INTRODUCTION
It is a time of change in the curricula for all levels of education in Kenya, and Kenya is not the only place with this underway. Times are changing, the Earth is under stress, population is increasing immensely in the last 50 years and climate is changing as well – all of these changes are directly related to humans. Humans are a unique species for the Earth – they have the brains to think deeply and are the first species that has a chance to craft the future. They can either choose a path to ensure that our planet has a sustainable future, not only for humans, but also for the rest of the world’s species – animals and plants, oceans and air – or they can affect it so much that it becomes a true mess.

So critical in crafting our future is the education of our next generation and the generations to come, and that education needs to begin from the day a little boy or girl is first held in the arms of their Mother and Father. That education begins in the home and continues through kindergarten, primary school, secondary school and for those lucky and wanting enough to move into a Tertiary education.

One of the insightful outcomes of this conference, which including a great diversity of people who have a passion for education, is that all of the educators – parents, grandparents, sisters, brothers, cousins, teachers at all levels, politicians, curriculum developers – all need to work together with a central aim. That aim is first and foremost behaviours to encourage are curiosity through life, investigation of the world around [from grasshoppers and rocks] , respect of others as well as instil in each child a feeling that they have the ability to look, question and come to their own conclusions.

The conference was targeting the curriculum that relates to the earth sciences – but because earth science is such a broad topic – this is not simply related to rocks – but to biology, to chemistry, to the atmosphere and natural disasters, to the oceans, to mining strategies and urban planning, to the arts, to music and much, much more. And this conference investigated the past curricula and found that
many topics which would be considered earth sciences – were already there in the geography curriculum – and those strengths should be enhanced and connected.

This conference connected – and it connected people with a true passion to move ahead and connect the current curricula with each other and to add to it. This conference reflected that people from so many different parts of life were truly respectful of one another and so willing to work together, connect with each other and move ahead. Young students and “old” professors, women and men, those from the ministries and professional curriculum development groups, teachers’ unions, UNESCO….. (see list below of the groups). Top of the list were the feelings of respect, passion and cooperation.

Colleagues Participating
Primary School Teachers, from urban and rural communities
Secondary School Teachers, from urban and rural communities
Kenya Institute of Curriculum Development
Teachers Service Commission (Employer)
Kenyan National Union of Teachers
Ministry of Education, Science and Technology
Ministry of Water and Irrigation
University of Nairobi
Technical University of Kenya
Kenya Federation of UNESCO Clubs Teachers
Postgraduate Students from University of Nairobi
National Commission for UNESCO
Ministry of Mining
Teacher Training Colleges
Ministry of Environment and Natural Resources
Earth Science Specialists (including Dr Ian McKay from South Africa and Mrs Lydia Low and Dr Patricia Vickers-Rich from Australia – all with both research and teaching experience in the Earth Sciences)

AIMS OF THE WORKSHOP

Clearly stated goals from the beginning of the Workshop were the following:
1. Sensitize teachers and education stakeholders on the need to promote Earth Science education in Kenyan schools.
2. Discuss with around 20 teachers concerning what was needed for hands on tools in teaching Earth Science in schools.
3. Promote discussion amongst the stakeholders (see list above) concerning how best to slot more Earth Science topics in the ongoing process of curricula reform in Kenya.

The workshop involved a number of different activities, which included lectures from many of the stakeholders, breakout sessions and true interactive workshops including all of the stakeholders. Coffee and tea-breaks and luncheons gave informal time to extend discussions that began in the formal sessions. Many of the stakeholders were accommodated on the grounds of the Kenya School of Monetary Studies and evening discussions further enhanced the discussions began in the formal sessions.

At the beginning of this 3 day workshop there were also some specific hopes noted concerning what would be the outcome of the interaction of this diverse group of participants:
1. There would be a clear understanding of why and how Earth Sciences needs to be promoted in the schools – kindergarten, primary, secondary, tertiary
2. For those teachers attending [and these were from rural and urban schools] a connection between urban and rural was encouraged and localizing the presentations was encouraged.
3. The participants would have enhanced ideas of the up to date tools available for teaching Earth Science in their schools.
4. The participants would have the chance to make recommendations on how to include more Earth Science in the new curriculum under development.

