A Frequency Approach to Bayesian Asymptotics

Tingting Cheng, Jiti Gao, Peter CB Phillips

February 2016

Working Paper 05/16
A Frequency Approach to Bayesian Asymptotics

TINGTING CHENG, School of Finance, Nankai University
JITI GAO, Monash University
PETER CB PHILLIPS, Yale University, University of Auckland,
University of Southampton, & Singapore Management University

Abstract:
Ergodic theorem shows that ergodic averages of the posterior draws converge in probability to the posterior mean under the stationarity assumption. The literature also shows that the posterior distribution is asymptotically normal when the sample size of the original data considered goes to infinity. To the best of our knowledge, there is little discussion on the large sample behaviour of the posterior mean. In this paper, we aim to fill this gap. In particular, we extend the posterior mean idea to the conditional mean case, which is conditioning on a given summary statistic of the original data. We establish a new asymptotic theory for the conditional mean estimator for the case when both the sample size of the original data concerned and the number of Markov chain Monte Carlo iterations go to infinity. Simulation studies show that this conditional mean estimator has very good finite sample performance. In addition, we employ the conditional mean estimator to estimate a GARCH(1,1) model for S&P 500 stock returns and find that the conditional mean estimator performs better than quasi–maximum likelihood estimation in terms of out–of–sample forecasting.

Keywords: Bayesian average, conditional mean estimation, ergodic theorem, summary statistic

JEL Classification: C11, C15, C21
1 Introduction

In Bayesian analysis, posterior means are commonly used as point estimates for unknown parameters. However, little attention has been paid to the large sample properties of posterior mean. In this paper, we aim to address this issue. Particularly, we focus on the investigation of large sample properties of a conditional mean estimator, which includes the posterior mean as a special case.

Suppose T_n is a vector of summary statistics of the original data (x_1, x_2, \cdots, x_n) with sample size n. Let θ be a d–dimensional vector of unknown parameters for a model which seeks to explain T_n. Our interest is learning about θ. In Bayesian inference, inferences are normally based on the conditional density of θ given the data denoted as $f_n(\theta|T_n)$. The conditional mean is then used as a point estimate of θ, which is expressed as

$$E[\theta|T_n] = \int \theta f_n(\theta|T_n)d\theta. \quad (1.1)$$

However, most of the time, (1.1) cannot be worked out analytically, especially in high dimensions. Therefore we evaluate (1.1) by doing simulation to obtain a sequence of draws $\{\theta_{jn}\}$, $j = 1, 2, \cdots, m$, from $f_n(\theta|T_n)$, where m denotes the number of draws. For simplicity, we assume here that conditioning on T_n, we can obtain that $\{\theta_{jn}\}$ is a sequence of stationary Markov chains. We then denote the simple average $\frac{1}{m} \sum_{j=1}^{m} \theta_{jn}$ as $\hat{\theta}_{mn}$ to approximate $E[\theta|T_n]$.

It can be checked that this approximation is valid because by the law of large numbers, as $m \to \infty$, we have $\hat{\theta}_{mn} - E[\theta|T_n] \to_p 0$ for any fixed n. Now one natural question is: What is the asymptotic behaviour of $\hat{\theta}_{mn}$ and $E[\theta|T_n]$ when $n \to \infty$?

Admittedly, Bayesian inference is based on a given finite sample. However, with more and more data becoming available, it would be meaningful to investigate whether the performance of the conditional mean estimates $\hat{\theta}_{mn}$ and $E[\theta|T_n]$ differs very much between small samples and large samples. For example, suppose we want to capture the movement of a stock market return by a GARCH (1,1) model given by

$$y_t = \varepsilon_t \sigma_t, \quad \varepsilon_t \sim N(0, 1), \quad t = 1, 2, \cdots, n,$$

$$\sigma_t^2 = \theta_1 + \theta_2 y_{t-1}^2 + \theta_3 \sigma_{t-1}^2.$$

Let $\theta = (\theta_1, \theta_2, \theta_3)^\top$. Will the behaviour of the conditional mean estimates of θ change if the sample size varies from 500 to 10,000? In other words, what is the difference between $E[\theta|T_{500}]$ and $E[\theta|T_{10,000}]$?

To the best of our knowledge, there is little discussion available to answer this question. Until recently, most efforts aimed at investigating the asymptotic behaviour of posterior distribution
rather than investigating posterior mean. For example, Walker (1969) showed that under suitable regularity conditions, as \(n \to \infty \), the posterior distribution converges to a normal distribution. Based on Walker (1969), Chen (1985) further introduced three sets of conditions for asymptotic posterior normality. Phillips (1996), and Phillips and Ploberger (1996) developed an asymptotic theory of Bayesian inference for stationary and nonstationary time series and provided the limiting form of the Bayesian data density for a general case of likelihoods and prior distributions. Kim (1998) considered posterior normality in the situation of nonstationary time series. Chernozhukov and Hong (2003) developed a class of quasi-Bayesian estimators (QBEs), which are defined similarly to the Bayesian estimators but using general econometric criterion functions in place of the parametric likelihood function. They established \(\sqrt{n} \)-consistency and asymptotic normality for QBEs. The QBEs are computed using Markov chain Monte Carlo methods. Beaumont, Zhang and Balding (2002) proposed an approximate Bayesian computation (ABC) method to solve complex problems in population genetics, in which the principle of the ABC is that we make the best use of a vector of summary statistics rather than the whole sample \((x_1, x_2, \cdots, x_n)\). In our work, we also use the ABC idea. More recently, Gao and Hong (2014) established a link between the ABC method and the implementation of the so-called generalized method of moments (GMM).

