E3004 Bachelor of Engineering (Honours) and Bachelor of Biomedical Science

Common first year

You do not have VCE Units 3 & 4 Specialist Maths >30 study score and VCE Units 3 & 4 Physics >25 study score: You must enrol in Foundation mathematics (ENG1090) and Foundation physics (PHS1001)

<table>
<thead>
<tr>
<th>Year</th>
<th>Period</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sem 1</td>
<td>ENG1012 Engineering design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHS1001 Foundation physics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG1090 Foundation mathematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMS1011 Biomedical chemistry</td>
</tr>
<tr>
<td></td>
<td>Sem 2</td>
<td>ENG1011 Engineering methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG1005 Engineering mathematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG1014 Engineering numerical analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMS1062 Molecular biology</td>
</tr>
</tbody>
</table>

* If you require two foundation units, you will need to take the remaining core unit ENG1013 Engineering smart systems in Semester 1 of Year 2 as an overload, and increase the total credit points needed for the double by 6 points

You do not have VCE Units 3 & 4 Specialist Maths >30 study score: You must enrol in Foundation mathematics (ENG1090)

<table>
<thead>
<tr>
<th>Year</th>
<th>Period</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sem 1</td>
<td>ENG1012 Engineering design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG1013 Engineering smart systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG1090 Foundation mathematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMS1011 Biomedical chemistry</td>
</tr>
<tr>
<td></td>
<td>Sem 2</td>
<td>ENG1011 Engineering methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG1005 Engineering mathematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG1014 Engineering numerical analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMS1062 Molecular biology</td>
</tr>
</tbody>
</table>

You do not have VCE Units 3 & 4 Physics >25 study score: You must enrol in Foundation physics (PHS1001)

<table>
<thead>
<tr>
<th>Year</th>
<th>Period</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sem 1</td>
<td>ENG1012 Engineering design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG1013 Engineering smart systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHS1001 Foundation physics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMS1011 Biomedical chemistry</td>
</tr>
<tr>
<td></td>
<td>Sem 2</td>
<td>ENG1011 Engineering methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG1005 Engineering mathematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG1014 Engineering numerical analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMS1062 Molecular biology</td>
</tr>
</tbody>
</table>

You have completed VCE Units 3 & 4 Physics >25 study score and VCE Units 3 and 4 Specialist Maths >30 study score: No foundation units are required

<table>
<thead>
<tr>
<th>Year</th>
<th>Period</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sem 1</td>
<td>ENG1011 Engineering methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG1005 Engineering mathematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG1014 Engineering numerical analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMS1011 Biomedical chemistry</td>
</tr>
<tr>
<td></td>
<td>Sem 2</td>
<td>ENG1012 Engineering design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG1013 Engineering smart systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>First Year engineering technical elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMS1062 Molecular biology</td>
</tr>
</tbody>
</table>

NOTE:
- Foundation units: You enrol in the foundation units ENG1090 and/or PHS1001 if you have not completed the Australian VCE (Units 3 & 4) or equivalent Specialist mathematics and/or Physics with the required study score.
- The placement of units may be rearranged to support sequencing for double degree courses but care should be taken to ensure sequenced units are maintained in sequence.
- Each unit requires 12 hours of work per week. A full-time study week totals 48 hours. If you are unable to commit 48 hours of study due to external commitments, please speak with a course advisor about options to study less units per semester or take some units in the summer semester.
- For enrolment advice, please refer to the Course advisers webpage.
E3004 Bachelor of Engineering (Honours) and Bachelor of Biomedical Science Specialisation - Chemical Engineering