HOW EACH DAY OF THE WORKSHOP WORKED

DAY 1: Sessions I and II – Opportunities and Challenges of Earth Science in Schools and Engagement of Stakeholders

Mr Mohamed Djelid, Director of the UNESCO Regional Office of Eastern Africa, with the good wishes of Dr Evangeline Njoka, Secretary General of KNATCOM [Kenya National Commission for UNESCO], opened the workshop, and from there Mr Joel Ongoto, Programme Officer of KNATCOM and Dr Felix Toteu (a geologist by trade as well as UNESCO coordinator for the workshop) oversaw the proceedings for the rest of the days.

During this first day as well the invited experts presented something about where they had come from, what led them to decide to study subjects in the Earth Sciences and what was the reason they were so passionate about what they do as researchers. They gave insights also into why they felt it was critical that children from a very early stage have the chance to investigate and understand the Earth Sciences – how it was critical to the sustainability of planet Earth – what were the drivers behind their passions for rocks. Dr Patricia Vickers-Rich presented a view of her own life, which began on a small farm in California. It was the environment in which she lived, and her teachers as well as her farmer parents who instilled a love of nature and a passion for enquiry as well as giving her the confidence to make her own assessment of the world around her that enabled her to pursue her dreams and become the first of her family ever to attend university – and become a geologist.

A power point presentation copy of this lecture by Dr Vickers-Rich has been left on file with the organizers (Joel Ongoto and Dr Felix Toteu)

Patricia is the Honorary Director of PrimeSCI! at Monash University, an entity founded by a group of scientists, teachers, students who raise funding and present current science to schools not only in
Melbourne and around Australia, but who have programs ongoing in Timor-Leste (an island nation near Australia), Namibia, Afghanistan, Argentina and other international venues.

Dr Ian McKay, with experience in Earth Science-based research and public outreach education, and Prof. Daniel Ichang’i (Chair of the Department of Geology at the University of Nairobi) along with many of his university students, also shared their experiences in bringing current research into the primary and secondary realms as well as into the public realm. It was clear that early encouragement of curiosity, of experience-based enquiry, passionate and informed teachers and parental encouragement and confidence-building were important parts of all of their backgrounds.
The team from the Department of Geology, University of Nairobi with Prof. Daniel Ichang’I in the center and university lecturer/research Dr Dennis on the left and PhD Dennis Njagi on the right – a true example of how academics and post graduate students work together to take earth science to the schools and the public.

In order to facilitate the discussions for the next two days, during the afternoon comments from each of the stakeholders were put on the table with the facilitation of Dr Toteu and Dr Vickers-Rich. The table below summarizes these comments, and they served as a guide to discussions and presentations for the following two days.

