.0170 -0.0154 -0.0068 -0.0045 0.0934 0.0619 0.0178 0.1550 0.0729 

  
75 -0.0132 -0.0111 -0.0070 -0.0039 0.0974 0.0630 0.0214 0.1619 0.0767 

  
100 -0.0026 -0.0003 0.0049 0.0050 0.0967 0.0680 0.0216 0.1610 0.0749 

 
100 25 -0.0057 -0.0084 0.0176 0.0152 0.1031 0.0766 0.0293 0.1709 0.0798 

  
50 -0.0018 -0.0029 0.0104 0.0096 0.0976 0.0676 0.0216 0.1627 0.0796 

  
75 -0.0081 -0.0145 0.0001 -0.0051 0.0957 0.0600 0.0181 0.1600 0.0729 

  
100 0.0000 -0.0022 0.0055 0.0030 0.0966 0.0648 0.0205 0.1655 0.0803 

MSE 25 25 0.7605 0.6375 0.8013 0.6692 0.1618 0.3538 0.2473 0.4410 0.2794 

  
50 0.5241 0.4295 0.5511 0.4539 0.1343 0.2423 0.1898 0.3250 0.1950 

  
75 0.4058 0.3357 0.4236 0.3533 0.1227 0.2047 0.1442 0.2842 0.1550 

  
100 0.3686 0.2997 0.3846 0.3150 0.1131 0.1812 0.1353 0.2456 0.1463 

 
50  25 0.4633 0.4091 0.4798 0.4242 0.1368 0.2354 0.1720 0.3209 0.2182 

  
50 0.3154 0.2752 0.3232 0.2793 0.1199 0.1666 0.1294 0.2446 0.1561 

  
75 0.2543 0.2249 0.2610 0.2290 0.1135 0.1494 0.1071 0.2269 0.1361 

  
100 0.2217 0.1902 0.2288 0.1987 0.1067 0.1311 0.0878 0.2103 0.1202 

 
75  25 0.3719 0.3246 0.3808 0.3411 0.1298 0.1927 0.1472 0.2947 0.1970 

  
50 0.2550 0.2264 0.2586 0.2315 0.1102 0.1393 0.1035 0.2256 0.1437 

  
75 0.2100 0.1851 0.2135 0.1871 0.1093 0.1190 0.0856 0.2092 0.1231 

  
100 0.1812 0.1593 0.1866 0.1658 0.1063 0.1127 0.0763 0.1972 0.1129 

 
100 25 0.3038 0.2734 0.3121 0.2834 0.1284 0.1751 0.1359 0.2728 0.1888 

  
50 0.2152 0.1991 0.2184 0.2045 0.1134 0.1300 0.0946 0.2167 0.1391 

  
75 0.1768 0.1569 0.1808 0.1605 0.1058 0.1089 0.0792 0.1960 0.1146 

  
 

100 0.1472 0.1340 0.1484 0.1343 0.1041 0.1019 0.0687 0.1908 0.1120 
 

Table 1. Bias and MSE for the IV-MG, IV-P, TSLS-MG, TSLS-P, OLS, CCEMG, CCEP, TSLS and 
IV-HL estimators when both classical and factor endogeneity are small: 0.8c = , 

1 2, 0.2εε ρ =
 

, 

, 0.2γρ Γ = . 
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   T  N IV-MG IV-P TSLS-MG TSLS-P OLS CCEMG CCEP TSLS IV-HL 
BIAS 25 25 -0.0319 -0.0286 -0.0086 -0.0082 0.0802 0.0647 0.0289 0.2107 0.2383 

