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Abstract

Theoretical results on the properties of forecasts obtained using singular spectrum analysis

are presented in this paper. The mean squared forecast error is derived under broad regularity

conditions, and it is shown that the forecasts obtained in practice will converge to their

population ensemble counterparts. The theoretical results are illustrated by examining the

performance of singular spectrum analysis forecasts when applied to autoregressive processes

and a random walk process. Simulation experiments suggest that the asymptotic properties

developed are reflected in observed finite sample behaviour. Empirical applications using real

world data sets indicate that forecasts based on singular spectrum analysis are competitive

with other methods currently in vogue.

Keywords: Linear recurrent formula, Mean squared forecast error, Signal dimension, Win-

dow length.

JEL Classification: C51, C52, C53

1 Introduction

Singular spectrum analysis (SSA) is a nonparametric technique designed to be used for

signal extraction and the prediction of irregular time series that may exhibit non–stationary

and nonlinear properties, as well as intermittent or transient behaviour. The development of

SSA is often attributed to researchers working in the physical sciences, namely Broomhead

& King (1986), Vautard & Ghil (1989) and Vautard et al. (1992), although many of the basic

building blocks were outlined by Basilevsky & Hum (1979) in a socioeconomic setting and

an early formulation of some of the key ideas can be found in the work of Prony (1795). An

introduction to SSA is presented in Elsner & Tsonis (1996) and a more detailed examination

of the methodology with an emphasis on the algebraic structure and algorithms is available

in Golyandina et al. (2001).

The application of SSA to forecasting has gained popularity over recent years, see for example

Thomakos et al. (2002), Hassani et al. (2009), Hassani & Zhigljavsky (2009) and Hassani et al.

(2010) for applications in business and economics, and the general finding appears to be that

SSA performs well. In these studies SSA forecasts have been examined by investigating

real world applications and comparing the performance of SSA to other benchmarks like

ARIMA models and Holt-Winters procedures. However, with real world data the true data

generating mechanism is not known and making a comparison with such benchmarks does

∗Corresponding author: D. S. Poskitt, Department of Econometrics and Business Statistics, Monash
University, Victoria 3800, Australia. Telephone:+61-3-99059378, Email: Donald.Poskitt@monash.edu.
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not convey the full picture – to know that SSA outperforms a benchmark serves only to

show that the benchmark is suboptimal and therefore that the benchmark does not provide

an appropriate base line.

Our purpose in this paper is to provide what we believe to be the first theoretical analysis

of the forecasting performance of SSA under appropriate regularity conditions concerning

the true data generating mechanism. We present a formulation of the SSA mean squared

forecast error (MSFE) for a general class of processes. The usefulness of such formulae

lies not only in the fact that they provide a neat mathematical characterization of the SSA

forecast error, but also in the fact that they allow a comparison to be made between SSA

and the optimal mean squared error solution for a known random processes. The minimal

mean squared error (MMSE) predictor obviously provides a (gold) standard against which

all other procedures can be measured.

Irrespective of the actual structure of the observed process SSA forecasts are obtained by

calculating a linear recurrence formula (LRF ) that is used to construct a prediction of the

future value(s) of the realized time series. Given a univariate time series of length N , the

coefficients of the LRF are computed from a spectral decomposition of an m×n dimensional

Hankel matrix known as the trajectory matrix. The dimension m is called the window

length, and n = N −m+ 1 is referred to as the window width. For a known window length

the Gramian of the trajectory matrix is constructed and the eigenvalue decomposition of

the Gramian evaluated. This is then used to decompose the observed series into a signal

component, constructed from k eigentriples of the Hankel matrix (the first k left and right

hand eigenvalues and their associated singular values), and a residual. The resulting signal

plus noise decomposition is then employed to produce a forecast via the LRF coefficients.

Details are presented in the following section where we outline the basic structure of the

calculations underlying the construction of a SSA(m, k) model and the associated forecasts.

Section 3 presents the theoretical MSFE of a SSA(m, k) model under very broad assump-

tions. The formulae that we derive indicate how the use of different values of m, a tuning

parameter, and k, a modeling parameter, will interact to influence the MSFE obtained

from a given SSA(m, k) model. In Section 4 it is shown that when appropriate regularity

conditions are satisfied SSA forecasts constructed in practice, and their associated MSFE

estimates, will converge to their theoretical population ensemble counterparts.

Section 5 illustrates the theoretical results obtained in Sections 3 and 4 using simulation

experiments based on autoregressive processes and a random walk. The examination of SSA

forecasting presented in Section 5 indicates that for some processes (a simple autoregression)

different SSA(m, k) models will not achieve the same MSFE performance as the MMSE

predictor for any combination of window length and signal dimension, whereas for other

processes (a random walk) the simplest SSA(2, 1) model closely approximates the forecasting

performance of the optimal predictor, to which it will converge as the effective sample size

increases.
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Section 6 demonstrates the application of SSA forecasting to different real world time series.

It shows that SSA forecasts can exhibit considerable improvements in empirical MSFE per-

formance over conventional benchmark models that have been previously used to characterize

these series. Section 7 presents a brief conclusion.

2 The Mechanics of SSA forecasting

Singular spectrum analysis (SSA) is based on the basic idea that there is an isomorphism

between an observed time series {x(t) : t = 1, . . . , N} and the vector space of m× n Hankel

matrices defined by the mapping

{x(t) : t = 1, . . . , N} 7→ X =


x(1) x(2) . . . x(n)

x(2) x(3) . . . x(n+ 1)
...

...
...

x(m) x(m+ 1) . . . x(N)

 = [x1 : . . . : xn], (1)

where m is a preassigned window length, n = N−m+1, xt = (x(t), x(t+1), . . . , x(t+m−1))′

and the so called trajectory matrix X = [x(i+ t− 1)] for i = 1, . . . ,m and t = 1, . . . , n. Let

ℓ1 ≥ ℓ2 ≥ . . . ≥ ℓm > 0 denote the eigenvalues of XX′ arranged in descending order of

magnitude and u1,u2, . . . ,um the corresponding orthonormal system of eigenvectors. The

trajectory matrix can be expressed as X =
∑m

i=1Xi, the sum of m rank one projections

Xi =
√
ℓiuiv

′
i = uiu

′
iX where ui and vi = X′ui/

√
ℓi, i = 1, . . . ,m, are the left and right

eigenvectors of X. Now suppose that a large proportion of the total variation in XX′ can

be associated with a subset of dominant eigentriples {ℓi,ui,vi}, i = 1, . . . , k. The projection

of X onto the space spanned by ui, i = 1, . . . , k, Sk =
∑k

i=1Xi, can then be viewed as

the component of X due to the presence of a signal in the original series, with k being

the designated dimension of the signal, and the remainder Ek =
∑m

i=k+1Xi taken as the

component due to noise. Henceforth we will refer to this as an SSA(m, k) model.

Suppose that a SSA(m, k) model has been fitted to time series data x(1), x(2), . . . , x(N).

Since Sk has rank k < m there exists an m× (m− k) matrix P whose columns span the null

space of Sk, implying that P′Sk = 0, and hence that the last row of Sk can be expressed as a

linear combination of the first m−1 rows. This in turn implies that the signal satisfies, in the

terminology of SSA, a linear recurrent formula (LRF), namely, s(t) =
∑m−1

j=1 ajs(t−m+ j)

where the coefficients a1, . . . , am−1 in the LRF are calculated by forming the projection of

Sl
k, the last row of the signal component Sk, onto Su

k , its first m− 1 rows. The forecasts of

x(N + τ) for τ = 1, . . . , h are then generated sequentially from the recursions

x̂(N + τ |N) =


∑m−1

i=1 aisk(N + τ −m+ i) , τ = 1 ,∑τ−1
i=1 am−ix̂(N + τ − i|N) +

∑m−τ
i=1 aisk(N + τ −m+ i) , τ ≤ m− 1 ,∑m−1

i=1 am−ix̂(N + τ − i|N) , τ > m− 1 .