<table>
<thead>
<tr>
<th>Year 1 Semester 1</th>
<th>Common first year</th>
<th>Bachelor of Chemical Engineering (Honours)</th>
<th>Bachelor of Biomedical Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG2000 Advanced engineering mathematics</td>
<td>CHM1011 Chemistry 1 or CHM1051 Chemistry 1 advanced</td>
<td>BMS1031 Medical biophysics</td>
<td>BMS1021 Cells, tissues and organisms</td>
</tr>
<tr>
<td>Year 1 Semester 2</td>
<td>July</td>
<td></td>
<td>If two foundation units are required then overload is required for ENG1013 Engineering smart systems</td>
</tr>
<tr>
<td>CHE2162 Material and energy balances</td>
<td>CHE2161 Mechanics of fluids</td>
<td>BMS1042 Public health and preventive medicine</td>
<td>BMS1052 Human neurobiology</td>
</tr>
<tr>
<td>Year 2 Semester 1</td>
<td>February</td>
<td>Year 2 Semester 2</td>
<td>July</td>
</tr>
<tr>
<td>CHE2164 Thermodynamics 1</td>
<td>BMS2021 Human molecular biology</td>
<td>BMS2011 Structure of the human body</td>
<td>BMS2031 Body systems</td>
</tr>
<tr>
<td>Year 3 Semester 1</td>
<td>February</td>
<td>Year 3 Semester 2</td>
<td>July</td>
</tr>
<tr>
<td>CHE2163 Heat and mass transfer</td>
<td>BMS2042 Human genetics</td>
<td>BMS2052 Microbes in health and diseases</td>
<td>BMS2062 Introduction to bioinformatics</td>
</tr>
<tr>
<td>Year 4 Semester 1</td>
<td>February</td>
<td>Year 4 Semester 2</td>
<td>July</td>
</tr>
<tr>
<td>CHE3161 Chemistry and chemical thermodynamics</td>
<td>CHE3165 Separation processes</td>
<td>BMS3031 Molecular mechanisms of disease</td>
<td></td>
</tr>
<tr>
<td>Year 5 Semester 1</td>
<td>February</td>
<td>Year 5 Semester 2</td>
<td>July</td>
</tr>
<tr>
<td>ENG4701 Final year project A</td>
<td>CHE4162 Particle technology</td>
<td>CHE4161 Engineer in society</td>
<td>CHE3167 Transport phenomena and numerical methods</td>
</tr>
<tr>
<td>ENG4702 Final year project B</td>
<td>CHE4170 Design project (12 points)</td>
<td>CHE3162 Process control</td>
<td>ENG0001 Continuous Professional Development (0 credit points)</td>
</tr>
</tbody>
</table>

NOTE:
- CHM1011 or CHM1051 - If you have completed either unit as a First Year technical elective, you must replace the core with another unit from the chemical engineering technical electives list or from one of the engineering minors. The replacement unit must be of the same level as the core unit or higher.
- CHE4164 and CHE4165 are integrated industrial project units for select students only. The units are undertaken in place of the final year project units ENG4701 and ENG4702. Depending on placement location, you may have to overload a semester or extend an additional semester in order to complete your course.
- CHE4170 - You should not overload in the semester when undertaking this unit.
- The placement of units may be rearranged to support sequencing for double degree courses but care should be taken to ensure sequenced units are maintained in sequence.
- Engineering minors are not available in the Engineering double degree courses.
- You are required to complete at least 420 hours of Continuous Professional Development (CPD) in order to graduate. For further information refer to the CPD webpage.
- Each unit requires 12 hours of work per week. A full-time study week totals 48 hours. If you are unable to commit 48 hours of study due to external commitments, please speak with a course advisor about options to study less units per semester or take some units in the summer semester.
- For enrolment advice, please refer to the Course advisers webpage.

Source: Monash University 2022 Handbook – ORICOS Provider Number: 00058C
E3004 Bachelor of Engineering (Honours) and Bachelor of Biomedical Science
Specialisation - Civil Engineering

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>February</td>
<td>July</td>
</tr>
<tr>
<td>Year 1</td>
<td>CIV2262 Transport and traffic engineering</td>
<td>CIV2226 Structural mechanics</td>
</tr>
<tr>
<td>Year 2</td>
<td>CIV2242 Geomechanics 1</td>
<td>ENG2005 Advanced engineering mathematics</td>
</tr>
<tr>
<td>Year 3</td>
<td>CIV2263 Water systems</td>
<td>BMS2021 Human molecular biology</td>
</tr>
<tr>
<td>Year 4</td>
<td>CIV4286 Project management for civil engineers</td>
<td>CIV3294 Structural design</td>
</tr>
<tr>
<td>Year 5</td>
<td>ENG4701 Final year project A</td>
<td>CIV3285 Engineering hydrology</td>
</tr>
<tr>
<td></td>
<td>February</td>
<td>February</td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>July</td>
</tr>
<tr>
<td>Year 1</td>
<td>Common first year</td>
<td>BMS1011 Biomedical chemistry</td>
</tr>
<tr>
<td>Year 2</td>
<td>If two foundation units are required then overload is required for ENG1013 Engineering smart systems</td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>BMS2021 Cells, tissues and organisms</td>
<td></td>
</tr>
<tr>
<td>Year 4</td>
<td>BMS1021 Biomedical basis and epidemiology of human disease</td>
<td></td>
</tr>
<tr>
<td>Year 5</td>
<td>ENG0001 Continuous Professional Development (0 credit points)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
- The placement of units may be rearranged to support sequencing for double degree courses but care should be taken to ensure sequenced units are maintained in sequence.
- Engineering minors are not available in the Engineering double degree courses.
- You are required to complete at least 420 hours of Continuous Professional Development (CPD) in order to graduate. For further information refer to the [CPD webpage](#).
- Each unit requires 12 hours of work per week. A full-time study week totals 48 hours. If you are unable to commit 48 hours of study due to external commitments, please speak with a course advisor about options to study less units per semester or take some units in the summer semester.
- For enrolment advice, please refer to the [Course advisers webpage](#).
E3004 Bachelor of Engineering (Honours) and Bachelor of Biomedical Science
Specialisation - Electrical and Computer Systems Engineering