Input from Stakeholders

<table>
<thead>
<tr>
<th>Stakeholders</th>
<th>Desired Outcomes From Workshop / Curriculum Reform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary School teachers</td>
<td>1) Capacity building</td>
</tr>
<tr>
<td></td>
<td>2) Teaching/learning resources</td>
</tr>
<tr>
<td></td>
<td>3) Money to fund the program</td>
</tr>
<tr>
<td></td>
<td>4) Bridge gap across education continuum – from pre-school to universities</td>
</tr>
<tr>
<td></td>
<td>5) Survey local resources and make relevant to curriculum</td>
</tr>
<tr>
<td></td>
<td>6) Encourage parental and local interaction</td>
</tr>
<tr>
<td></td>
<td>7) Logistics considered when reaching out to rural kids</td>
</tr>
<tr>
<td></td>
<td>8) Curriculum enhancement – dealing with environmental issues, art-science relationships, writing skills</td>
</tr>
<tr>
<td>Secondary School teachers</td>
<td>1) Framework – syllabus</td>
</tr>
<tr>
<td></td>
<td>2) More practical experience</td>
</tr>
<tr>
<td></td>
<td>3) Bringing local context to geological concepts</td>
</tr>
<tr>
<td></td>
<td>4) Dividing topics into smaller teaching units</td>
</tr>
<tr>
<td></td>
<td>5) Increase awareness of geology as a career option</td>
</tr>
<tr>
<td></td>
<td>• Distribute booklet that describe strengths and areas of specialties of every university</td>
</tr>
<tr>
<td></td>
<td>• Secondary school teachers were invited to make contact with universities at career fairs</td>
</tr>
<tr>
<td></td>
<td>6) Have careers days</td>
</tr>
<tr>
<td></td>
<td>7) Produce book on career paths</td>
</tr>
<tr>
<td></td>
<td>8) New concepts on technology need to be updated</td>
</tr>
<tr>
<td></td>
<td>9) Science clubs are useful</td>
</tr>
<tr>
<td></td>
<td>10) How to copyright ideas that kids come up with so they get the rewards of innovation – some policy needs to be suggested by Minister of Education</td>
</tr>
<tr>
<td></td>
<td>11) Engagement with universities</td>
</tr>
<tr>
<td>Kenya Institute of Curriculum</td>
<td>1) Changes to assessment system required</td>
</tr>
<tr>
<td>Development</td>
<td>• Formative vs summative assessment</td>
</tr>
<tr>
<td></td>
<td>2) Thorough research required before curriculum framework is drafted</td>
</tr>
<tr>
<td></td>
<td>3) Localization of curriculum</td>
</tr>
<tr>
<td></td>
<td>4) Practical subjects need to be graded fairly</td>
</tr>
<tr>
<td></td>
<td>5) Resources needed</td>
</tr>
<tr>
<td></td>
<td>6) Curriculum development needs to be funded</td>
</tr>
<tr>
<td></td>
<td>7) Develop resources – perhaps meeting of stakeholders with publishers</td>
</tr>
<tr>
<td></td>
<td>8) Perhaps files of performance, strengths should move with a student from primary to secondary to university</td>
</tr>
<tr>
<td></td>
<td>9) Universities need to sell themselves to the students</td>
</tr>
</tbody>
</table>
| Teachers Service Commission | 1) Professionalizing the teaching profession
- Registered with commission by meeting threshold requirements
- Renewing teaching license periodically
- Performance appraisals (teachers)
- Performance contracting (school and administrators)
- Performance-based promotions for teachers
- Decentralizing services to county/sub-county level
- Online feedback for principals
2) Curriculum change should also be reflected in teacher-training colleges (Olive from the curriculum departments replied that it is being taken into consideration)
3) Experimental design to be included in curriculum change
4) Prevent unnecessary overlaps and conflicts from Earth Sciences and Social Sciences |
|---|---|
| Kenya National Union of Teachers | 1) Within service training there should be content provided
2) More resources needed
3) Objectives of training need to be considered, not just content
4) Design curriculum so that it starts simple and moves to complex
5) Teacher training in use of technology – computers
6) Experimental design should be reviewed |
| Ministry of Education, Science and Technology | 1) Formulation of policy and guidelines
2) Money and resources
3) Unity between Ministry of Education and the TSC independent commission to ensure the smooth implementation, monitoring, evaluation
4) Communication between ministry and teachers |
| Ministry of Water and Irrigation | 1) Reforms should be kept aside from politics
2) Integrity in the development and enforcement
3) Curriculum in this subject area should cut across many areas |
| University of Nairobi | 1) Science communication to be made student-friendly
- Kits to be sold to schools
2) Show students the relevance of their learning / studying
- Practical applications/training
- University tours
3) Benchmarking what is taught to those that are taught internationally
4) Invest more money in education |
| **Technical University of Kenya** | **1)** More collaboration between industries and tertiary institutions
| | **2)** Societies need to be strengthened
| | - Increase public awareness
| | **3)** More laboratory work for students to do research – open labs for university use
| | **4)** Invitation to visit the institution’s astronomy program
| | **5)** More linkage between business/companies and the university
| **Kenya Federation of UNESCO Club Teachers** | **1)** Make the concept of peace through all subjects to reduce tribal tensions, stereotyping
| | - Encourage national pride
| | **2)** Embed core values when reforming curriculum across all subjects
| | - Is already taken into consideration
| | **3)** Demystifying geosciences so that it is easily accepted by primary school students
| **Postgraduate students from the University of Nairobi** | **1)** Fieldwork as regular as possible, and as early as possible
| | **2)** Updating teaching methods especially with the use of technology
| | **3)** Make requirements into courses clear
| | **4)** Include problem-solve, communicate, how to interact with people
| | **5)** Increase awareness of geology in secondary school through career guidance mentorship
| **National Commission for UNESCO staff** | **1)** Linking UNESCO with government agencies
| | **2)** Linking natural science with peace
| **Ministry of Mining** | Ran out of time
| **Ministry of Environmental and Natural Resources** | Ran out of time

Equipment

5) Issues of water

6) More practical learning needed

7) Universities need to invite schools to visit and tour around many different departments and areas and spend the whole day

8) Funding needs to be used efficiently, and more needed

9) Review of university departments underway – exploring learning outcomes, course content, review of references used, etc.