(2)

Lemma 1 Let Uk = [u1, . . . ,uk] denote the matrix containing the first k eigenvectors of

XX′ and let a1, . . . , am−1 denote the coefficients formed by projecting Sl
k, the last row of
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Sk = UkU
′
kX, onto Su

k, its first m − 1 rows. Then (a1, . . . , am−1) = (1 −Ul
kU

l′
k )

−1Ul
kU

u′
k

where Ul
k is the last row Uk and Uu

k is the matrix containing the first m− 1 rows.

For a more detailed exposition of the algebra underlying SSA modelling and forecasting we

refer the interested reader to Golyandina et al. (2001). For current purposes it is sufficient

to note that many of the ideas and techniques in SSA have been developed in a physical

science/engineering context where signal extraction is the overriding objective, consequently

SSA forecasting is often predicated on the assumption that x(t) = s(t) + ε(t) where ε(t) is

a white noise process that is orthogonal to the signal s(t). From the theory of stochastic

processes we know that in this case forecasting x(t) is equivalent to filtering combined with

extrapolation, and that the minimum mean squared error (MMSE) approximation to x(t+h)

given x(τ), τ ≤ t, coincides with the MMSE approximation to s(t+h) given x(τ), τ ≤ t. The

formulation in (2) can thus be viewed as an application of the recursion ŝk(t) =
∑m−1

i=1 aiŝk(t−
m+ i), wherein the ai, i = 1, . . . ,m− 1, are estimates of the coefficients in the MMSE linear

projection of s(t) onto the space spanned by s(t−m), . . . , s(t− 1), and ŝk(τ) is replaced by

x̂(τ) = ŝk(τ) whenever τ > N , and by sk(τ) whenever τ ≤ N .

3 Theoretical Properties of SSA Forecasts

Following common practice in SSA, let us assume that the data-generating mechanism of the

underlying stochastic process x(t) is such that there exists a k < m for which the m−lagged

vectors of the trajectory matrix X can be modeled as

xt = Φzt + εt = st + εt , (3)

where zt = (ζ1t, . . . , ζkt)
′ and Φ = [φ1 : · · · : φk] is an m × k coefficient matrix, zt ∼

(0,Λ) with Λ = diag{λ1, . . . , λk} and is orthogonal to εt ∼ (0, σ2I). The signal-plus-noise

decomposition in (3) gives rise to the characterization E(xtx
′
t) = Γ = ΦΛΦ′ + σ2I. For any

orthogonal transformation matrix T we can re-express (3) as

xt = Ψwt + εt , (4)

where Ψ = ΦT and wt = T′zt, implying that Γ = ΨT′ΛTΨ′ + σ2I and (3) and (4) are

observationally equivalent.

Let υ1, . . . ,υm denote the eigenvectors of Γ and setΥ = [Υk,Υm−k] whereΥk = [υ1, . . . ,υk]

and Υm−k = [υk+1, . . . ,υm]. It is straightforward to verify that the ordered eigenvalues of

Γ = ΦΛΦ′ + σ2I are γi = vi + σ2 for i = 1, . . . , k and γi = σ2 for i = k + 1, . . . ,m, where

v1 ≥ · · · ≥ vk are the ordered eigenvalues of ΦΛΦ′. Set V = diag(v1, . . . , vk). Then

Υ′ΓΥ− σ2I =

[
V 0

0 0

]
=

[
Υ′

k(ΦΛΦ′)Υk Υ′
k(ΦΛΦ′)Υm−k

Υ′
m−k(ΦΛΦ′)Υk Υ′

m−k(ΦΛΦ′)Υm−k

]
. (5)

4



Let z∗t = Υ′
kΦzt. Then from (5) it follows that E(z∗tz∗

′
t ) = V and an equivalent representa-

tion of (3) is given by

xt = Υkz
∗
t + ε

∗
t = s∗t + ε

∗
t , (6)

where s∗t = Υkz
∗
t = ΥkΥ

′
kΦzt = ΥkΥ

′
kst and

E(s∗t s∗
′

t ) = Υk[Υ
′
kE(sts′t)Υk]Υ

′
k = Υk[Υ

′
k(ΦΛΦ′)Υk]Υ

′
k = ΥkVΥ′

k = ΦΛΦ′ .

Furthermore,

ε∗t = xt − s∗t = st − s∗t + εt

= (ΥkΥ
′
k +Υm−kΥ

′
m−k)st − s∗t + εt

= Υm−kΥ
′
m−kst + εt ,

and since E(s∗t s∗
′

t ) = ΦΛΦ′ = E(sts′t) we deduce from (5) that

E(ε∗tε∗
′

t ) = Υm−kΥ
′
m−kE(sts′t)Υm−kΥ

′
m−k + E(εtε′t)

= Υm−kΥ
′
m−k(ΦΛΦ′)Υm−kΥ

′
m−k + σ2I

= σ2I ,

and E(ε∗t s∗
′

t ) = E[(Υm−kΥ
′
m−kst+εt)(ΥkΥ

′
kst)

′] = 0. Thus E(s∗t s∗
′

t ) = ΦΛΦ′ = E(sts′t) and
E(ε∗tε∗

′
t ) = σ2I = E(εtε′t). The representation of the m−lagged vectors in (3), and likewise

in (4), is therefore observationally equivalent to

xt = s∗t + ε
∗
t = Υkz

∗
t + ε

∗
t , (7)

where s∗t and ε∗t are orthogonal. Thus (7) provides a canonical representation for the equiv-

alence class of (3) and (4). To avoid over complex notation we will henceforth suppress the

asterisk in (7) and write xt = st + εt = Υkzt + εt and so on, on the understanding that the

model is represented in canonical form.

For the canonical representation we have Υkzt = st and multiplying both sides by Υ′
k we

obtain zt = Υ′
kst, from which we deduce that

st = ΥkΥ
′
kst , (8)

and recognising that the m × (m − k) matrix Υm−k spans the null space of Υk we have

Υ′
m−kst = Υ′

m−kΥkzt = 0, implying that st satisfies a LRF. If we now partition Υk such

that Υk =
(
Υ′u

k Υ′l
k

)′
where Υl

k is the row vector of elements in the last row of Υk and Υu
k

is a (m− 1)× k matrix of the first m− 1 rows of Υk, and we partition st conformable with

the partition of Υk, we can re-express (8) as(
sut

slt

)
=

(
Υu

k

Υl
k

)(
Υu′

k Υl′
k

)(sut
slt

)
=

(
Υu

kΥ
u′
k sut +Υu

kΥ
l′
ks

l
t

Υl
kΥ

u′
k sut +Υl

kΥ
l′
ks

l
t

)
. (9)

The projection of the last element of the vector st on to its first m− 1 elements is thus given

by

slt = Υl
kΥ

u′
k sut +Υl

kΥ
l′
ks

l
t = (1−Υl

kΥ
l′
k )

−1Υl
kΥ

u′
k sut = α′sut , (10)

5



where α′ = (α1, . . . , αm−1) = (1−Υl
kΥ

l′
k )

−1Υl
kΥ

u′
k .

These coefficients yield the LRF

s(t) =

m−1∑
j=1

αjs(t−m+ j), (11)

which can be used to forecast s(t+ j), and hence x(t+ j), for j = 1, 2, . . . , h. The one-step-

ahead forecast is

s(t+ 1|t) =
m−1∑
j=1

αjs(t+ 1−m+ j), (12)

and for j = 2, . . . , h the forecasts are obtained recursively by using the equation

s(t+ j|t) =

{ ∑j−1
i=1 αm−is(t+ j − i|t) +

∑m−j
i=1 αis(t+ j −m+ i) for j ≤ m− 1;∑m−1

i=1 αm−is(t+ j − i|t) for j > m− 1.
(13)

The development from (8) through (13) provides an obvious theoretical stochastic pro-

cess parallel to the previous derivation of the empirical LRF forecasting formula. Ex-

tending the current theoretical development yields the following proposition wherein

Γm+h−1 = E[ξm+h−1ξ
′
m+h−1] where ξm+h−1 = [x(t−m+ 2), . . . , x(t+ h)]′, and Σm+h−1 =

E[ηm+h−1η
′
m+h−1] = diag(σ21′m−1,0

′
h) where ηm+h−1 = [ε(t−m+ 2), . . . , ε(t),0′h]

′.