  
50 -0.0319 -0.0395 -0.0242 -0.0254 0.0720 0.0768 0.0287 0.2082 0.2300 

  
75 -0.0101 -0.0031 0.0010 0.0063 0.0768 0.0746 0.0231 0.2261 0.2360 

  
100 -0.0051 -0.0003 0.0043 0.0059 0.0668 0.0641 0.0233 0.2098 0.2287 

 
50  25 -0.0345 -0.0278 -0.0036 0.0008 0.0707 0.0601 0.0173 0.2156 0.2400 

  
50 -0.0333 -0.0305 -0.0200 -0.0154 0.0761 0.0611 0.0245 0.2106 0.2404 

  
75 -0.0015 0.0011 0.0070 0.0097 0.0753 0.0750 0.0228 0.2215 0.2413 

  
100 -0.0096 -0.0063 -0.0047 -0.0013 0.0729 0.0660 0.0206 0.2139 0.2372 

 
75  25 -0.0117 -0.0164 0.0163 0.0145 0.0754 0.0768 0.0285 0.2294 0.2420 

  
50 -0.0187 -0.0236 -0.0069 -0.0100 0.0729 0.0653 0.0183 0.2177 0.2382 

  
75 -0.0161 -0.0151 -0.0074 -0.0056 0.0744 0.0659 0.0216 0.2164 0.2394 

  
100 -0.0012 0.0021 0.0071 0.0088 0.0739 0.0737 0.0218 0.2230 0.2400 

 
100 25 -0.0052 -0.0142 0.0204 0.0126 0.0808 0.0833 0.0302 0.2279 0.2471 

  
50 -0.0084 -0.0077 0.0060 0.0059 0.0751 0.0704 0.0215 0.2223 0.2468 

  
75 -0.0115 -0.0176 -0.0026 -0.0061 0.0743 0.0638 0.0198 0.2164 0.2395 

  
100 -0.0041 -0.0022 0.0034 0.0027 0.0743 0.0705 0.0203 0.2235 0.2420 

MSE 25 25 0.8013 0.6713 0.8473 0.6871 0.1686 0.3688 0.2632 0.4706 0.3760 

  
50 0.5331 0.4498 0.5719 0.4730 0.1268 0.2599 0.2099 0.3609 0.3034 

  
75 0.4378 0.3675 0.4619 0.3854 0.1176 0.2223 0.1538 0.3278 0.2825 

  
100 0.3875 0.3130 0.4072 0.3281 0.1019 0.1911 0.1445 0.2919 0.2676 

 
50  25 0.4726 0.4245 0.4864 0.4387 0.1297 0.2381 0.1743 0.3536 0.3254 

  
50 0.3338 0.2990 0.3410 0.3032 0.1116 0.1783 0.1359 0.2858 0.2874 

  
75 0.2663 0.2458 0.2747 0.2525 0.1000 0.1552 0.1106 0.2700 0.2701 

  
100 0.2222 0.1959 0.2275 0.2037 0.0933 0.1341 0.0943 0.2545 0.2607 

 
75  25 0.3713 0.3270 0.3772 0.3356 0.1197 0.1996 0.1544 0.3242 0.3361 

  
50 0.2630 0.2393 0.2691 0.2435 0.0995 0.1472 0.1081 0.2686 0.2734 

  
75 0.2166 0.1951 0.2203 0.1986 0.0927 0.1239 0.0902 0.2535 0.2624 

  
100 0.1871 0.1691 0.1917 0.1747 0.0892 0.1205 0.0801 0.2507 0.2584 

 
100 25 0.3048 0.2883 0.3145 0.2936 0.1158 0.1807 0.1407 0.3026 0.3208 

  
50 0.2246 0.2112 0.2302 0.2165 0.0986 0.1327 0.0966 0.2645 0.2791 

  
75 0.1816 0.1704 0.1837 0.1717 0.0900 0.1137 0.0803 0.2439 0.2604 

  
 

100 0.1528 0.1423 0.1551 0.1428 0.0856 0.1076 0.0685 0.2435 0.2571 
 
Table 2. Bias and MSE for the IV-MG, IV-P, TSLS-MG, TSLS-P, OLS, CCEMG, CCEP, TSLS and 
IV-HL estimators when classical endogeneity is small but factor endogeneity is large: 0.8c = , 

1 2, 0.2εε ρ =
 

, , 0.8γρ Γ = . 
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   T  N IV-MG IV-P TSLS-MG TSLS-P OLS CCEMG CCEP TSLS IV-HL 
BIAS 25 25 -0.0145 -0.0232 0.0088 0.0085 0.1036 0.2465 0.0926 0.1513 0.0662 

