A comparison of 3 framings of the Relative Social Willingness to Pay (RS-WTP) instrument for assessing the effect of a patient’s age upon the valuation of improved health

Professor Jeff Richardson
Foundation Director, Centre for Health Economics
Monash University

Angelo Iezzi
Research Fellow, Centre for Health Economics
Monash University

Aimee Maxwell
Research Fellow, Centre for Health Economics
Monash University

April 2015

Centre for Health Economics
ISSN 1833-1173
ISBN 1 921187 96 4
Acknowledgements

The research described in this paper was funded by National Health and Medical Research Council (NHMRC) project grant ID: 491162 Benefit measurement for health economic evaluation and its application to priority health areas.

Professor Jeff Richardson
Centre for Health Economics
Monash Business School
Monash University Vic 3800
Australia

Ph: +61 3 9905 0754 Fax: +61 3 9905 8344
Jeffrey.Richardson@monash.edu
The Relative Social Willingness to Pay (RS-WTP) is a new instrument designed to obtain social valuations of health related attributes via web-based surveys. There is widespread evidence that the framing of questions such as the one employed by the RS-WTP may affect results. The present paper reports the outcome of a comparison of three ways of framing the RS-WTP instrument.

Each of the three frames was used with two samples of the Australian population, a total of six independent surveys. In three of the surveys the age of a hypothetical patient receiving a life saving service was varied. Patients were left with either poor mental or physical health. In the remaining three surveys, the age was varied for patients receiving a service which would increase the quality of life from either poor physical or poor mental health to full health. Two of the frames were administered online without assistance. The third frame was also delivered online but employed a speaking Avatar. This was adopted in an attempt to increase the reliability of respondents’ answers.

Results indicated statistically significant but quantitatively small differences associated with one of the surveys. Use of the Avatar was associated with a significant decrease in the number of respondents who failed to meet edit criteria. Age weights from the six surveys are reported. Weights were generally small and did not vary substantially between the six surveys.
A comparison of 3 framings of the Relative Social Willingness to Pay Instrument for assessing the effect of a patient's age upon the valuation of improved health
1 Introduction

The Relative Social Willingness to Pay (RS-WTP) instrument is described and validated in Richardson et al. (2013). Its purpose was to create an instrument which, like the person trade off (PTO) instrument, embodied a social perspective but did not, like the PTO, introduce important elements of equity, viz, a variable number of individuals who would live or die. The instrument sought to reduce cognitive complexity by employing the metric which is most widely understood, namely money, and asking the respondents to divide a budget in accordance with the value of the options, a task which is commonplace and easily understood.

In sum, respondents to the RS-WTP questionnaire are asked to allocate a budget between two patients. The first faces immediate death. Service 1 will move the patient to a morbid, non-lethal health state for a year. The second patient is already in the health state and Service 2 will fully cure the problem and restore full health. Together the two services move a person from immediate death to full health and therefore provide one quality adjusted life year (QALY). The share of the budget allocated to the two services indicates the relative social value of the service.

There is widespread evidence that the framing of questions may affect results. The present paper reports the outcome of a comparison of three ways of framing the RS-WTP.
2 Methods

The design of the study is summarised in Table 1. Six online surveys were conducted which administered the RS-WTP instrument, described in detail below, to obtain social values for health services given to patients. Each survey differed in the presentation of the RS-WTP and accompanying props. Four surveys were unassisted: respondents followed written instructions. The remaining two surveys were ‘administered’ by a talking Avatar who explained the survey and talked the respondents through the preliminary examples of the RS-WTP tasks. The information provided in these two surveys was the same as in the unassisted surveys but use of the Avatar precluded the possibility of respondents skipping relevant information. It permitted key elements of the survey to be parenthesised verbally.

Table 1 Study design

<table>
<thead>
<tr>
<th>Framing</th>
<th>No</th>
<th>Age varies with:</th>
<th>Health state</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP</td>
<td>1</td>
<td>Service 1 (Life)</td>
<td>Physical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mental health</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Service 2 (QoL)</td>
<td>Physical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mental health</td>
</tr>
<tr>
<td>DOWN</td>
<td>3</td>
<td>Service 1 (Life)</td>
<td>Physical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mental health</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Service 2 (QoL)</td>
<td>Physical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mental health</td>
</tr>
<tr>
<td>AVATAR</td>
<td>5</td>
<td>Service 1 (Life)</td>
<td>Physical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mental health</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Service 2 (QoL)</td>
<td>Physical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mental health</td>
</tr>
</tbody>
</table>

In each survey the age of a hypothetical patient receiving a defined service was varied and the independently assessed relative social value of the service at each age was compared with the value assigned to a child aged 5. Age weights were calculated as the ratio of the social value at age i to age 5.

In each survey the RS-WTP was introduced and explained with the following statement.

Suppose you were a public representative on a government committee which directs Medicare (the Australian public health scheme). You must decide how to divide a budget of $40,000 between two services, Service 1 and Service 2. The benefit of the service will last for 5 years. The amount of money given to each service should be based upon your view of the benefit of the service NOT THE COST (which is another issue). Each question will ask:

Taking everything you believe to be important into account divide the money available between Service 1 and Service 2 so that the amount of money indicates your view of how Medicare should value the service. The benefit for each service lasts 5 years. The services may be given again but will require new funding.

The explanation was followed by two examples which respondents were asked to complete. Each of the six surveys elicited RS-WTP values using a single framing of the instrument for patients aged 5, 10, 15, 20, 30, 40, 50, 60, 70 and 80.
Three visual representations of the RS-WTP questions (frames) were each used with the age of patients varying for service 1 (Table 1 survey 1, 3, 5) and for service 2 (Table 1, survey 2, 4, 6). The visual props used for the three frames are shown in Boxes 1-3. Two intermediate health states were used in each survey to allow for the possibility, demonstrated by Johri et al. (2005) that age weights might vary with the health state. The two states are reproduced in Table 2.