Proposition 1 Suppose that the m-lagged vectors can be represented in canonical form xt =

st+εt = Υkzt+εt, and that s(t+j|t) is used to forecast x(t+j) where s(t+j|t), j = 1, 2, . . . , h,

are generated as in equations (12) and (13). Let ε(t+j|t) = x(t+j)−s(t+j|t), j = 1, 2, . . . , h.

Then the mean squared forecast error (MSFE)

E[ε(t+ j|t)2] = At+j(Γm+h−1 −Σm+h−1)A
′
t+j

where At+1 = (−α′, 1,0′h−1) and At+j are obtained recursively as follows:

At+j =

{
(0′j−1,−α′, 1,0′h−j) +

∑j−1
i=1 αm−iAt+j−i for j ≤ m− 1,

(0′j−1,−α′, 1,0′h−j) +
∑m−1

i=1 αm−iAt+j−i for j > m− 1.

The specification in (3) resembles a classical common factor model and, as shown in Watan-

abe (1965), it is directly related to the discrete Karhunen-Loéve expansion. In order to

generalize the model and expand the previous results suppose now that E(xtx
′
t) = Γ where

Γ > 0 but is otherwise unconstrained. As previously, let υ1, . . . ,υm denote the eigenvectors

of Γ, soΥ′ΓΥ = diag(γ1, . . . , γm) where γ1 ≥ . . . ≥ γm > 0 are the corresponding eigenvalues.

Then the mean squared error (MSE) E[∥xt−st∥2] is minimized across all possible choices of

st of dimension k by setting st =
∑k

i=1 υiζit where zt = (ζ1t, . . . , ζkt)
′ ∼ (0, diag{γ1, . . . , γk}),

with a MMSE of
∑m

i=k+1 γi (See, for example, Rao 1965, §8.g Complements and Problems

1.1). The resulting decomposition xt = st + εt corresponds to the previous canonical form,

only now εt is a colored noise process with covariance E(εtε′t) =
∑m

i=k+1 γiυiυ
′
i.
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Repeating the argument leading from (8) through to (13) provides an immediate generaliza-

tion of the previous derivation of the theoretical LRF forecasting formula. This in turn leads

to the following generalization of Proposition 1.

Proposition 2 Suppose that the m-lagged vectors satisfy E(xtx
′
t) =

∑m
j=1 γiυjυ

′
j and are

decomposed as xt = Υkzt + εt where Υk = [υ1, . . . ,υk] and zt ∼ (0, diag{γ1, . . . , γk}). Let

Υu
m−k denote the (m− 1)× k sub-matrix in the first m− 1 rows of Υm−k = [υk+1, . . . ,υm]

and set G = diag(γk+1, . . . , γm). Let ε(t + j|t) = x(t + j) − s(t + j|t) where s(t + j|t),
j = 1, 2, . . . , h, are generated as in equations (12) and (13). Then the MSFE

E[ε(t+ j|t)2] = At+j(Γm+h−1 −Σm+h−1)A
′
t+j

where the MSFE coefficients At+j, j = 1, . . . , h, are as in Proposition 1 and

Σm+h−1 =

(
Υu

m−kGΥu′
m−k 0

0 0

)
.

Example: Consider the first order moving average process x(t) = ε(t)+ θε(t−1) where ε(t)

is a zero mean white noise process with variance σ2, ε(t) ∼ WN(0, σ2). Then the m-lagged

vectors xt = (x(t), x(t+ 1), . . . , x(t+m− 1))′ have a tridiagonal Toeplitz covariance matrix

Γ = σ2



(1 + θ2) θ

θ (1 + θ2) θ
. . .

. . .
. . .

θ (1 + θ2) θ

θ (1 + θ2)


.

The eigenvalues are γj = σ2(1 + θ2 + 2θ cos(ωj)) where ωj = πj/(m+ 1) j = 1, . . . ,m, with

corresponding eigenvectors υj =
√

2
(m+1)(sin(ωj), . . . , sin(mωj)

′, j = 1, . . . ,m. Employing

the SSA signal plus noise decomposition and the associated LRF forecasting formula with

any given k < m implies that the m− k eigenvalue-eigenvector pairs that do not correspond

to dominant parts of the power spectrum of the process will be relegated to the noise and

neglected. 2

4 Forecast Consistency

In order to relate the empirical SSA forecasting procedure to its population counterpart

we must introduce some basic assumptions concerning the observed process. Rather than

specifying primitive regularity conditions we will suppose that x(t) is a zero mean stochastic

process that satisfies the following assumption.

Assumption 1 The data generating mechanism underlying the stochastic process x(t) satis-

fies sufficient conditions to ensure that for any trajectory matrix window length m = (logN)c,

7



c < ∞, there exists a positive definite matrix Γ such that ∥n−1XX′−Γ∥ = O(Qn) a.s. where

Qn → 0 as n = N −m+ 1 → ∞ as N → ∞.

Conditions under which statistical ergodic theorems of the type implicit in Assumption 1

are valid are well documented in the time series literature, see Brockwell & Davis (1991) for

example. The generality of Assumption 1 implies our results have broad applicability and

processes that satisfy Assumption 1 are examined in the following section. To establish our

consistency results we will appeal to the following lemma relating the spectral decomposition

of XX′/n to the spectral decomposition of Γ.

Lemma 2 Suppose that the stochastic process x(t) satisfies Assumption 1. If the eigenvalue-

eigenvector pairs of XX′/n are denoted {ℓj/n,uj}, j = 1, . . . ,m, and those of Γ are denoted

by {γj ,υj}, j = 1, . . . ,m, then |ℓj/n− γj | = O(Qn) and ∥ςjuj −υj∥ = O(Qn), j = 1, . . . ,m,

where ςj = sign(υ′
juj).

Before proceeding let us note that the MSFE values presented in Propositions 1 and 2 will

not be available to the practitioner. They can be estimated from the data, however, using ob-

vious ”plug in” estimates. Thus At+j , j = 1, . . . , h, can be estimated by substituting a for α,

Γm+h−1 can be estimated using
∑n′

t=1 ξ(t)ξ(t)
′/n′ where ξ(t) = (x(t), . . . , x(t+m+ h− 1))′

and n′ = N − m − h + 1, and Σm+h−1 can be estimated by replacing Υu
m−kGΥu′

m−k with,

in an obvious notation, n−1Uu
m−kdiag(ℓk+1, . . . , ℓm)Uu′

m−k. Denote these estimates by Ât+j ,

j = 1, . . . , h, Γ̂m+h−1 and Σ̂m+h−1.

Theorem 1 Suppose that the stochastic process x(t) satisfies Assumption 1. Then the SSA

forecasting coefficients satisfy ∥a − α∥ = O(Qn). Moreover, the MSFE estimation errors

∥Ât+j −At+j∥, j = 1, . . . , h, ∥Γ̂m+h−1 − Γm+h−1∥ and ∥Σ̂m+h−1 −Σm+h−1∥ are all O(Qn).

Theorem 1 shows that when a SSA(m, k) model is fitted to data the values obtained will

be consistent for the corresponding forecasting formulae derived from the stochastic process

giving rise to the observed realization. In the next section we present illustrative examples

that demonstrate the MSFE performance of different SSA(m, k) models and compares

them to the optimal MSE forecast for known processes.