10) More specimens needed
A great strength of this workshop was the presence of many groups that have a real stake in the crafting of an effective curriculum. Here Kindi from the Ministry of Education discusses many of the issues raised by the teachers and others present, in a favourable and concise fashion.

DAY 2: Session III – Teachers’ Engagement

Day 2 was a day of practical demonstrations – with an introduction by Joel Ongoto from KNATCOM.

The first session was to divide the group into two parts. One session was provided by Dr Ian McKay - interactives concerning the origin of humanity using assets of the fossil skulls known from East Africa that were loaned to the workshop by the National Museum of Kenya. He demonstrated the differences between humans and other close relatives, chimpanzees, gorillas, etc. and investigated not only the skulls and bones but also DNA.

Mrs Lydia Low offered the second session - demonstrating a number of hands on experiments that investigated weather, our planet Earth and its place in space, how the seasons happen, how the Earth works from interior to surface, showing how continents have moved in the past and what the drivers are. She also had the participants examine the different types of rocks that are known on the Earth’s surface – from heavy, dark diorites with all of their crystalline structure to rocks that float (pumice) due to material being shot out of volcanoes and solidifying as it moved through the air incorporating lots of space within the rock itself, so it was light and thus floated, not sank as expected, in the water. And then there was the glassy obsidian which also came to the Earth’
surface from a volcano, but cooled quickly and turned into a glass. Early humans found this very useful in making their hunting tools by crafting spear points and scrapers from this high grade material.

For the remaining part of the day stakeholders from The University of Nairobi, the University of Witwatersrand (South Africa) and Monash University (PrimeSCI!) in Australia presented a number of programs that had been trialled and perfected in their respective institutions over the years. A great similarity in all of their programs was the engagement of researchers and outreach at many difference levels – and presented not just by the University dons but importantly by undergraduate and graduate students working with their university supervisors, the university administration and the teachers to present current research in a manner and a language which could easily excite and inform the kids they were teaching.

During this first day as well the invited experts, as noted above, repeatedly presented something about where they had come from, what led them to decide to study subjects in the Earth Sciences and what was the reason they were so passionate about what they do as researchers. They gave insights also into why they felt it was critical that children from a very early stage have the chance to investigate and understand the Earth Sciences – how it was critical to the sustainability of planet Earth – what the driver behind their passions for rocks came from.

Lecture given as part of the workshop on the research that led to the school and public activities that were given as a working example of how to take research to the schools and public in a language they can understand. [This lecture left as a power point that can be distributed to participants by contacted Dr Felix Toteu at UNESCO] The dinosaurs introduced in this workshop come from rocks in southeastern Australia that are more than 106 million years old from a time when Australia lay near the south pole and attached to Antarctica. The little girl, Leaelyn, pictured holding a dinosaur skull, accompanied her parents in the field and helped discover some of the dinosaur material that came from Dinosaur Cove, a famous site along the southern Australian coast. She holds in her hand the skull of a small, plant eating dinosaur that was named after her to recognize her own love of earth sciences – from the time she was a toddler. The dinosaur was named Leaellynasaura – and the “a” ending is a Latin ending for the feminine. Most dinosaurs’ names (Tyrannosaurus, for example) end in “us” – a Latin ending for the masculine.
A reconstruction of *Leaellynasaura* by Dr Peter Trusler – an artist and a scientist. Art and science are so connected. Imagery is so important many times to communicating science. Peter’s art made the cover of *Time Magazine* in 1993, the same year that the movie *Jurassic Park* was released.

What the forests looked like at the time Australia’s polar dinosaurs were alive. On the right a footprint of a *Leaellynasaura*-like plant eater – and the participants in this workshop were able to see how casts of this footprint were made and some made copies for themselves showing how this was done using the same strips that doctors used to wrap broken bones. The main point was that local materials can be adapted to demonstrating science.

Dinosaur Cove along the south coast of Victoria – where the polar dinosaurs were collected. A short documentary of the collection of these dinosaurs was shown in the workshop as well as a time lapse doco demonstrating how once collected in the field the material was prepared.