Table 2 Health states

<table>
<thead>
<tr>
<th>1. Physical</th>
<th>2. Mental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe pain and discomfort</td>
<td>Severe anxiety or depression</td>
</tr>
<tr>
<td>Severe problems walking about</td>
<td>No pain</td>
</tr>
<tr>
<td>Moderate problems washing</td>
<td>No problems with walking</td>
</tr>
<tr>
<td>Moderate problems dressing</td>
<td>No problems with washing</td>
</tr>
<tr>
<td>Moderate problems doing usual activities</td>
<td>Or usual activities</td>
</tr>
<tr>
<td>In spite of this</td>
<td></td>
</tr>
<tr>
<td>Not anxious or depressed</td>
<td></td>
</tr>
</tbody>
</table>

Box 1 Visual prop for the RS-WTP (UP) version

Question 1: Both patients are 30 years old

Taking everything you believe to be important into account, divide the $40,000 between service 1 and service 2, so that the amounts indicate your view of how Medicare should value the services.

* Total of all entries must equal 40,000

Please write your answer(s) here:

- Dollars allocated to **Service 2** received by a **person aged 30** ..
- Dollars allocated to **Service 1** received by a **person aged 30** ..
A comparison of 3 framings of the Relative Social Willingness to Pay Instrument for assessing the effect of a patient’s age upon the valuation of improved health

Box 2 Visual prop for the RS-WTP (DOWN) version

Question 1: Both patients are 30 years old

Taking everything you believe to be important into account, divide the $40,000 between service 1 and service 2, so that the amounts indicate your view of how Medicare should value the services.

*Total of all entries must equal 40,000
Please write your answer(s) here:
Dollars allocated to Service 1 received by a person aged 30
Dollars allocated to Service 2 received by a person aged 30

Box 3 Visual prop for the RS-WTP Avatar version

Your previous answer to Health State P was:

| 30 year old, Service 1 = $ | 30 year old, Service 2 = $ |

*Total of all entries must equal 40,000
Please write your answer(s) here:
Dollars allocated to Service 1 received by a person aged 30
Dollars allocated to Service 2 received by a child aged 5
The four unassisted surveys (1-4) employed a ‘vertical’ prop: In surveys 1 and 2 (‘UP’) the first service was shown to move a person upwards from death to the health state and the second service up from the health state to full health. Surveys 3 and 4 (‘DOWN’) reversed the direction of the visual change. The 5 year duration of services was emphasised on each screen in these surveys with a statement in a visually striking cloud-like box. Surveys 5 and 6 (‘AVATAR’) used a horizontal design with improvement from left to right. The 5 year duration of services was printed mid-screen and repeated in each description of the health service. It was repeated in each question by the Avatar.

In sum, 12 sets of values were obtained: three independent estimates of the effect of age upon life extension where the opportunity cost is either improved mental or physical health; and three independent estimates of the effect of age upon the value of improved mental or physical health where the opportunity cost is life extension. The significance of differences between values for different age groups, within each set of results was estimated using paired t-tests and the significance of differences between results using different frames was tested using analyses of variance.

Survey: Each of the surveys commenced by sensitising respondents – encouraging thought – with respect to three important elements of the study. The first was an appreciation of the likely effect of the two health states used in the study upon a patient’s quality of life (QoL). Respondents were asked how each of the states would affect different parts of their life, namely, their family and social life, their career and holidays, their happiness and their overall life. The second key element was an awareness of the limited duration of the benefit provided by the health services. Replicating the method used by Tsuchiya, Dolan et al. (2003) respondents were asked to complete two tasks. The first was to rank the priority of patients in different age cohorts all of whom needed a health service which would restore normal health for life. For the second task the duration of benefits was reduced to 5 years and respondents were asked to re-prioritise the services.

The third important element was an awareness of alternative arguments for prioritising patients. Respondents were asked to rate the importance of the reasons for assigning different priority to different age groups in Table 2. These included reasons reflecting three types of ‘ageism’ identified in the literature.

Edit Procedures: Delivery of an online survey is less controlled than an interview and a proportion of respondent’s answers are random or ill considered in order to minimise the time taken to obtain the reward offered by the panel company. The present survey was prefaced by a letter from the panel company urging careful consideration. A similar letter from the research team followed (see Appendix 1). Answers were deemed unreliable and removed from the survey when one of two criteria were not met: (i) at least 20 minutes was spent completing the survey which, given the length of the text spoken by the Avatar was judged to be the minimum time for a considered response; (ii) when asked to prioritise patients aged 75, 45, 15 and 5 respondents either failed to enter four separate numbers (1, 2, 3, 4) or ranked an 80 year old above a 70 year old. In a small number of cases results were removed when the RS-WTP responses were obviously random, for example, an allocation to successive age groups of ($000) 20, 40, 20, 40, 20, 40.
Table 3 Reasons for assigning different priority to different age groups

<table>
<thead>
<tr>
<th>Should Medicare agree with the following arguments when it decides on the priority to give services?</th>
<th>Not important</th>
<th>Somewhat Important</th>
<th>Very important</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Young people should have lower priority because they do not have dependents.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Old people should have higher priority because health is of greater importance as you get old.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Middle-aged people should have higher priority because others depend on them.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Young people should have higher priority because they have not had a fair share of life.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Old people should have lower priority because they have already had a fair share of life.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Everyone should get equal priority.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: yes = 1; not sure = 2; no = 3.
3 Results

Table 4 reports the demographic characteristics of the 6 samples, the initial number who completed the survey and the percent which were edited according to the criteria described above. From the first three columns of the table the edit procedures eliminated an average of 41 percent of respondents from the unassisted surveys and 16 percent from the surveys which employed the Avatar. For this reason there was no additional sampling using the unassisted surveys and the main analyses of age weights employed results from the Avatar surveys. As reported below data from the unassisted surveys were used to test the consistency of Avatar based results, ie to determine whether differences imply significant framing effects or whether differences are sufficiently small to be attributed to random error.