5 Theoretical Illustrations

5.1 Forecasting an AR(1) process

Consider a zero mean AR(1) process x(t) = ϕx(t − 1) + ε(t) where ε(t) ∼ WN(0, σ2) and

|ϕ| < 1. The autocovariance generating function of this process is γ(z) = γ(0)
∑

ϕizi, where

γ(0) = σ2/(1− ϕ2), and Assumption 1 is satisfied with Γ equal to the Toeplitz matrix with

first row γ(0)(1, ϕ, . . . , ϕm−1), Γ = γ(0)T{1, ϕ, . . . , ϕm−1}. For an AR(1) process the optimal

MSE forecast of x(t + j) given x(τ), τ ≤ t, is x(t + j|t) = ϕjx(t), j = 1, 2, . . . , h, with a

MSFE of MSFEAR(1)(j) = σ2(1− ϕ2j)/(1− ϕ2) for the jth forecast horizon.
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5.1.1 The SSA(2, 1) model

The simplest possible SSA specification for any observed time series is an SSA(2, 1) model.

If such a model is applied to an AR(1) process the eigenvalue-eigenvector pairs of Γ =

γ(0)T{1, ϕ} are {γ1 = σ2(1 + |ϕ|)/(1 − ϕ2),ψ1 = (1, 1)′ /
√
2} and {γ2 = σ2(1 − |ϕ|)/(1 −

ϕ2),ψ2 = (1,−1)′ /
√
2}. Projecting the second element of ψ1 onto the first gives α = 1 for

the LRF coefficient. This leads to the MSFE coefficients

At+j =

j∑
i=1

(0′j−i,−1, 1,0′h−j+i−1) = (−1,0′j−1, 1,0
′
h−j), j = 1, . . . , h

and the MSFE of the SSA(2, 1) model for each j across the forecast horizon is

E[ε(t+ j|t)2] = (−1,0′j−1, 1,0
′
h−j)(Γh+1 −Σh+1)(−1,0′j−1, 1,0

′
h−j)

′ (14)

where Γh+1 = γ(0)T{1, ϕ, . . . , ϕh} and Σh+1 = diag (γ2/2,0
′
h). Evaluating (14) for j =

1, . . . , h gives the MSFE of a SSA(2, 1) model when applied to an AR(1) process as

MSFESSA(2,1)(j) =
2(1− ϕj)

1− ϕ2
σ2 − (1− |ϕ|)

2(1− ϕ2)
σ2 =

4(1− ϕj)− (1− |ϕ|)
2(1− ϕ2)

σ2.

Figure 1 depicts the theoretical MSFE of the SSA(2, 1) model and the optimal AR(1)

MSE forecast over the horizon h = 20 when ϕ = 0.5, 0.7, 0.9 and σ2 is set so that γ(0) = 5.

To ascertain the practical relevance of the theoretical formulas we carried out a simulation

experiment using an AR(1) data generating process with the same parameter values. We

generated R = 10, 000 time series {x(r)(t) : t = 1, . . . , N + h} with N = 300 and h = 20,

r = 1, . . . , R. For each replication r we fitted an SSA(2, 1) model and an AR(1) model to

the first N data values and constructed the empirical forecasts x̂(r)(N + j|N), j = 1, . . . , h.

For each model we then compute the simulated MSFE by averaging the squared forecast

error across the R replications, MSFE(j) =
∑R

r=1

(
x(r)(N + j)− x̂(r)(N + j|N)

)2
/R, j =

1, . . . , h. Figure 1 also graphs MSFE(j), j = 1, . . . , h. Two obvious conclusions can be
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Figure 1: Theoretical MSFE(j) and simulated MSFE(j) for SSA(2, 1) model and optimal AR(1)
MSE forecast, x(t) = ϕx(t− 1) + ε(t), ε(t) ∼ WN(0, 1), ϕ = 0.5, 0.7, 0.9 and j = 1, . . . , 20.

drawn from the MSFE curves plotted in Figure 1: First, the simulated MSFE closely
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resembles the theoretical MSFE. Second, the MSFE of the SSA(2, 1) model exceeds that

of the optimal AR(1) MSE forecast by a considerable margin. A third conclusion seems to

be that the SSA(2, 1) model exhibits greater experimental sampling variation in MSFE(j)

than the AR(1) model, particularly when j > 12 – a forecast horizon that exceeds six times

the window length.

A natural measure of the signal-to-noise ratio (SNR) of an AR(1) process is ϕ2/(1 − ϕ2),

and for ϕ = 0.5, 0.7, 0.9, SNR = 0.33′, 0.96, 4.26. For the SSA(2, 1) model SNR is given by

γ1/γ2 = (1+|ϕ|)/(1−|ϕ|). This gives SNR = 3.0, 5.66′, 19 when ϕ = 0.5, 0.7, 0.9, respectively.

The relative magnitudes of SNR for the SSA(2, 1) model and the AR(1) process are not too

dissimilar, a feature that is partly reflected in the comparative curvatures seen in the different

panels in Figure 1. The increasingly poor performance of the SSA(2, 1) model as the forecast

horizon increases reflects that the ratio MSFESSA(2,1)(j)/MSFEAR(1)(j) → 2 − 1
2(1 − |ϕ|)

as j → ∞. It is clear that the SSA(2, 1) model does not capture the structure of the AR(1)

process well.

5.1.2 The SSA(m, k) model

For the general SSA(m, k) model values must be allocated to the window length m and

to the signal dimension k in order to decompose the time series and compute the LRF

forecasts. Here we select m ∈ {2,M} and k ∈ {1,m − 1} such that the absolute difference

between the SNR of the SSA(m, k) model and the AR(1) process is a minimum. For an

SSA(m, k) model SNR =
∑k

j=1 γj/
∑m

j=k+1 γj where, for the AR(1) process, γj is the jth

eigenvalue of Γ = γ(0)T{1, ϕ, . . . , ϕm−1}. The eigenvalues are γj = σ2/(1 + ϕ2 − 2ϕ cos(ωj))

where ωj , j = 1, . . . ,m, are the positive roots of ω = tan−1{(1 − ϕ2) sinω/(1 + ϕ2) cosω −
2ϕ)}/m, the eigenvectors are non-harmonic sinusoids. The eigenvalue-eigenvector pairs are

transcendental functions that can be readily computed once ϕ and σ2 are known, and the

SNR of the SSA(m, k) model evaluated accordingly. For the preassigned value M = 20 this

leads to SSA(11, 1), SSA(8, 1) and SSA(7, 1) models being selected when ϕ = 0.5, 0.7, 0.9,

respectively. Note in passing that although the value selected for m exceeds two in all three

cases, we also have m < M and k = 1. We will indicate how to choose m and k in practice

in Section 6.

Figure 2 shows the theoretical and simulated MSFE of the optimal MSE AR(1) predictor

and the selected SSA(m, k) models when evaluated using the same simulation experiments

that gave rise to Figure 1. As in Figure 1, the simulated MSFE closely resembles the

theoretical MSFE. The MSFE of the SSA(m, 1) models still exceeds that of the optimal

AR(1)MSE forecast, but the increase in window length has obviously improved performance,

the margin between MSFESSA(m,1)(j) and MSFEAR(1)(j) in Figure 2 is at worst no more

than one half of that seen in Figure 1. That the use of an SSA(2, 1) model produces inferior

results relative to SSA(m, 1) models with m > 2 is clear, but as will be seen in the following

example, increasing window length does not always improve performance.
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Figure 2: Theoretical MSFE(j) and simulated MSFE(j) for SSA(m, k) model and optimal AR(1)
MSE forecast, x(t) = ϕx(t− 1) + ε(t), ε(t) ∼ WN(0, 1), ϕ = 0.5, 0.7, 0.9 and j = 1, . . . , 20.