<table>
<thead>
<tr>
<th>Year 1 Semester 1</th>
<th>Year 1 Semester 2</th>
<th>Year 2 Semester 1</th>
<th>Year 2 Semester 2</th>
<th>Year 3 Semester 1</th>
<th>Year 3 Semester 2</th>
<th>Year 4 Semester 1</th>
<th>Year 4 Semester 2</th>
<th>Year 5 Semester 1</th>
<th>Year 5 Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>February</td>
<td>July</td>
<td>February</td>
<td>July</td>
<td>February</td>
<td>July</td>
<td>February</td>
<td>July</td>
<td>February</td>
<td>July</td>
</tr>
<tr>
<td>ENG2000 Advanced engineering mathematics</td>
<td>ECE2071 Computer organisation and programming</td>
<td>BMS1031 Medical biophysics</td>
<td>BMS1021 Cells, tissues and organisms</td>
<td>If two foundation units are required then overload is required for ENS1013 Engineering smart systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE2191 Probability models in engineering</td>
<td>ECE2072 Digital systems</td>
<td>BMS1042 Public health and preventive medicine</td>
<td>BMS1052 Human neurobiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE2131 Electrical circuits</td>
<td>BMS2021 Human molecular biology</td>
<td>BMS2011 Structure of the human body</td>
<td>BMS2031 Body systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE2111 Signals and systems</td>
<td>BMS2042 Human genetics</td>
<td>BMS2052 Microbes in health and diseases</td>
<td>BMS2062 Introduction to bioinformatics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE3073 Computer systems</td>
<td>ECE3141 Information and networks</td>
<td>BMS3031 Molecular mechanisms of disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE4132 Control system design</td>
<td>ECE3121 Engineering electromagnetics</td>
<td>BMS3052 Biomedical basis and epidemiology of human disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENG4701 Final year project A</td>
<td>ECE3161 Analogue electronics</td>
<td>ECE3051 Electrical energy systems</td>
<td>Level 4 or 5 ECE-coded core elective</td>
<td>ENG2000 Continuous Professional Development (0 credit points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE4702 Final year project B</td>
<td>ECE4191 Engineering integrated design</td>
<td>ECE4099 Professional Practice</td>
<td>Level 4 or 5 ECE-coded core elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
- ECE2072 - If you have completed the unit as a First Year technical elective, you must replace the core with another unit from the electrical and computer systems engineering technical electives list or from one of the engineering minors. The replacement unit must be of the same level as the core unit or higher.
- The placement of units may be rearranged to support sequencing for double degree courses but care should be taken to ensure sequenced units are maintained in sequence.
- Engineering minors are not available in the Engineering double degree courses.
- Each unit requires 12 hours of work per week. A full-time study week totals 48 hours. If you are unable to commit 48 hours of study due to external commitments, please speak with a course advisor about options to study less units per semester or take some units in the summer semester.
- For enrolment advice, please refer to the Course advisers webpage.
Course progression map for 2023 commencing students

This progression map provides advice on the suitable sequencing of units and guidance on how to plan unit enrolment for each semester of study. It does not substitute for the list of required units as described in the course ‘Requirements’ section of the Handbook. Please note that the map is subject to updates. Update version: 8 December 2022