Table 4 Demographic characteristics of respondents by survey, age and gender

<table>
<thead>
<tr>
<th></th>
<th>Total collected</th>
<th>Edited out</th>
<th>Percent edited</th>
<th>n edited</th>
<th>18-24</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55-64</th>
<th>65+</th>
<th>Percent female</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoL - Up</td>
<td>98</td>
<td>44</td>
<td>44.90</td>
<td>54</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>13</td>
<td>51.9</td>
</tr>
<tr>
<td>QoL - Down</td>
<td>102</td>
<td>42</td>
<td>41.18</td>
<td>60</td>
<td>7</td>
<td>12</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>53.3</td>
</tr>
<tr>
<td>LE - Up</td>
<td>99</td>
<td>38</td>
<td>38.38</td>
<td>61</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>13</td>
<td>49.2</td>
</tr>
<tr>
<td>LE - Down</td>
<td>101</td>
<td>43</td>
<td>42.57</td>
<td>58</td>
<td>4</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>13</td>
<td>53.4</td>
</tr>
<tr>
<td>LE - Avatar</td>
<td>277</td>
<td>42</td>
<td>15.16</td>
<td>235</td>
<td>15</td>
<td>24</td>
<td>47</td>
<td>55</td>
<td>43</td>
<td>51</td>
<td>51.9</td>
</tr>
<tr>
<td>QoL - Avatar</td>
<td>285</td>
<td>48</td>
<td>16.84</td>
<td>237</td>
<td>20</td>
<td>39</td>
<td>49</td>
<td>45</td>
<td>38</td>
<td>46</td>
<td>57</td>
</tr>
</tbody>
</table>

Mean RS-WTP values for the 12 sets of results are reported in Table 5 and Figures 1a-1d. in Table 5 means are grouped by type of RS-WTP to permit comparison of the effect of the frames. Paired t-tests were carried out to test the significance of differences between the RS-WTP at each age with the RS-WTP at age 5 for each of the 12 sets of results. Significance levels of 5 percent or less using a two-tailed test are shown as superscripts to the mean scores. Results marked ‘ns’ achieve a p value which is significant at the 5 percent level for an independent t-test but is insignificant when p values are subject to Bonferroni correction for repeated testing from a single sample. The absence of a superscript indicates that differences were insignificant.

All of the results have a similar pattern. In common with results elsewhere, the value of services declines significantly for older age groups. However, unlike other results there is no indication of ‘productivity ageism’: an increase in the value of services for age groups which are economically or socially more productive. Rather, with all services the decrease in value is monotonic.

The difference from the RS-WTP for a 5 year old is statistically significant at a younger age in results from the avatar. This may be attributable to the greater reliability of this framing but is also a consequence of the greater sample size. For both life saving and QoL improving services age is important in the context of physical ill health above the age of 20 but the effect is quantitatively small until age 60 when the valuation of the benefit drops by 20 percent. For services associated with mental health a significant difference occurs only after the age of 40 for life saving and age 50 for QoL improvement. By age 60 valuations have fallen by 15 percent for both services. By age 80 the valuation of all services has declined significantly by about 40 percent.
A comparison of 3 framings of the Relative Social Willingness to Pay Instrument for assessing the effect of a patient’s age upon the valuation of improved health
Table 5 Mean (SD) RS-WTP by age