After the short lecture and the screening of two short docos, participants were shown the teaching modules that had resulted from the cooperation between teachers, scientists and industry – that latter group provided a great deal of help in the production of *The Dinosaur Box*, an asset with many casts of the dinosaur, turtles, fish, plant materials and rocks as well as a chicken bone to put the entire collection in close proximity to the present. Volunteers (including Patricia’s Mother) as well as students helped put these kits and the lessons that accompanied the fossil cast materials along with real rocks – and made this possible. The activities were curriculum compliant, and then teacher
training sessions were carried out to make sure that primary and even secondary teachers were training in how to present them and knew exactly where they fit in the curriculum. And other activities included the scientists who carried out the excavations, preparation and produced the research papers went into the schools, gave public lectures and often on email answered teacher and student questions.

As noted above, one of the activities demonstrated was the making of a cast of a dinosaur footprint from a form that had lived more than 105 million years ago in Australia and had left its track in the muds of the time. Some of the participants, including the head of the Geology Department at the University of Nairobi, dug into the wet plaster and made their own – a good example of current science preserved in plaster!

Making casts of dinosaur footprints, where graduate student [Dennis Njagi] and the professor [Prof. Daniel Ichang’i] are both having a try – and both went away with a memory of their casting techniques – materials used were unique! – supplied by the local Childrens’ hospital – normally used to broken bones – but showing the ability to use local materials when the usual plaster of paris was not in supply!

During one of the breaks this day graduate students from the University of Nairobi demonstrated outside of the classroom some of their spectacular explosions! This group, which works together with the Geology Department, their supervisors, primary and secondary teachers, is impressive!
Students from the University of Nairobi demonstrating volcanic activity in a bottle – using materials that teachers could easily access. Denis Njagi (in blue shirt) heads this group, named Funke Science (www.funkescience.co.ke), which has major outreach in Kenya – and PrimeSCI is pleased to be working with this group in the future.

DAY 3: Session IV - Inclusion of More Earth Science into the New Curriculum

This session began with a bang as Dr Ian McKay brought balloons to the fore of the room filled with different gases – air and something else..... Air was mild but hydrogen had a somewhat different BANG! That certainly woke everyone up and demonstrated quite clearly the different behaviours of gases in our daily lives.

![Ian preparing the experiment to demonstrate the reaction of different gases to the flame](image_url)

Franko Munene presented a detailed report from KICD as to how this group (Kenyan Institute for Curriculum Development) was tracking and on their determination to incorporate further earth science topics, but did point out that there were already many present in the geography curriculum in Secondary being taught – it was a matter of pointing this out and adding more as well as connecting a disparate number of silo topics that currently did not show connection.

In secondary, the topics already representing Earth Sciences include Geology, Meteorology, Oceanography and Astronomy. In Primary, such topics as Numeracy, Literacy, Creativity, Critical Thinking and Environmental Awareness all relate to the Earth Sciences.

Lydia Low from PrimeSCI! at Monash University shared the earth science components of the Australian primary school curriculum and highlighted parts of the current Kenyan primary school curriculum that are defined as earth science by Australian educators. Lydia proposed a multi-prong approach in delivering science education, in particular earth science, to students. Instead of waiting for all primary school teachers to be fully-trained before rolling it out to students, a solution that involves allied education services could be implemented. This involves museums, science centres, and universities. She then illustrated the services of PrimeSCI!, a unit of Monash University, in the area of science education. The aim of PrimeSCI! is ‘bringing scientists and the community together’ as well as to primary schools and the community at large. One of its main programs is science incursions in primary schools. This highly successful program not only provides employment to university students who are good communicators and confident in the subject matter, it also presents as a manner in which to train teachers in the delivery of science concepts. A program like this allows for university engagement at the primary school level, and benefits of such a program in Kenya could go beyond the hands-on delivery of science to students and teachers in schools.
In the afternoon the participants divided into three groups to discuss the following topics:
- Scope of Earth Science in the new school curricula (general) led by Evelyn Agingu
- Earth-related emerging issues specific to Kenya in the curricula
- Actions needed to capacitate teachers for bringing more Earth Sciences

These sessions were led by School Heads, UNESCO reps and Teacher Trainers – a diversity of talents.

After these group sessions, summaries were presented outlining the conclusions of the workshops, and a passionate and lively discussion finalized this workshop late in the afternoon.