Before we proceed it is of interest to observe that the use of plug in values yields very

reasonable estimates of the MSFE. Table 1, for example, lists the average value and the

variance of the plug in estimate M̂SFE(j), j = 1, . . . , h = 20, observed across the replications

that gave rise to the far right hand panel in Figure 2. A comparison of these values with the

theoretical MSFE suggests that appropriately constructed SSA forecast confidence bands

obtained using M̂SFE(j) will possess the correct coverage probability.

Table 1 MSFE for SSA(7, 1) model of AR(1) process with γ(0) = 5, ϕ = 0.9.

Horizon Theoretical Average Variance

j MSFE(j) M̂SFE(j)

1 1.975 1.972 0.044
2 2.447 2.441 0.073
3 2.874 2.865 0.115
4 3.273 3.261 0.171
5 3.662 3.647 0.245
6 4.059 4.041 0.348
7 4.481 4.459 0.491
8 4.729 4.706 0.600
9 4.944 4.919 0.717
10 5.130 5.105 0.840
11 5.291 5.267 0.967
12 5.427 5.405 1.095
13 5.540 5.519 1.218
14 5.626 5.608 1.331
15 5.695 5.681 1.439
16 5.750 5.739 1.541
17 5.791 5.786 1.636
18 5.822 5.821 1.722
19 5.843 5.846 1.799
20 5.855 5.863 1.867

11



5.2 Forecasting a random walk series

Consider an observed process x(t) such that for t = 1, . . .

x(t) =

t−1∑
τ=0

ε(t− τ)

where ε(t) is a white noise processes with unit variance, ε(t) ∼ WN(0, 1). Exploiting the

strong Markov property of the random walk we can express the m–lagged vector as

xt =



1
...
...
...

1


t−2∑
τ=0

ε(t− 1− τ) +



ε(t)

ε(t) + ε(t+ 1)

ε(t) + ε(t+ 1) + ε(t+ 2)
...

ε(t+ 1) + . . .+ ε(t+m− 1)


, (15)

where the two components on the right hand side of (15) are orthogonal and give the decompo-

sition xt = st+εt directly. Since E[
(∑t−1

τ=1 ε(t− τ)
)2

] = t−1 and E[
∑r

τ=0 ε(t−τ)
∑s

τ=0 ε(t−
τ)] = min(r + 1, s + 1), for the m−lagged vector xt we obtain E(xtx

′
t) = (t − 1)1m1′m +Ψ

where Ψ = [min(r, c)]r,c=1,...,m and 1′m = (1, . . . , 1), and for the trajectory matrix X we

therefore have

E[n−1XX′] = n−1
n∑

t=1

E[xtx
′
t] =

n− 1

2
1m1′m +Ψ .

Applying Donsker’s theorem and the fact that n−3/2
∑n

t=1 x(t − 1)ε(t) = O(
√
log log n)

(Poskitt 2000, Lemma A.1.(ii)) we can also deduce that ∥n−1XX′ − Γ∥ = O(Qn) where

Γ = nβ2
n1m1′m +Ψ and

β2
n =

1

n2

n∑
t=1

x(t− 1)2 +O(Qn)
D→
∫ 1

0
B2(ω)dω,

where Qn =
√

log log n/n and B(ω) denotes standard Brownian motion.

Let H = nβ2
n1m1′m. Then the eigenvalues of H are λ1 = mnβ2

n with eigenvector φ1 =

1m/
√
m, and λm = 0 with multiplicity m− 1 and eigenvectors

φ2 = (−1, 1,0′m−2)
′/
√
2

φ3 = (1, 1,−2,0′m−3)
′/
√
6

φ4 = (−1,−1,−1, 3,0′m−4)
′/
√
12

...

φm = (−1)m−1(1, 1, . . . , 1,−(m− 1))′/
√

m(m− 1) .

Moreover, when m << n the spectral decomposition of Γ = H + Ψ is dominated by that

of H to the point where the effect of the matrix Ψ vanishes as n → ∞. To verify this note

that ∥Γ − H∥/mn = ∥Ψ∥/mn = O(m/n) and the eigenvalues of (mn)−1Γ and (mn)−1H
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are γj/mn and λj/mn, j = 1, . . . ,m, respectively. By a repetition of the argument that

leads from Assumption 1 to Lemma 2 it therefore follows that |γ1/mn− β2
n| = O(m/n) and

|γj/mn| = O(m/n), j = 2, . . . ,m, and that ∥ςjυj − φj∥ = O(m/n) where ςj = φ′
jυj . The

spectral decomposition of Γ is thus dominated by its largest eigenvalue, as can be seen by

observing that

γ1∑m
j=1 γj

=
γ1/mn∑m
j=1 γj/mn

=
β2
n +O(m/n)

β2
n +O(m2/n)

= 1 +O(m2/n)

approaches unity as n → ∞ provided m2/n → 0 as n → ∞. This clearly shows that

the signal component eventually dominates the behaviour of the m-lagged vectors and the

contribution of the noise component all but disappears.

Let Φk = [φ1, . . . ,φk] where 1 ≤ k ≤ m − 1. Then it is straightforward to verify that

the linear recurrent coefficient evaluated from the eigenvalue decomposition of H, namely

(1−Φl
kΦ

l′
k )

−1Φu
kΦ

l′
k , equals (m−1)−11m−1. From the development in the previous paragraph

it follows that ∥(m−1)α−1m−1∥ = O(m2/n), where we recall that for an SSA(m, k) model

α = (1 − Υl
kΥ

l′
k )

−1Υu
kΥ

l′
k . The sum of the coefficients,

∑m−1
i=1 αi, will therefore approach

one as the effective sample size grows, that is as n → ∞. This phenomenon is illustrated in

Figure 3, which plots
∑m−1

i=1 αi againstm for an SSA(m, 1) model evaluated from the spectral

decomposition of E[n−1XX′] = 1
2(n−1)1m1′m+Ψ. Figure 3 indicates that

∑m−1
i=1 αi ≥ 1 and
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Figure 3: Sum of linear recurrent coefficients for SSA(m, 1) model of random walk process.

that the proximity of
∑m−1

i=1 αi to unity varies directly with the magnitude of m/n. When

m/n is not sufficiently small the impact of Ψ on the spectral decomposition is not negligible

and has the effect of increasing the magnitude of
∑m−1

i=1 αi beyond that achieved by the

dominant eigenvalue. This is seen in
∑m−1

i=1 αi − 1 increasing as m increases for a given N ,

and decreasing as the effective sample size n = N −m+ 1 increases for a given m.

Remark: Let zt = (x(t − n + 1), x(t − n + 2), . . . , x(t))′ and Zt−1 = [zt−m+1 : . . . : zt−1].