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live Saving - to poor physical health:</td>
<td></td>
</tr>
<tr>
<td>MEANS</td>
<td></td>
</tr>
<tr>
<td>UP</td>
<td>0.48</td>
<td>0.47</td>
<td>0.48</td>
<td>0.48</td>
<td>0.43</td>
<td>0.44</td>
<td>0.43</td>
<td>0.41</td>
<td>0.33</td>
<td>0.28</td>
</tr>
<tr>
<td>DOWN</td>
<td>0.49</td>
<td>0.49</td>
<td>0.48</td>
<td>0.48</td>
<td>0.46</td>
<td>0.44</td>
<td>0.38</td>
<td>0.36</td>
<td>0.29</td>
<td>0.21</td>
</tr>
<tr>
<td>AVATAR</td>
<td>0.52</td>
<td>0.51</td>
<td>0.51</td>
<td>0.50</td>
<td>0.49</td>
<td>0.47</td>
<td>0.46</td>
<td>0.42</td>
<td>0.38</td>
<td>0.32</td>
</tr>
<tr>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>UP</td>
<td>0.24</td>
<td>0.24</td>
<td>0.23</td>
<td>0.19</td>
<td>0.23</td>
<td>0.23</td>
<td>0.22</td>
<td>0.24</td>
<td>0.21</td>
<td>0.24</td>
</tr>
<tr>
<td>DOWN</td>
<td>0.26</td>
<td>0.24</td>
<td>0.22</td>
<td>0.20</td>
<td>0.21</td>
<td>0.21</td>
<td>0.20</td>
<td>0.21</td>
<td>0.23</td>
<td>0.25</td>
</tr>
<tr>
<td>AVATAR</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.16</td>
<td>0.16</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>Life Saving - to poor mental health:</td>
<td></td>
</tr>
<tr>
<td>MEANS</td>
<td></td>
</tr>
<tr>
<td>UP</td>
<td>0.46</td>
<td>0.48</td>
<td>0.49</td>
<td>0.48</td>
<td>0.45</td>
<td>0.48</td>
<td>0.45</td>
<td>0.42</td>
<td>0.35</td>
<td>0.24</td>
</tr>
<tr>
<td>DOWN</td>
<td>0.47</td>
<td>0.49</td>
<td>0.48</td>
<td>0.49</td>
<td>0.50</td>
<td>0.48</td>
<td>0.44</td>
<td>0.37</td>
<td>0.30</td>
<td>0.22</td>
</tr>
<tr>
<td>AVATAR</td>
<td>0.51</td>
<td>0.50</td>
<td>0.51</td>
<td>0.51</td>
<td>0.50</td>
<td>0.48</td>
<td>0.46</td>
<td>0.44</td>
<td>0.38</td>
<td>0.33</td>
</tr>
<tr>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>UP</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
<td>0.20</td>
<td>0.22</td>
<td>0.23</td>
<td>0.22</td>
<td>0.22</td>
<td>0.21</td>
<td>0.19</td>
</tr>
<tr>
<td>DOWN</td>
<td>0.26</td>
<td>0.25</td>
<td>0.22</td>
<td>0.20</td>
<td>0.21</td>
<td>0.20</td>
<td>0.19</td>
<td>0.22</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>AVATAR</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.15</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
<td>0.15</td>
<td>0.18</td>
<td>0.20</td>
</tr>
<tr>
<td>QoL improves - from poor physical health:</td>
<td></td>
</tr>
<tr>
<td>MEANS</td>
<td></td>
</tr>
<tr>
<td>UP</td>
<td>0.52</td>
<td>0.53</td>
<td>0.50</td>
<td>0.50</td>
<td>0.52</td>
<td>0.52</td>
<td>0.47</td>
<td>0.42</td>
<td>0.37</td>
<td>0.29</td>
</tr>
<tr>
<td>DOWN</td>
<td>0.53</td>
<td>0.52</td>
<td>0.54</td>
<td>0.51</td>
<td>0.54</td>
<td>0.52</td>
<td>0.46</td>
<td>0.43</td>
<td>0.40</td>
<td>0.35</td>
</tr>
<tr>
<td>AVATAR</td>
<td>0.54</td>
<td>0.53</td>
<td>0.53</td>
<td>0.52</td>
<td>0.51</td>
<td>0.50</td>
<td>0.48</td>
<td>0.45</td>
<td>0.41</td>
<td>0.35</td>
</tr>
<tr>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>UP</td>
<td>0.19</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.20</td>
<td>0.18</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>DOWN</td>
<td>0.22</td>
<td>0.21</td>
<td>0.19</td>
<td>0.19</td>
<td>0.22</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.23</td>
</tr>
<tr>
<td>AVATAR</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
<td>0.15</td>
<td>0.15</td>
<td>0.16</td>
<td>0.16</td>
<td>0.19</td>
<td>0.20</td>
</tr>
</tbody>
</table>
A comparison of 3 framings of the Relative Social Willingness to Pay Instrument for assessing the effect of a patient’s age upon the valuation of improved health

Table 6 Analysis of variance: Significance of ‘between frame’ differences

<table>
<thead>
<tr>
<th>Between frame differences</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life saving to poor physical</td>
<td></td>
</tr>
<tr>
<td>Significance</td>
<td>0.23</td>
<td>0.26</td>
<td>0.33</td>
<td>0.53</td>
<td>0.03(ns)</td>
<td>0.33</td>
<td>0.01(ns)</td>
<td>0.01(ns)</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributable to deviation between Avatar<sup>(2)</sup></td>
<td></td>
</tr>
<tr>
<td>Difference from Avatar</td>
<td>-0.06</td>
<td>-0.06(ns)</td>
<td>-0.9</td>
<td>-0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life saving to poor mental health</td>
<td></td>
</tr>
<tr>
<td>Significance</td>
<td>0.23</td>
<td>0.72</td>
<td>0.52</td>
<td>0.28</td>
<td>0.12</td>
<td>0.99</td>
<td>0.64</td>
<td>0.03(ns)</td>
<td>0.01(ns)</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Attributable to deviation between Avatar<sup>(1)</sup></td>
<td></td>
</tr>
<tr>
<td>Difference from Avatar</td>
<td>-0.7</td>
<td>-0.8</td>
<td>-0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QoL improves from poor physical</td>
<td></td>
</tr>
<tr>
<td>Significance</td>
<td>0.88</td>
<td>0.93</td>
<td>0.29</td>
<td>0.75</td>
<td>0.50</td>
<td>0.41</td>
<td>0.70</td>
<td>0.44</td>
<td>0.43</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Attributable to deviation between Avatar<sup>(1)</sup></td>
<td></td>
</tr>
<tr>
<td>Difference from Avatar</td>
<td>-0.06</td>
<td></td>
</tr>
<tr>
<td>QoL improves from poor mental</td>
<td></td>
</tr>
<tr>
<td>Significance</td>
<td>0.64</td>
<td>0.91</td>
<td>0.75</td>
<td>0.22</td>
<td>0.14</td>
<td>0.03</td>
<td>0.76</td>
<td>0.86</td>
<td>0.81</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Attributable to deviation between Avatar<sup>(1)</sup></td>
<td></td>
</tr>
<tr>
<td>Difference from Avatar</td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>

(1) Unadjusted p values for a paired t-test are shown as superscripts; ‘ns’ indicates that with a Bonferroni correction to the p value, the result would not be significant at the 5 percent level.