MAJOR SUGGESTIONS RESULTING FROM THE WORKSHOP

The high point of this meeting was the level of enthusiasm, mutual respect, passion to move ahead and the presence of participants from multidisciplinary backgrounds. Each group brought to the table new ideas – and also a respect for what is already present and that should be retained. The following were some of the comments that met with wide agreement from this group.

1. There should be a linkage between the offerings in pre-school, primary, secondary and tertiary so that knowledge continues to grow in each area.
2. Many areas that may seem in the past non-related truly are - arts, music, science and so many more are all linked in so many ways and that linkage should be celebrated and use to enhance learning throughout life.
3. Teaching should be adapted to the place of presentation – so whether rural or urban, whether in the desert or in the tropics, the guidelines for education should be adapted to the local surroundings and to the history of the area.
4. Teachers need to be passionate, compassionate and informed and be given the support to allow them time to develop and enhance their talents. This does not relate just to money (but good funding helps) but to be given time to think and honoured to be thinkers.
5. Students should be encouraged to enquire, be given confidence to do their own thinking and to debate graciously with each other and with their teachers. Enquiry-based learning.
6. A teacher should never be worried if they do not have the answer and teacher and student can, as colleagues, together search for those solutions to problems, answers to questions. It is not a fault to admit that one does not have the answer to everything.
7. It is ok to have multiple working hypotheses – sometimes there is no one answer. There may not be enough evidence to solve the problem. So, this will encourage more investigation.
8. There should be connection right across the education landscape, and so university professors and students should be encouraged to meet with educators across that landscape and co-develop programs. PrimeSCI! at Monash began with this main aim of getting active researchers in direct contact with teachers, kids, the general public through a while range of activities – school incursions, exhibitions, school holiday programs, science in the park, family science evenings...... And the same sort of activities were apparent in the work of the Geology Department at the University of Nairobi.
9. Put together teams of teachers so that the strengths of individual teachers can be used in teaching rather than have each teacher teach all topics. Such team building helps to educate other teachers.
10. Allow some flexibility to the lesson plans – each teacher teaches a bit differently and – and have some oversight to be sure that the basics are being covered – but leave some flexibility as to just how this is done.
11. As technology continues to change – the infrastructure needs to be there and this takes funding – and the training as to how to use it and make sure that it is appropriate to the task all need to be taken into account by those crafting the curricula in concert with those who have the teaching experience.

12. And much more – but it is the mutual respect and taking on board the experiences of old, young, middle age, teachers and parents, government ministries, curriculum developers, NGO’s, community leaders and so much more that will be sure that this works. Mutual respect for one another and cooperative action is so very important in making sure that we all own the plan with the aim of raising an intelligent and caring future generation who will make plant Earth sustainable and place we all want to live, and can

On the Friday after the workshop had ended, Lydia took her activities out to one of the local schools for a trial at the Premier Academy, Srimad Rajchandra Institute, a kinder to secondary school located near the UNESCO Headquarters for Kenya in Nairobi. The University of Nairobi students also came along as well, headed up by Dennis Njagi, who assisted in Lydia’s presentation. These activities were so well received that the Head of the School asked if this connection between PrimeSCI! and the Premier Academy could continue into the future - there was enthusiastic mutual agreement from both sides and a firm invitation to future cooperation by Chinmoy Banerjee, the Director of Change Management at the Academy!
Activities at the Premier Academy in Nairobi on the final day of the PrimeSCI! Monash visit. Lydia teaching as well as photo below of the team from the University of Nairobi of graduate students (three on left) who carry on a program of science outreach in Kenya. Also in the photo to the right of the three enthusiastic students are one of the Academy teachers, as well as grandmother Jaqueline of one of the Premier students, Lydia and headmistress Evelyn Agingu of the school. One of the 6 school outreach teaching units donated to the University of Nairobi outreach group by PrimeSCI! in the foreground.

Visit to the Premier Academy School in Nairobi resulted in firm ties with this school for the future. From left to right Dr Felix Toteu [UNESCO and a geologist] with teacher, Evelyn [head of School], Lydia, and a student's grandmother Jaquelin. Students at this school were over the moon about the enthusiasm and simplicity of what many view as complex science and were so responsive to Lydia's presentation on plate tectonics, rocks, natural disasters, amongst many more, all compacted into a single morning's presentation.