Then the regression coefficient from regressing x(t) on x(t − m + 1), . . . , x(t − 1) for t =

m, . . . , N is obtained by solving the normal equations Z′
t−1Zt−1α̂ = Z′

t−1zt. For the random

walk process it can be shown by following the results of Poskitt (2000, Lemma A.1.) that
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n−1Z′
t−1zt = nβ2

n1m−1 + O(Qn), and that n−1Z′
t−1Zt−1 = nβ2

n1m−11
′
m−1 + O(Qn). It

follows that 1m−11
′
m−1α̂ = 1m−1 + O(Qn), that is, α̂ = (m − 1)−11m−1 + O(Qn). Thus,

in the case of a random walk process, the linear recurrent coefficient estimated via the

spectral decomposition of the trajectory matrix is asymptotically equivalent to a least squares

estimate. 2

5.2.1 The SSA(2, 1) model

To ascertain the practical relevance of the theoretical formulas we have employed a simulation

procedure similar to the one used previously and generated data from a random walk process

x(t) =
∑t−1

τ=0 ε(t − τ) where ε(τ) ∼ WN(0, 1). We generated R = 10, 000 time series and

for each replication we fitted an SSA(2, 1) model and constructed empirical forecasts which

were then used to compute the simulated MSFE. To construct the theoretical MSFE

of the SSA(2, 1) model we have evaluated the spectral decomposition of E[n−1XX′] = 1
2
(n −

1)121
′
2 + Ψ. The eigenvalue-eigenvector pairs are {γ1 = 1

2(n + 2 +
√

(n+ 1)2 + 1),ψ1 =

(1, rn)
′ /
√

1 + r2n} and {γ2 = 1
2(n + 2 −

√
(n+ 1)2 + 1),ψ2 = (−rn, 1)

′ /
√

1 + r2n} where

rn = (1+
√

(n+ 1)2 + 1)/(n+1). Projecting the second element of ψ1 onto the first gives α =

rn for the LRF coefficient. This leads to the MSFE coefficients At+j = (−rjn,0′j−1, 1,0
′
h−j),

j = 1, . . . , h. Setting Γh+1 = (n−1)1h+11
′
h+1+Ψ = E[ξh+1ξ

′
h+1], ξh+1 = [x(n), . . . , x(n+h)]′,

and Σh+1 = diag(γ2r
2
n/(1 + r2n),0

′
h) in Proposition 2 yields

E[ε(N + j|N)2] = (−rjn,0′j−1, 1,0
′
h−j)(Γh+1 −Σh+1)(−rjn,0′j−1, 1,0

′
h−j)

′

= j + n
(
(1− rjn)2 − r2jn

4

{
(n+1)+2rn
(n+1)−rn

}{
(n+1)(1−rn)+2

n

}) (16)

for MSFE(j) of a SSA(2, 1) model when applied to a random walk process. The MSFE

for the optimal MSE predictor of the random walk process equals the conditional variance,

namely V ar[x(t+ j)|{x(τ) : τ ≤ t}] = j.

Figure 4 plots the theoretical MSFE of the SSA(2, 1) model and the MMSE predictor

of the random walk process along with their simulated versions MSFE across the forecast

horizon j = 1, . . . , 20 when N = 200, 300, 500. It can be seen that the MSFE of the
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Figure 4: Theoretical and simulatedMSFE of SSA(2, 1) model and random walk process computed

from 10,000 replications of x(t) =
∑t−1

τ=0 ε(t− τ), ε(t) ∼ WN(0, 1).

14



SSA(2, 1) model exceeds that of the optimal MSE predictor by a tiny margin for j ≤ 15

but the deviation increases slightly in a manor consistent with expression (16) as the forecast

horizon increases and j → 20. A comparison of the three panels indicates how the discrepancy

between the MSFE of the SSA(2, 1) model and the MMSE predictor diminishes as the

effective sample size increases and the LRF coefficient α = rn → 1 as n → ∞, in line with the

previous development. The difference between MSFE(j) and MSFE(j) for the SSA(2, 1)

model is much larger than that observed with the optimal MSE predictor, for which this

difference is virtually zero. This latter feature reflects that for the SSA(2, 1) model MSFE

has been calculated on the basis of E[n−1XX′] whereas the magnitude of MSFE reflects

the additional variation present in n−1XX′ = nβ2
n1m1′m +Ψ + O(

√
log log n/n) that does

not subside as n → ∞.

5.2.2 SSA(m, 1) Models

Given that the spectral decomposition associated with a random walk process is dominated

by the first eigenvalue we consider here the performance of different SSA(m, 1) models.

Figure 5 plots the outcomes resulting from the application of such models to a random walk

process when N = 300 using window lengths m = 4, 6, 10. Figure 5 shows the theoretical and
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Figure 5: Theoretical and simulated MSFE of SSA(m, 1) models, m = 4, 6, 10, and random walk

process computed from 10,000 replications of x(t) =
∑t−1

τ=0 ε(t− τ), ε(t) ∼ WN(0, 1).

simulated MSFE of the optimal MSE predictor and the selected SSA(m, 1) models when

evaluated using the same experimental data that gave rise to the centre panel in Figure 4.

The panels in the Figure 5 demonstrate that the MSFE of the SSA(m, 1) models increases

with increasing window length, and use of an SSA(m, 1) model with m > 2 does not improve

on the performance of the simple SSA(2, 1) model.

6 Empirical Applications

When examining real world data sets the predictive performance of SSA(m, k) models can

only be evaluated by comparing it to other competing models – in practice the true data
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generating mechanism is unknown and the optimal MSE predictor is not available for anal-

ysis as was the case with the theoretical processes examined in the previous section. We

have therefore selected three different time series that have been examined elsewhere in the

literature – (i) Airline passenger data (Box & Jenkins 1976); (ii) Nile river data (Hipel &

McLeod 1994); (iii) USA accidental death data (Brockwell & Davis 2002) – and used models

previously fitted to these data sets as benchmarks.

The airline passenger data records monthly totals of international airline passengers in the

USA from January 1949 to December 1960. The period January 1949 to December 1958 (the

sample data) was used for modeling and the period January 1958 to December 1960 (the test

data) was reserved for checking forecast accuracy. Since this series exhibits a strong seasonal

pattern and marked heteroscedasticity ARIMA(p, d, q)(P,D,Q)12 models were fitted to both

the original sample data and it’s logarithmic transformation. Employing the automatic

selection algorithm of Hyndman & Khandakar (2008) leads to an ARIMA(0, 1, 1)(0, 1, 1)12

model being selected via AIC in both cases (cf. Box & Jenkins 1976, Chatfield 2004). In

similar vein, SSA(m, k) models were selected automatically using the minimum description

length criterion of Khan & Poskitt (2010). The latter criterion determines the window length

m and the signal dimension k simultaneously and for the airline passenger sample data gives

a SSA(12, 11) model for both the original and the log–transformed series.

For both the ARIMA(0, 1, 1)(0, 1, 1)12 model and the SSA(12, 11) model forecasts of the

out of sample test data were constructed after the models had been fitted using the sample

data. The performance of the two models was then compared by calculating the empirical

root mean squared forecast error

RMSFEh =

1

h

h∑
j=1

(x(N + j)− x̂(N + j|N))2


1
2

,

wherein N is the sample size, x̂(N + j|N), j = 1, . . . , h, denote the forecasts, and h is the

total forecast horizon. The RMSFEh figures derived from forecasts of airline passenger

numbers for the two years January 1958 to December 1960 are presented in Table 2, where

N = 120 and h = 6, 12, 18 and 24. In all cases considered the SSA(12, 11) model improves

Table 2 RMSFEh of SSA(12, 11) and ARIMA(0, 1, 1)(0, 1, 1)12 models for airline data.

Airline data Model RMSFEh

h = 6 h = 12 h = 18 h = 24
Original SSA(12, 11) 19.8197 22.2352 26.7928 33.1892

ARIMA(0, 1, 1)(0, 1, 1)12 37.4336 46.2710 61.4668 71.9598
Log-transformed SSA(12, 11) 17.0925 20.8780 23.4169 27.2589

ARIMA(0, 1, 1)(0, 1, 1)12 20.8866 28.1668 29.3763 34.2055

on the RMSFE performance of the ARIMA(0, 1, 1)(0, 1, 1)12 model by at least 18% and as

much as 56.4%. It is noteworthy that whereas for the ARIMA(0, 1, 1)(0, 1, 1)12 model the

RMSFE obtained when the modeling is conducted in terms of the log–transformed data is

about one half of that obtained when the modeling is conducted in terms of the original data,

the RMSFE of the SSA(12, 11) model does not change anywhere near as dramatically. This
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latter feature reflects that SSA automatically adapts to nonlinear and localized features of

the series far more readily than do conventional seasonal ARIMA models.