Notes

- ‘ns’ indicates that the difference is not significant at the 5 percent level when the p value adopts the Bonferroni correction for multiple comparisons from the same dataset. In the present case the p value is divided by a factor of 9.
Analyses of variance were carried out to determine differences attributable to the framing of the RS-WTP for each of the four types of health increment in the study, i.e., life saving to poor physical or mental health; QoL improvement from poor physical or mental health to full health. Results are reported in Table 6. For services which improve the QoL (rows 3 and 4 of Table 6) there was only a single significant difference between frames. The RS-WTP for 40 year olds was significantly lower for the AVATAR than for the UP or DOWN framing. From Table 4 the more unstable pattern of mean values for the latter two framings suggest that the outcome is attributable to coincidental and random error in these latter results. In contrast, with life saving services the six results for age cells above 60 using the DOWN framing are an average of 24 percent less than the Avatar mean for the same age groups. The single significant result associated with the UP frame (age 30) is inconsistent with other results from the frame and attributable to random error.

Agreement with the statements concerning age discrimination in Table 3 were converted to a numerical scale by coding agreement, uncertainty and disagreement as 1.0, 2.0 and 3.0 respectively. Figure 2 plots the average response by the age of the survey respondent. As with the RS-WTP results the figure reveals strong aversion to discrimination. The aversion is not complete which is consistent with the discrimination against the most elderly in the RS-WTP results. Perhaps counter-intuitively there is little evidence that elderly respondents have significantly different opinions with respect to discrimination than younger respondents.

Figure 2 Agreement with discrimination arguments for age based (1)
4 Conclusions

The six independent surveys obtained very similar results with respect to the importance of a patient’s age. Both improvements in the QoL and life extension are valued less when they are provided to older patients. However the effect is not quantitatively large. Before patients reach the age of 50 reductions are statistically significant but small. By age 80 values have declined by less than 40 percent. There was also no evidence of productivity ageism in any of the results which were also similar for both young and elderly respondents.

With respect to the major focus of the paper, the framing and presentation of the RS-WTP was important. When the visual representation of the question placed death at the top of the screen and excellent health at the bottom (DOWN frame) the valuation of life saving services for patients over the age of 50 was significantly lower than the valuation using the reverse visual presentation. This result occurred when the opportunity of the services was either poor mental or physical health. The valuation of services affecting quality of life was not, however, affected.

The most important result of the study was the significant improvement in the reliability of answers achieved when the survey was administered by the avatar. The number of responses which failed the predetermined edit criteria fell by almost two thirds.
Appendix 1
Unassisted Web Survey: Age varies with Service 2

How should Medicare value health services?

Dear Respondent

We are seeking your help with a Monash University Research Project which concerns Medicare and how the public believes it should allocate medical services.

It is important for the integrity of this research that you read the questions, and try to imagine yourself in the health state we will describe.

We want you to think carefully about how you believe the health system should treat Australians of different ages.

Results will be reported to the relevant government agencies. Therefore it is essential that your answers are well considered.

Thank you in advance for your assistance.

Prof Jeff Richardson
Foundation Director

Dr John McKie
Senior Research Fellow

Angelo Iezzi
Program Manager

If you wish to continue please press “NEXT”

There are 52 questions in this survey
00 Quota

1 Are you: *

Please choose only one of the following:
- Male
- Female

2 Which age group do you belong to? *

Please choose only one of the following:
- 18-24
- 25-34
- 35-44
- 45-54
- 55-64
- 65+

3 What is your highest level of education (even if not finished)? *

Please choose only one of the following:
- High school
- Diploma or certificate or trade or TAFE
- University

HS_P affect

4 Please imagine that you are in the following health state P below

![Health State P]

- In severe pain or discomfort
- Severe problems in walking about
- Moderate problems with washing and dressing
- Moderate problems doing usual activities

In spite of this, not anxious or depressed

How seriously do you expect it would affect: *

Please choose the appropriate response for each item:

<table>
<thead>
<tr>
<th></th>
<th>Not at all</th>
<th>Not much</th>
<th>Somewhat</th>
<th>Quite a lot</th>
<th>Extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your family life</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Your social life</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Your career</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Your holidays</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Your happiness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Your life overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intro_P

Suppose you are a public representative on a government committee which directs Medicare. since resources are limited, your committee must decide the priority to give to different patients to receive treatment. Patients with lot priority are less likely to be treated.
The patients are in health state P.

Please click NEXT

Health State P

- In severe pain or discomfort
- Severe problems in walking about
- Moderate problems with washing and dressing
- Moderate problems doing usual activities

In spite of this, not anxious or depressed

P ranking

6

Health State P

- In severe pain or discomfort
- Severe problems in walking about
- Moderate problems with washing and dressing
- Moderate problems doing usual activities

In spite of this, not anxious or depressed

Without treatment patients will remain in health state P.

With treatment patients will regain normal health and have a normal life expectancy (i.e., they should live until about 80).

Please show the priority you would give to patients to receive treatment:

Double-click on or drag and drop your answers from one side to the other to rank them.

Please number each box in order of preference from 1 to 10

- Newborn, aged 0 if treated will live another 80 years
- Child, aged 5 if treated will live another 75 years
- Child, aged 10 if treated will live another 70 years
- Child, aged 15 if treated will live another 65 years
- Adult, aged 20 if treated will live another 60 years
- Adult, aged 30 if treated will live another 50 years
- Adult, aged 40 if treated will live another 40 years
- Adult, aged 50 if treated will live another 30 years
- Adult, aged 60 if treated will live another 20 years
- Adult, aged 70 if treated will live another 10 years

P reasons

7 How important were the following reasons?

Please choose the appropriate response for each item:
A comparison of 3 framings of the Relative Social Willingness to Pay Instrument for assessing the effect of a patient’s age upon the valuation of improved health

Medicare should maximise the years of life gained from health services
Life at some ages is more important than at others
We cannot really choose between patients like this
A young person should have a chance to experience life
People in their middle years have many people dependent on them
Old people have had a ‘fair innings’
Very young people are a little less important

P 5yrs
8 Supposing now that the treatment extended a patient’s life for only 5 years

Without treatment patients will remain in health state P.
With treatment patients will regain normal health and have a normal life for 5 years.
After 5 years they will return to health state P.