E3004 Bachelor of Engineering (Honours) and Bachelor of Biomedical Science

Specialisation - Materials Engineering

<table>
<thead>
<tr>
<th>Year 1 Semester 1</th>
<th>Bachelor of Materials Engineering (Honours)</th>
<th>Bachelor of Biomedical Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>February</td>
<td>Common first year</td>
<td>BMS1011 Biomedical chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMS1062 Molecular biology</td>
</tr>
<tr>
<td>Year 1 Semester 2</td>
<td>MTE2101 Atomic- scale structure of materials</td>
<td>BMS1031 Medical biophysics</td>
</tr>
<tr>
<td>July</td>
<td>MTE2103 Mechanical properties of materials</td>
<td>BMS1021 Cells, tissues and organisms</td>
</tr>
<tr>
<td></td>
<td>BMS1042 Public health and preventive medicine</td>
<td>If two foundation units are required then overload is required for ENGR1013 Engineering smart systems</td>
</tr>
<tr>
<td></td>
<td>BMS2021 Human molecular biology</td>
<td></td>
</tr>
<tr>
<td>Year 2 Semester 1</td>
<td>MTE2201 Polymers</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>ENG2005 Advanced engineering mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMS2031 Human neurobiology</td>
<td></td>
</tr>
<tr>
<td>Year 3 Semester 1</td>
<td>MTE2102 Phase equilibria and phase transformations</td>
<td>BMS2011 Structure of the human body</td>
</tr>
<tr>
<td>February</td>
<td>BMS2021 Human molecular biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMS2031 Body systems</td>
<td></td>
</tr>
<tr>
<td>Year 3 Semester 2</td>
<td>MTE2202 Functional materials 1</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>BMS2042 Human genetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMS2052 Microbes in health and diseases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMS2062 Introduction to bioinformatics</td>
<td></td>
</tr>
<tr>
<td>Year 4 Semester 1</td>
<td>MTE3101 Materials in a complex world 1: People, projects and data</td>
<td>BMS3031 Molecular mechanisms of disease</td>
</tr>
<tr>
<td>February</td>
<td>MTE3102 Plasticity of metals and alloys</td>
<td></td>
</tr>
<tr>
<td>Year 4 Semester 2</td>
<td>MTE3204 Materials in a complex world 2: Characterisation, identification and selection</td>
<td>BMS3052 Biomedical basis and epidemiology of human disease</td>
</tr>
<tr>
<td>July</td>
<td>MTE3203 Introduction to ceramics: Properties, processing and applications</td>
<td></td>
</tr>
<tr>
<td>Year 5 Semester 1</td>
<td>ENG4701 Final year project A</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>MTE4101 Integrated design project</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTE4102 Advanced materials processing and manufacturing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTE3103 Materials life cycle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENG2000 Continuous Professional Development (0 credit points)</td>
<td></td>
</tr>
<tr>
<td>Year 5 Semester 2</td>
<td>ENG4702 Final year project B</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>MTE4201 Materials in a complex world 3: Impact in society</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level 4 or 5 MTE-coded materials engineering technical elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTE3202 Functional materials 2</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
- The placement of units may be rearranged to support sequencing for double degree courses but care should be taken to ensure sequenced units are maintained in sequence.
- Engineering minors are not available in the Engineering double degree courses.
- You are required to complete at least 420 hours of Continuous Professional Development (CPD) in order to graduate. For further information refer to the CPD webpage.
- Each unit requires 12 hours of work per week. A full-time study week totals 48 hours. If you are unable to commit 48 hours of study due to external commitments, please speak with a course advisor about options to study less units per semester or take some units in the summer semester.
- For enrolment advice, please refer to the Course advisers webpage.
E3004 Bachelor of Engineering (Honours) and Bachelor of Biomedical Science
Specialisation - Mechanical Engineering

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Semester 1</th>
<th>February</th>
<th>Bachelor of Mechanical Engineering (Honours)</th>
<th>Bachelor of Biomedical Science</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Common first year</td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>Semester 2</td>
<td>July</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEC2403 Mechanics of materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEC2401 Dynamics 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMS1031 Medical biophysics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMS1021 Cells, tissues and organisms</td>
<td></td>
</tr>
</tbody>
</table>

If two foundation units are required then overload is required for ENG1013 Engineering smart systems.

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Semester 1</th>
<th>February</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEC2404 Mechanics of fluids</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENG2005 Advanced engineering mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMS1042 Public health and preventive medicine</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMS1052 Human neurobiology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>Semester 1</th>
<th>February</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEC2402 Design methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMS2021 Human molecular biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMS2011 Structure of the human body</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMS2031 Body systems</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
<th>Semester 1</th>
<th>February</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEC3451 Fluid mechanics 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEC3456 Engineering computational analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMS3031 Molecular mechanisms of disease</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 5</th>
<th>Semester 1</th>
<th>February</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENG4701 Final year project A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEC4408 Thermodynamics and heat transfer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEC3455 Solid mechanics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEC4404 Professional practice</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENG0001 Continuous Professional Development</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 credit points</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 5</th>
<th>Semester 2</th>
<th>February</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENG4702 Final year project B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEC4426 Computer-aided design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEC4353 Dynamics 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEC4407 Design project</td>
<td></td>
</tr>
</tbody>
</table>