  
50 -0.0342 -0.0315 -0.0213 -0.0210 0.1014 0.2523 0.0781 0.1482 0.0694 

  
75 -0.0122 -0.0145 -0.0006 0.0006 0.1040 0.2535 0.0843 0.1742 0.0759 

  
100 -0.0109 -0.0093 -0.0013 -0.0020 0.0958 0.2487 0.0820 0.1465 0.0718 

 
50  25 -0.0204 -0.0080 0.0100 0.0187 0.1005 0.2408 0.0886 0.1513 0.0865 

  
50 -0.0267 -0.0250 -0.0137 -0.0110 0.1028 0.2461 0.0834 0.1573 0.0701 

  
75 -0.0065 -0.0009 0.0035 0.0105 0.1038 0.2637 0.0875 0.1657 0.0776 

  
100 -0.0037 -0.0072 0.0017 -0.0010 0.1006 0.2563 0.0810 0.1604 0.0727 

 
75  25 -0.0205 -0.0112 0.0078 0.0141 0.1063 0.2615 0.0960 0.1726 0.0744 

  
50 -0.0172 -0.0155 -0.0051 -0.0025 0.1005 0.2553 0.0813 0.1550 0.0736 

  
75 -0.0115 -0.0099 -0.0044 -0.0029 0.1038 0.2571 0.0841 0.1615 0.0766 

  
100 -0.0011 0.0004 0.0069 0.0066 0.1028 0.2588 0.0817 0.1613 0.0747 

 
100 25 -0.0027 -0.0048 0.0221 0.0208 0.1098 0.2635 0.0931 0.1729 0.0805 

  
50 0.0009 -0.0017 0.0150 0.0132 0.1040 0.2592 0.0860 0.1625 0.0806 

  
75 -0.0063 -0.0127 0.0023 -0.0024 0.1020 0.2538 0.0809 0.1603 0.0728 

  
100 0.0001 -0.0016 0.0059 0.0035 0.1030 0.2555 0.0812 0.1663 0.0814 

MSE 25 25 0.7624 0.6375 0.7911 0.6652 0.1660 0.4261 0.2677 0.4379 0.2801 

  
50 0.5208 0.4249 0.5507 0.4474 0.1392 0.3462 0.2065 0.3263 0.1951 

  
75 0.4056 0.3378 0.4214 0.3541 0.1289 0.3202 0.1693 0.2873 0.1567 

  
100 0.3694 0.2996 0.3863 0.3147 0.1181 0.3048 0.1610 0.2467 0.1476 

 
50  25 0.4593 0.4035 0.4759 0.4208 0.1417 0.3338 0.1956 0.3194 0.2178 

  
50 0.3154 0.2758 0.3233 0.2782 0.1255 0.2958 0.1572 0.2455 0.1569 

  
75 0.2550 0.2255 0.2611 0.2301 0.1193 0.2963 0.1409 0.2279 0.1366 

  
100 0.2229 0.1912 0.2300 0.1998 0.1126 0.2825 0.1234 0.2110 0.1206 

 
75  25 0.3728 0.3253 0.3820 0.3422 0.1359 0.3198 0.1781 0.2977 0.1956 

  
50 0.2560 0.2276 0.2599 0.2323 0.1165 0.2878 0.1337 0.2243 0.1442 

  
75 0.2095 0.1852 0.2130 0.1873 0.1151 0.2793 0.1220 0.2086 0.1235 

  
100 0.1822 0.1612 0.1867 0.1673 0.1120 0.2777 0.1147 0.1976 0.1128 

 
100 25 0.3025 0.2731 0.3112 0.2830 0.1341 0.3109 0.1658 0.2716 0.1890 

  
50 0.2150 0.1983 0.2188 0.2046 0.1189 0.2859 0.1310 0.2168 0.1401 

  
75 0.1762 0.1561 0.1803 0.1599 0.1116 0.2725 0.1165 0.1957 0.1147 

  
 

100 0.1476 0.1342 0.1486 0.1345 0.1100 0.2707 0.1098 0.1917 0.1129 
 

Table 3. Bias and MSE for the IV-MG, IV-P, TSLS-MG, TSLS-P, OLS, CCEMG, CCEP, TSLS and 
IV-HL estimators when classical endogeneity is large but factor endogeneity is small: 0.8c = , 

1 2, 0.8εε ρ =
 

, , 0.2γρ Γ = . 
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   T  N IV-MG IV-P TSLS-MG TSLS-P OLS CCEMG CCEP TSLS IV-HL 
BIAS 25 25 -0.0346 -0.0252 -0.0055 -0.0034 0.0867 0.2607 0.1008 0.2070 0.2362 