Please show the priority you would give to patients to receive treatment:

Double-click on or drag and drop your answers from one side to the other to rank them.

Please number each box in order of preference from 1 to 10

- Newborn, aged 0 if treated will live 5 years before returning to health state P
- Child, aged 5 if treated will live 5 years before returning to health state P
- Child, aged 10 if treated will live 5 years before returning to health state P
- Child, aged 15 if treated will live 5 years before returning to health state P
- Adult, aged 20 if treated will live 5 years before returning to health state P
- Adult, aged 30 if treated will live 5 years before returning to health state P

- Adult, aged 40 if treated will live 5 years before returning to health state P
- Adult, aged 50 if treated will live 5 years before returning to health state P
- Adult, aged 60 if treated will live 5 years before returning to health state P
- Adult, aged 70 if treated will live 5 years before returning to health state P

P reasons 5 yrs

9 How important were the following reasons?

- Medicare should maximise the years of life gained from health services
- Life at some ages is more important than at others
- We cannot really choose between patients like this
- A young person should have a chance to experience life
- People in their middle years have many people dependent on them
- Old people have had a ‘fair innings’
- Very young people are a little less important

Intro-9

10 The next question is different.

They ask you to allocate a budget between 2 patients. Your government committee must divide $40,000 between 2 services, 1 and 2. The benefit of the services will last for 5 years.

The money given to each service should be based upon your view of the BENEFIT of the service NOT THE COST (which is another issue).

Each question will ask:

Taking everything you believe to be important into account, divide the $40,000 between service 1 and service 2, so that the amounts indicate your view of how Medicare should value the services.
Example_10

11

Example Question:

How would you divide a budget of $40,000 between Service 1 and Service 2 for 15 year olds.

Service 1 will save the life of a 15 year old person about to die and leave them in health state P, unchanged for 5 years, after which they will die.

Service 2 will improve the health of a 15 year old person in health state P and leave them in excellent health for 5 years, after which they will die.

* Total of all entries must equal 40000

Please write your answer(s) here:

Dollars allocated to Service 2 received by a person aged 30 ……………………………..
Dollars allocated to Service 1 received by a person aged 30 ……………………………..

Age-Text

12

In the following questions the AGE of patients receiving Service 2 changes. Patient 1 is always 30 years of age.

Up1-1-P-30-30

13

Question 1. Both patients are 30 years old.

* Total of all entries must equal 40000

Please write your answer(s) here:

Dollars allocated to Service 2 received by a person aged 30 ……………………………..
Dollars allocated to Service 1 received by a person aged 30 ……………………………..
A comparison of 3 framings of the Relative Social Willingness to Pay Instrument for assessing the effect of a patient’s age upon the valuation of improved health

Question 2. Patient 1 is 30 years old, Patient 2 is 5 years old.

![Diagram showing health states and utilities]

Taking everything you believe to be important into account, divide the $40,000 between service 1 and service 2, so that the amounts indicate your view of how Medicare should value the services.

* Total of all entries must equal 40000
Please write your answer(s) here:
Dollars allocated to Service 2 received by a child aged 5
Dollars allocated to Service 1 received by a person aged 30

Your previous answer for Health State P was:

<table>
<thead>
<tr>
<th>Age</th>
<th>Service 1</th>
<th>Service 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 year old</td>
<td>$30000</td>
<td>$10000</td>
</tr>
<tr>
<td>30 year old</td>
<td>$20000</td>
<td>$20000</td>
</tr>
<tr>
<td>5 year old</td>
<td>$20000</td>
<td>$20000</td>
</tr>
</tbody>
</table>

* Total of all entries must equal 40000
Please write your answer(s) here:
A comparison of 3 framings of the Relative Social Willingness to Pay Instrument for assessing the effect of a patient’s age upon the valuation of improved health

Dollars allocated to Service 2 received by a child aged 10
Dollars allocated to Service 1 received by a person aged 30

up_1_1_P_30_15
16

Question 4: Patient 1 is 30 years old; Patient 2 is 15 years old.

Health State P:
- In severe pain or discomfort
- Severe problems in walking about
- Moderate problems with washing and dressing
- Moderate problems doing usual activities
- In spite of this, not anxious or depressed

Excellent Health

Service 2 improves a 15 year old’s health from Health State P to excellent.

Health State P

The benefit of each service lasts 5 years, followed by death.

Service 1 saves a 30 year old from death and leaves them in Health State P.

Taking everything you believe to be important into account, divide the $40,000 between service 1 and service 2, so that the amounts indicate your view of how Medicare should value the services.

Your previous answers for Health State P were:

30 year old, Service 1 = $ 30 year old, Service 2 = $ ……………………………..
30 year old, Service 1 = $ 5 year old, Service 2 = $ ……………………………..
30 year old, Service 1 = $ 10 year old, Service 2 = $ ……………………………..

* Total of all entries must equal 40000

Please write your answer(s) here:

Dollars allocated to Service 2 received by a person aged 15 ……………………………..
Dollars allocated to Service 1 received by a person aged 30 ……………………………..

up_1_1_P_30_20
17

Question 5: Patient 1 is 30 years old; Patient 2 is 20 years old.