The Nile river data comprises mean monthly river flows (m3/s) from January 1870 to Decem-

ber 1934. The values from January 1870 to December 1932 were employed as sample data

and the period from January 1933 to December 1934 as test data. Montanari et al. (2000)

have suggested that the short-memory ARMA(1, 0, 1)(1, 0, 1)12 model fits the series well

(Montanari et al. 2000, eq.25–26). This model gave a value of AIC = 8209.08 when fitted to

the sample data, but the minimization of AIC leads to an ARIMA(1, 0, 1)(1, 1, 1)12 model

being selected for the sample data with AIC = 8043.97. This latter model was therefore used

to compute forecasts and RMSFEh values, computed as described above, are presented in

Table 3. This table also presents the RMSFEh values derived from the SSA(18, 17) model

determined using the Khan & Poskitt (2010) criterion. The entries in Table 3 show that

Table 3 RMSFEh of SSA(18, 17) and ARIMA(1, 0, 1)(1, 1, 1)12 models for Nile data.

Model RMSFEh

h = 6 h = 12 h = 18 h = 24
SSA(18, 17) 66.1722 49.3324 51.7531 47.6137

ARIMA(1, 0, 1)(1, 1, 1)12 68.8752 52.3328 48.4641 47.3151

SSA(m, k) models do not uniformly dominate conventional seasonal ARIMA models.

The USA accident data gives the number of accidental deaths per month from January

1973 to June 1979. The numbers from January 1973 to December 1978 were used as

sample data and those from January 1979 to June 1979 were used as test data. Brock-

well & Davis (2002) have analyzed this data set and computed forecasts from three mod-

els, an ARIMA(0, 1, 1)(0, 1, 1)12, a coefficient constrained subset ARIMA(0, 1, 13)(0, 1, 0)12

(Brockwell & Davis 2002, eq.6.5.8 and eq.6.5.9, p.208), and a Holt-Winters seasonal model

(Brockwell & Davis 2002, §9.3). These models were used to forecast the number of acciden-

tal deaths from January 1979 to June 1979 and the RMSFE values where N = 72 and

h = 6 are presented in Table 4 (cf. Brockwell & Davis 2002, Table 6.1, p.210 and Table 9.3,

p.327). The automatic model selection algorithm of Hyndman & Khandakar (2008) yields

Table 4 RMSFEh of different models for USA accidental death data.

Model RMSFEh Relative−RMSFEh

ARIMA(0, 1, 1)(0, 1, 1)12 582.6261 2.2705
Subset ARIMA(0, 1, 13)(0, 1, 0)12 500.5004 1.9504

Holt-Winters 401.2626 1.5637
ARIMA(2, 0, 0)(2, 1, 0)12 286.9519 1.1182

SSA(24, 13) 256.6120 1

an ARIMA(2, 0, 0)(2, 1, 0)12 model for this sample data when used in conjunction with AIC,

and the minimum description length criterion of Khan & Poskitt (2010) gives an SSA(24, 13)

model. The relative RMSFEh values in Table 4 show once again that an SSA(m, k) model

can improve on the best performing of conventional benchmark models by anything from

10.5% to more than 55%.
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7 Concluding remarks

The theoretical examination of SSA forecasting presented above indicates that for some

processes (a simple autoregression) different SSA(m, k) models will not achieve the same

MSFE performance as the MMSE predictor for any combination of window length and

signal dimension, whereas for other processes (a random walk) the simplest SSA(2, 1) model

closely approximates the forecasting performance of the optimal predictor, to which it will

converge as the effective sample size increases. These theoretical results are clearly reflected

in behaviour observed in simulation experiments. When applied to different real world time

series, however, SSA can exhibit considerable improvements in empirical MSFE perfor-

mance over conventional benchmark models that have been previously used to characterize

the series.

The contrast between the relative performance of SSA when it is compared to the MMSE

predictor as apposed to it’s superior empirical performance when compared to benchmark

models might be viewed as a paradox. It is however part of folklore that model specification

is of paramount importance in forecasting and that the use of a class of flexible but parsi-

monious models can be critical in determining performance. This suggests that the solution

to the apparent paradox lies in thinking of SSA as a nonparametric modeling methodology

that produces accurate approximations of minimal dimension, and that further insight may

be achieved by examining SSA from this perspective. It is hoped to investigate this issue

further elsewhere.

References

Basilevsky, A. & Hum, D. P. J. (1979), ‘Karhunen-Loève analysis of historical time series
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APPENDIX Proofs

Proof of Lemma 1: Partition the matrix Uk such that Uk =
(
U′u

k U′l
k

)′
where Ul

k is the

row vector of elements in last row of Uk and Uu
k is the (m − 1) × k matrix containing the

first m−1 rows. Partition Sk = UkU
′
kX and X conformable with the partition of Uk. Then(

Su
k

Sl
k

)
=

(
Uu

k

Ul
k

)(
Uu′

k Ul′
k

)(Xu

Xl

)
=

(
Uu

kU
u′
k Xu +Uu

kU
l′
kX

l

Ul
kU

u′
k Xu +Ul

kU
l′
kX

l

)

and the projection of the last row of Sk onto its first m− 1 rows is given by

Sl
k = Ul

kU
u′
k Xu +Ul

kU
l′
kX

l

= Ul
kU

u′
k (Su

k +Eu
k) +Ul

kU
l′
k (S

l
k +El

k)

= (1−Ul
kU

l′
k )

−1[Ul
kU

u′
k (Su

k +Eu
k) +Ul

kU
l′
kE

l
k]

= (1−Ul
kU

l′
k )

−1Ul
kU

u′
k Su

k + (1−Ul
kU

l′
k )

−1Ul
k[U

u′
k Eu

k +Ul′
kE

l
k]

= (1−Ul
kU

l′
k )

−1Ul
kU

u′
k Su

k + (1−Ul
kU

l′
k )

−1Ul
kU

′
kEk .

Let Um−k = [uk+1, . . . ,um] denote the matrix containing the last m−k eigenvectors of XX′.

Then Ek = Um−kU
′
m−kX, and since Uk and Um−k are orthogonal it follows that Sl

k = a′Su
k

where the vector a′ = (a1, . . . , am−1) = (1−Ul
kU

l′
k )

−1Ul
kU

u′
k .

Proof of Proposition 1: First decompose the forecast error as

ε(t+ j|t) = x(t+ j)− s(t+ j|t)

= [x(t+ j)− x(t+ j|t)] + [x(t+ j|t)− s(t+ j|t)], (A.1)

where for j = 1, . . . , h, x(t+ j|t) =
∑m−1

i=1 αix(t+ j −m+ i). The first part of ε(t+ j|t) is

x(t+ 1)− x(t+ 1|t) = x(t+ 1)−
m−1∑
i=1

αix(t+ 1−m+ i)

= (−α′, 1,0′h−1)ξm+h−1,

x(t+ 2)− x(t+ 2|t) = x(t+ 2)−
m−1∑
i=1

αix(t+ 2−m+ i)

= (0,−α′, 1,0′h−2)ξm+h−1,

...

x(t+ j)− x(t+ j|t) = x(t+ j)−
m−1∑
i=1

αix(t+ j −m+ i)

= (0′j−1,−α′, 1,0′h−j)ξm+h−1.
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The second part of (A.1) can be expressed as

x(t+ 1|t)− s(t+ 1|t) =
m−1∑
i=1

αm−i[x(t+ 1−m+ i)− s(t+ 1−m+ i)]

=

m−1∑
i=1

αm−iε(t+ 1− i) = (α′,0′h)ηm+h−1,

and for j = 2, . . . ,m− 1,

x(t+ j|t)− s(t+ j|t) =
∑m−1

i=1 αix(t+ j −m+ i)−
∑j−1

i=1 αm−is(t+ j − i|t)

−
∑m−j

i=1 αis(t+ j −m+ i)

=
∑j−1

i=1 αm−iε(t+ j − i|t) +
∑m−j

i=1 αiε(t+ j −m+ i)

=
∑j−1

i=1 αm−iε(t+ j − i|t) + (0′j−1,α
′,0′h−j+1)ηm+h−1 .