  
50 -0.0319 -0.0384 -0.0197 -0.0203 0.0799 0.2715 0.0931 0.2081 0.2322 

  
75 -0.0083 -0.0037 0.0046 0.0068 0.0841 0.2671 0.0867 0.2254 0.2361 

  
100 -0.0129 -0.0047 -0.0049 -0.0026 0.0746 0.2707 0.0923 0.2070 0.2287 

 
50  25 -0.0301 -0.0246 0.0015 0.0064 0.0792 0.2603 0.0886 0.2178 0.2429 

  
50 -0.0355 -0.0322 -0.0200 -0.0151 0.0830 0.2672 0.0928 0.2105 0.2398 

  
75 -0.0024 0.0010 0.0076 0.0108 0.0829 0.2782 0.0896 0.2216 0.2411 

  
100 -0.0084 -0.0045 -0.0024 0.0015 0.0800 0.2713 0.0859 0.2157 0.2386 

 
75  25 -0.0105 -0.0163 0.0201 0.0161 0.0838 0.2783 0.1014 0.2288 0.2418 

  
50 -0.0201 -0.0234 -0.0069 -0.0094 0.0795 0.2717 0.0862 0.2188 0.2378 

  
75 -0.0140 -0.0134 -0.0046 -0.0039 0.0813 0.2716 0.0888 0.2169 0.2395 

  
100 -0.0003 0.0033 0.0084 0.0098 0.0806 0.2799 0.0890 0.2229 0.2399 

 
100 25 -0.0029 -0.0128 0.0249 0.0156 0.0888 0.2812 0.1006 0.2271 0.2502 

  
50 -0.0063 -0.0063 0.0103 0.0098 0.0820 0.2750 0.0899 0.2233 0.2469 

  
75 -0.0109 -0.0162 -0.0017 -0.0046 0.0819 0.2696 0.0871 0.2167 0.2404 

  
100 -0.0043 -0.0025 0.0044 0.0035 0.0817 0.2740 0.0876 0.2227 0.2421 

MSE 25 25 0.7993 0.6734 0.8435 0.6914 0.1736 0.4482 0.2864 0.4712 0.3746 

  
50 0.5369 0.4525 0.5725 0.4703 0.1310 0.3689 0.2280 0.3595 0.3055 

  
75 0.4394 0.3697 0.4589 0.3865 0.1226 0.3412 0.1763 0.3262 0.2825 

  
100 0.3859 0.3111 0.4037 0.3275 0.1072 0.3261 0.1736 0.2894 0.2672 

 
50  25 0.4786 0.4302 0.4948 0.4448 0.1348 0.3510 0.1980 0.3548 0.3287 

  
50 0.3338 0.2985 0.3396 0.3027 0.1168 0.3190 0.1673 0.2865 0.2870 

  
75 0.2634 0.2446 0.2714 0.2522 0.1059 0.3113 0.1447 0.2683 0.2695 

  
100 0.2233 0.1963 0.2286 0.2044 0.0990 0.2977 0.1300 0.2559 0.2623 

 
75  25 0.3740 0.3311 0.3800 0.3402 0.1253 0.3369 0.1867 0.3242 0.3322 

  
50 0.2645 0.2396 0.2714 0.2438 0.1047 0.3058 0.1403 0.2690 0.2725 

  
75 0.2176 0.1963 0.2215 0.2001 0.0983 0.2934 0.1291 0.2542 0.2626 

  
100 0.1874 0.1695 0.1916 0.1752 0.0948 0.2982 0.1234 0.2504 0.2582 

 
100 25 0.3056 0.2891 0.3160 0.2947 0.1216 0.3272 0.1752 0.3020 0.3248 

  
50 0.2255 0.2118 0.2310 0.2168 0.1039 0.3006 0.1344 0.2657 0.2794 

  
75 0.1812 0.1691 0.1830 0.1707 0.0966 0.2876 0.1206 0.2442 0.2612 

  
 

100 0.1523 0.1422 0.1544 0.1426 0.0920 0.2882 0.1140 0.2428 0.2571 
 
 
Table 4. Bias and MSE for the IV-MG, IV-P, TSLS-MG, TSLS-P, OLS, CCEMG, CCEP, TSLS and 
IV-HL estimators when both classical and factor endogeneity are large: 0.8c = , 

1 2, 0.8εε ρ =
 

, 

, 0.8γρ Γ = . 
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Figure 1:  Densities of the IV-MG, IV-P, TSLS-MG, TSLS-P, OLS, CCEMG, CCEP, TSLS and IV-
HL estimators when both classical and factor endogeneity are small: 0.8c = , 

1 2, 0.2εε ρ =
 

, , 0.2γρ Γ = , 

100N T= =  based on 10000 replications. 
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Figure 2: Densities of IV-MG, IV-P, TSLS-MG, TSLS-P, OLS, CCEMG, CCEP, TSLS and IV-HL 
estimators when classical endogeneity is small but factor endogeneity is large: 0.8c = , 

1 2, 0.2εε ρ =
 

, 

, 0.8γρ Γ = , 100N T= =  based on 10000 replications. 
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Figure 3: Densities of the IV-MG, IV-P, TSLS-MG, TSLS-P, OLS, CCEMG, CCEP, TSLS and IV-
HL estimators when classical endogeneity is large but factor endogeneity is small: 0.8c = , 

1 2, 0.8εε ρ =
 

, , 0.2γρ Γ = , 100N T= =  based on 10000 replications. 
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Figure 4; Densities of the IV-MG, IV-P, TSLS-MG, TSLS-P, OLS, CCEMG, CCEP, TSLS and IV-
HL estimators when both classical and factor endogeneity are large: 0.8c = , 

1 2, 0.8εε ρ =
 

, , 0.8γρ Γ = , 

100N T= =  based on 10000 replications. 
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