Health State P:
- In severe pain or discomfort
- Severe problems in walking about
- Moderate problems with washing and dressing
- Moderate problems doing usual activities
- In spite of this, not anxious or depressed

Excellent Health

Service 2 improves a 20 year old’s health from Health State P to excellent.

Health State P

The benefit of each service lasts 5 years, followed by death.

Service 1 saves a 30 year old from death and leaves them in Health State P.

Taking everything you believe to be important into account, divide the $40,000 between service 1 and service 2, so that the amounts indicate your view of how Medicare should value the services.

Your previous answers for Health State P were:

30 year old, Service 1 = $ 30 year old, Service 2 = $ ……………………………..
30 year old, Service 1 = $ 5 year old, Service 2 = $ ……………………………..

Please write your answer(s) here:

Dollars allocated to Service 2 received by a person aged 15 ……………………………..
Dollars allocated to Service 1 received by a person aged 30 ……………………………..
A comparison of 3 framings of the Relative Social Willingness to Pay Instrument for assessing the effect of a patient’s age upon the valuation of improved health

30 year old, Service 1 = $ 10 year old, Service 2 = $ ……………………………..
30 year old, Service 1 = $ 15 year old, Service 2 = $ ……………………………..

* Total of all entries must equal 40000
Please write your answer(s) here:
Dollars allocated to Service 2 received by a person aged 20 ……………………………..
Dollars allocated to Service 1 received by a person aged 30 ……………………………..

up_1_1_P_30_30II
18

Question 1: Both patients are 30 years old

Health State P:
- In severe pain or discomfort
- Severe problems in walking about
- Moderate problems with washing and dressing
- Moderate problems doing usual activities
- In spite of this, not anxious or depressed

Service 2 improves a 30 year old’s health from Health State P to excellent.
Service 2 saves a 30 year old from death and moves them to Health State P.

Taking everything you believe to be important into account, divide the $40,000 between service 1 and service 2, so that the amounts indicate your view of how Medicare should value the services.

Your previous answers for Health State P were:
30 year old, Service 1 = $ 5 year old, Service 2 = $ ……………………………..
30 year old, Service 1 = $ 10 year old, Service 2 = $ ……………………………..
30 year old, Service 1 = $ 15 year old, Service 2 = $ ……………………………..
30 year old, Service 1 = $ 20 year old, Service 2 = $ ……………………………..

* Total of all entries must equal 40000
Please write your answer(s) here:
Dollars allocated to Service 2 received by a person aged 30 ……………………………..
Dollars allocated to Service 1 received by a person aged 30 ……………………………..
A comparison of 3 framings of the Relative Social Willingness to Pay Instrument for assessing the effect of a patient’s age upon the valuation of improved health
Your previous answers for Health State P were:

- 30 year old, Service 1 = $
 5 year old, Service 2 = $
- 30 year old, Service 1 = $
 10 year old, Service 2 = $
- 30 year old, Service 1 = $
 15 year old, Service 2 = $
- 30 year old, Service 1 = $
 20 year old, Service 2 = $
- 30 year old, Service 1 = $
 30 year old, Service 2 = $
- 30 year old, Service 1 = $
 40 year old, Service 2 = $
- 30 year old, Service 1 = $
 50 year old, Service 2 = $

* Total of all entries must equal 40000

Please write your answer(s) here:

- Dollars allocated to Service 2 received by a person aged 60
 ...
- Dollars allocated to Service 1 received by a person aged 30
 ...
A comparison of 3 framings of the Relative Social Willingness to Pay Instrument for assessing the effect of a patient’s age upon the valuation of improved health
A comparison of 3 framings of the Relative Social Willingness to Pay Instrument for assessing the effect of a patient’s age upon the valuation of improved health

30 year old, Service 1 = $ 20 year old, Service 2 = $ ……………………………..
30 year old, Service 1 = $ 30 year old, Service 2 = $ ……………………………..
30 year old, Service 1 = $ 40 year old, Service 2 = $ ……………………………..
30 year old, Service 1 = $ 50 year old, Service 2 = $ ……………………………..
30 year old, Service 1 = $ 60 year old, Service 2 = $ ……………………………..
30 year old, Service 1 = $ 70 year old, Service 2 = $ ……………………………..

* Total of all entries must equal 40000
Please write your answer(s) here:
Dollars allocated to Service 2 received by a person aged 80 or over ……………………………..
Dollars allocated to Service 1 received by a person aged 30 ……………………………..

Encouragement
24
Great! You’ve finished the first set of questions
The Health State now changes for the next set of questions

M affect
25
Please imagine that you are in the following health state M below.

Health State M

- Severe anxiety or depression
- No obvious problems with walking, washing or usual activities

How seriously do you expect it would affect:
Please choose the appropriate response for each item:

<table>
<thead>
<tr>
<th></th>
<th>Not at all</th>
<th>Not much</th>
<th>Somewhat</th>
<th>Quite a lot</th>
<th>Extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your family life</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Your social life</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Your career</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Your holidays</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Your happiness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Your life overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Question 12: Both patients are 30 years old

Taking everything you believe to be important into account, divide the $40,000 between service 1 and service 2, so that the amounts indicate your view of how Medicare should value the services.

* Total of all entries must equal 40000
Please write your answer(s) here:
Dollars allocated to Service 2 received by a person aged 30 ..
Dollars allocated to Service 1 received by a person aged 30 ...

Question 13: Patient 1 is 30 years old. Patient 2 is 5 years old

Taking everything you believe to be important into account, divide the $40,000 between service 1 and service 2, so that the amounts indicate your view of how Medicare should value the services.