For j > m− 1,

x(t+ j|t)− s(t+ j|t) =

m−1∑
i=1

αix(t+ j −m+ i)−
m−1∑
i=1

αm−is(t+ j − i|t)

=
m−1∑
i=1

αm−iε(t+ j − i|t) ,

which for notational consistency and convenience we can reexpress as

x(t+ j|t)− s(t+ j|t) =
m−1∑
i=1

αm−iε(t+ j − i|t) + (0′j−1,α
′,0′h−j+1)ηm+h−1

since for j > m− 1 we have (0′j−1,α
′,0′h−j+1)ηm+h−1 = 0.

Collecting these terms together gives us

ε(t+ 1|t) = (−α′, 1,0′h−1)ξm+h−1 + (α′,0′h)ηm+h−1

= At+1ξm+h−1 +Bt+1ηm+h−1 ,
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where At+1 = (−α′, 1,0′h−1) and Bt+1 = (α′,0′h). For 2 ≤ j ≤ m− 1,

ε(t+ j|t) = (0′j−1,−α′, 1,0′h−j)ξm+h−1 + (0j−1,α
′,0′h−j+1)ηm+h−1

+

j−1∑
i=1

αm−iε(t+ j − i|t)

= (0′j−1,−α′, 1,0′h−j)ξm+h−1 + (0′j−1,a
′,0′h−j+1)ηm+h−1

+

j−1∑
i=1

αm−i[At+j−iξm+h−1 +Bt+j−iηm+h−1]

= [(0′j−1,−α′, 1,0′h−j) +

j−1∑
i=1

αm−iAt+j−i]ξm+h−1

+[(0′j−1,α
′,0′h−j+1) +

j−1∑
i=1

αm−iBt+j−i]ηm+h−1

= At+jξm+h−1 +Bt+jηm+h−1 ,

and similarly for j > m− 1,

ε(t+ j|t) = [(0′j−1,−α′, 1,0′h−j) +

m−1∑
i=1

αm−iAt+j−i]ξm+h−1

+[(0′j−1,α
′,0′h−j+1) +

m−1∑
i=1

αm−iBt+j−i]ηm+h−1

= At+jξm+h−1 +Bt+jηm+h−1 .

Thus for j = 1, . . . , h the forecast error can be expressed as

ε(t+ j|t) = x(t+ j)− s(t+ j|t) = At+jξm+h−1 +Bt+jηm+h−1,

where At+j , j = 1, . . . , h, are generated recursively as specified in the proposition, and Bt+j ,

j = 2, . . . , h, satisfy the same recursions but start at Bt+1 = (α′,0′h).

The mean squared forecast error is therefore equal to

E[ε(t+ j|t)2] = At+jE[ξm+h−1ξ
′
m+h−1]A

′
t+j +Bt+jE[ηm+h−1η

′
m+h−1]B

′
t+j

+2At+jE[ξm+h−1η
′
m+h−1]B

′
t+j

= At+jΓm+h−1A
′
t+j +Bt+jΣm+h−1B

′
t+j + 2At+jΣm+h−1B

′
t+j

= At+j(Γm+h−1 −Σm+h−1)A
′
t+j + (At+j +Bt+j)Σm+h−1(At+j +Bt+j)

′

where the penultimate line follows because E[ξm+h−1η
′
m+h−1] = E[ηm+h−1η

′
m+h−1] since

x(t) = s(t) + ε(t) where s(t) is orthogonal to ε(t). The required result now follows be-

cause for all j = 1, . . . , h the first m − 1 elements of At+j + Bt+j are zero and Σm+h−1 =

diag(σ21′m−1,0
′
h), and so (At+j +Bt+j)Σm+h−1(At+j +Bt+j)

′ = 0, j = 1, . . . , h.
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Proof of Proposition 2: This proposition differs from Proposition 1 only in the specifica-

tion of Σm+h−1 = E[ηm+h−1η
′
m+h−1]. The proof is otherwise identical to that of Proposition

1 and is therefore omitted.

Proof of Lemma 2: By Assumption 1 ∥XX′/n−Γ∥ = O(Qn) and the Hoffman-Wielandt

Theorem states that
∑m

j=1(ℓj/n− γj)
2 ≤ ∥XX′/n−Γ∥2, implying that |ℓj/n− γj | = O(Qn)

for j = 1, . . . ,m. (See also Khan & Poskitt 2013, Lemma 2).

Since the eigenvectors are orthonormal and span Rm we may set uk =
∑m

j=1 cjυj where the

coefficients cj = υ
′
juk are such that |cj | ≤ 1 and

∑m
j=1 c

2
j = 1. It follows that

(XX′/n− Γ+ Γ)

m∑
j=1

cjυj = (ℓk/n− γk + γk)

m∑
j=1

cjυj ,

which, because ∥XX′/n− Γ∥ = O(Qn) and |ℓk/n− γk| = O(Qn), can be re-expressed as

Γ

m∑
j=1

cjυj = γk

m∑
j=1

cjυj +O(Qn) ,

implying that
∑m

j=1 c
2
j (γj −γk)

2 = O(Q2
n). Thus we can conclude that cj = O(Qn) whenever

γj ̸= γk and hence that |ck| = 1 +O(Qn). Multiplying uk by sgn(ck) we obtain

sgn(ck)uk = sgn(ck)

m∑
j=1

cjυj = |ck|υk + sgn(ck)

m∑
j=1

j ̸=k

cjυj ,

and subtracting υk from either side and substituting cj = O(Qn) j = 1, . . . ,m, j ̸= k, and

|ck| = 1 +Q(Qn) into the resulting equation we have

sgn(ck)uk − υk = (|ck| − 1)υk + sgn(ck)
m∑
j=1

j ̸=k

cjυj = O(Qn) .

Thus for the kth eigenvector we find that ∥ςkuk − υk∥ = O(Qn) where ςk = sgn(ck), that

is, the orthonormal eigenvectors of XX′/n converge to the orthonormal eigenvectors of Γ

modulo a change in sign.

Proof of Theorem 1: From the equality

UkPkP
′
kU

′
k = UkU

′
k =

(
Uu

kU
u′
k Uu

kU
l′
k

Ul
kU

u′
k Ul

kU
l′
k

)

where Pk = diag(±1, . . . ,±1), it is clear that the coefficient a′ = (1 − Ul
kU

l′
k )

−1Ul
kU

u′
k

is invariant to changes in sign in the eigenvectors u1, . . . ,uk. The coefficient α′ equals

(1−Υl
kΥ

l′
k )

−1Υl
kΥ

u′
k and from Lemma 2 ∥UkPk−Υk∥ = O(Qn), where Pk = diag(ς1, . . . , ςk),

and hence we can conclude that ∥a−α∥ = O(Qn).

23



That ∥Ât+j−At+j∥, j = 1, . . . , h, have the same order of magnitude as ∥a−α∥ is immediate,

and ∥Γ̂m+h−1 − Γm+h−1∥ = O(Qn) follows directly from Assumption 1. That ∥Σ̂m+h−1 −
Σm+h−1∥ = O(Qn) follows by noting that Uu

m−kdiag(ℓk+1, . . . , ℓm)Uu′
m−k is invariant to

changes in sign in the eigenvectors uk+1, . . . ,um. Now, by Lemma 2 ∥Um−kPm−k−Υm−k∥ =

O(Qn), where Pm−k = diag(ςk+1, . . . , ςm), and |ℓj/n − γj | = O(Qn), j = k + 1, . . . ,m,

implying that

∥Σ̂m+h−1 −Σm+h−1∥ = ∥Υu
m−kGΥu′

m−k −Uu
m−kdiag(ℓk+1/n, . . . , ℓm/n)Uu′

m−k∥

= O(Qn),

thus completing the proof.
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