Your previous answers for Health State M were:

30 year old, Service 1 = $ 30 year old, Service 2 = $...

* Total of all entries must equal 40000
Please write your answer(s) here:
Dollars allocated to Service 2 received by a child aged 5 ..
Dollars allocated to Service 1 received by a person aged 30 ...
A comparison of 3 framings of the Relative Social Willingness to Pay Instrument for assessing the effect of a patient’s age upon the valuation of improved health
A comparison of 3 framings of the Relative Social Willingness to Pay Instrument for assessing the effect of a patient’s age upon the valuation of improved health

30 year old, Service 1 = $
20 year old, Service 2 = $

* Total of all entries must equal 40000

Please write your answer(s) here:
Dollars allocated to Service 2 received by a person aged 30
Dollars allocated to Service 1 received by a person aged 30

up1_1_M_30_40
32

Question 10. Patient 1 is 30 years old, Patient 2 is 40 years old.

Your previous answers for Health State M were:

30 year old, Service 1 = $
5 year old, Service 2 = $
30 year old, Service 1 = $
10 year old, Service 2 = $
30 year old, Service 1 = $
15 year old, Service 2 = $
30 year old, Service 1 = $
20 year old, Service 2 = $
30 year old, Service 1 = $
30 year old, Service 2 = $

* Total of all entries must equal 40000

Please write your answer(s) here:
Dollars allocated to Service 2 received by a person aged 40
Dollars allocated to Service 1 received by a person aged 30

A comparison of 3 framings of the Relative Social Willingness to Pay Instrument for assessing the effect of a patient’s age upon the valuation of improved health
Your previous answers for Health State M were:

- 30 year old, Service 1 = $

5 year old, Service 2 = $ ……………………………..
10 year old, Service 2 = $ ……………………………..
15 year old, Service 2 = $ ……………………………..
20 year old, Service 2 = $ ……………………………..
30 year old, Service 2 = $ ……………………………..
40 year old, Service 2 = $ ……………………………..
50 year old, Service 2 = $ ……………………………..
60 year old, Service 2 = $ ……………………………..
70 year old, Service 2 = $ ……………………………..

* Total of all entries must equal 40000
Please write your answer(s) here:
Dollars allocated to Service 2 received by a person aged 80
Dollars allocated to Service 1 received by a person aged 30

Encouragement

Great! You’ve finished that set of questions.
The Health Sate now changes for each of the final three questions of this type.
Question 25. Patient 1 is a newborn. Patient 2 is 30 years old.

Taking everything you believe to be important into account, divide the $40,000 between service 1 and service 2, so that the amounts indicate your view of how Medicare should value the services.

* Total of all entries must equal 40000
Please write your answer(s) here:
Dollars allocated to Service 2 received by a person aged 30 ..
Dollars allocated to Service 1 received by a newborn ..

Question 24. Patient 1 is 30 years old. Patient 1 is a newborn.

Taking everything you believe to be important into account, divide the $40,000 between service 1 and service 2, so that the amounts indicate your view of how Medicare should value the services.

* Total of all entries must equal 40000
Please write your answer(s) here:
Dollars allocated to Service 2 received by a newborn ..
Dollars allocated to Service 1 received by a person aged 30 ..
Question 30: Both patients are 30 years old. Both mental and physical health are poor.

Taking everything you believe to be important into account, divide the $40,000 between service 1 and service 2, so that the amounts indicate your view of how Medicare should value the services.

* Total of all entries must equal 40000

Please write your answer(s) here:

- Dollars allocated to Service 2 received by a person aged 30 ..
- Dollars allocated to Service 1 received by a person aged 30 ..

How was it

Did you think about the following:

Please choose the appropriate response for each item:

<table>
<thead>
<tr>
<th>Item</th>
<th>Not at all</th>
<th>Moderately</th>
<th>A lot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health at some ages is more important than at others</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>How much these services would affect you personally</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>How much these services would affect people in general</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>The need to share the budget between the 2 services in some way</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Number of people affected by the health of the patients receiving services</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Social, economic responsibilities of the patients</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

42 Did you think about other things that influenced your answer? *

Please choose only one of the following:

- No
- Yes

43 What other things did you think about? *

Only answer this question if the following conditions are met:

* Answer was ‘1’ ‘Yes’ at question 42[other] (Did you think about other things that influenced your answer?)

Please write your answer here:

44 How difficult did you find this questionnaire? *

Please choose only one of the following:

- Very easy
- A bit easy
- Neither easy nor difficult
- A little difficult
- Very difficult

Demographics

45 Your year of birth? *

Please write your answer here: ..

46 Country of birth? *

Please choose only one of the following:

- Australia
- Other

47 What is your postcode? ..

48 Are you married or living with a partner? *

Please choose only one of the following:

- Yes
- No

49 Which best describes your current work situation? *

Please choose only one of the following:

- Full time
- Part-time or casual
- Unemployed, seeking work
- Not in the labour force / homemaker / retired / pensioner
- Student
- Other

50 Choose the option that corresponds with your pre-tax or gross household income (include all sources). *

Please choose only one of the following:

- below $350pw (less than $18,200pa)
- $350-649pw ($18,200 - 33,748pa)
- $650-999pw ($33,800 - 51,948pa)
- $1000-1399pw ($52,000 - 72,748)
- $1400-1999pw (72,800 - 103,948pa)
- $2000-2999pw (104,000 - 155,948pa)
- above $3000pw (above $156,000pa)
- Refused
51 How would you rate your current level of health, for someone of your age? *

Please choose only one of the following:

- Excellent
- Very good
- Good
- Fair
- Poor
- Very poor

52 Thank you for completing our survey, please press submit to finalise your responses.

Thank you for your time your responses have been saved.
References