The main contributions of this paper are summarized as follows.

(i) We improve existing results for the posterior distribution with a fast rate of convergence, and also establish an asymptotic theory for the conditional mean estimator.

(ii) We conduct several simulation studies to evaluate the finite sample performance of the conditional mean estimator, and we also employ the conditional mean estimator to estimate a GARCH(1,1) model for S&P 500 stock returns.

The rest of this paper is organized as follows. Section 2 proposes the conditional mean estimator. In Section 3, we develop asymptotic properties for the conditional mean estimator. Section 4 presents Monte Carlo simulation studies to examine the finite sample performance of the conditional mean estimator. In Section 5, a GARCH(1,1) model for S&P 500 stock returns is presented to illustrate the advantages of the conditional mean estimator. Section 6 concludes the paper. The proofs of the main theorems are given in an appendix.
2 Conditional mean estimation

Consider a random variable X with a density function $f(x; \theta)$ characterized by θ, a d–dimensional vector of unknown parameters. Let θ_0 be the true value of θ. We aim to estimate θ_0 by the conditional mean $E[\theta|T_n]$, where T_n is a vector of summary statistics of the original data (x_1, x_2, \cdots, x_n) generated from $f(x; \theta)$.

We can construct the likelihood function given by

$$L_n(\theta) = \prod_{i=1}^{n} f(x_i; \theta). \quad (2.1)$$

Define $l_n(\theta) = \log L_n(\theta)$ as the log–likelihood function. Let $\pi(\theta)$ denote a prior density of θ. The conditional (posterior) density of θ given T_n is

$$f_n(\theta|T_n) = \frac{e^{l_n(\theta)}\pi(\theta)}{\int e^{l_n(\theta)}\pi(\theta)d\theta}. \quad (2.2)$$

The conditional (posterior) mean of θ given T_n can be expressed as

$$E[\theta|T_n] = \int \theta f_n(\theta|T_n)d\theta. \quad (2.3)$$

This paper considers using the conditional distribution of θ given T_n rather than $X_n = (x_1, x_2, \cdots, x_n)$, mainly because using T_n is enough for the case where it is a vector of sufficient statistics. Meanwhile, it is both theoretically and conventionally more attractive in using T_n as a fixed–dimensional vector than using X_n as an n–dimensional vector of the full sample. Note that $\hat{\theta}_n$ can be chosen as T_n in such cases where $\hat{\theta}_n$ is the maximum likelihood estimator of θ_0, the true value of θ, is already a vector of sufficient summary statistics.

Due to the intractability of the likelihood function in some cases, equation (2.3) may not have any closed form. We thus evaluate (2.3) by simulating a sequence of draws from $f_n(\theta|T_n)$. If the conditional density $f_n(\theta|T_n)$ is available for sampling, we can obtain a sequence of independent draws. If direct sampling is infeasible, we can use either an importance sampling or a cumulative distribution function transformation method. By such a method, we can obtain independent draws. If such methods are not applicable, we can instead use a Markov chain Monte Carlo (MCMC) algorithm, such as Metropolis–Hasting algorithm, one of the most popular MCMC methods.

Then we approximate $E[\theta|T_n]$ by

$$\hat{\theta}_{mn} = \frac{1}{m} \sum_{j=1}^{m} \theta_{jn},$$
where \(\theta_{jn} \) denotes the \(j \)-th draw conditioning on \(T_n \) and \(m \) denotes the number of Markov chain Monte Carlo iterations. We refer \(\hat{\theta}_{mn} \) as the conditional mean estimator (CME hereafter). In the next section, we will establish some new asymptotic properties for both \(f_n(\theta|T_n) \) and \(\hat{\theta}_{mn} \).

3 Asymptotic properties

Before we establish some asymptotic properties for \(f_n(\theta|T_n) \) and \(\hat{\theta}_{mn} \), we introduce the following notation. Let \(\hat{\theta}_n \) denote the maximum likelihood estimator of \(\theta_0 \), the true value of \(\theta \) involved in the model under consideration. Under Assumption 1(i) below, both the first and second derivatives, \(l_n^{(1)}(\cdot) \) and \(l_n^{(2)}(\cdot) \), of \(l_n(\cdot) \), do exist. Let \(\Delta_n(\hat{\theta}_n) = -l_n^{(2)}(\hat{\theta}_n) \). Denote \(C_n = \{ \theta : \Delta_n^{1/2}(\hat{\theta}_n)\|\hat{\theta}_n - \theta\| < c \} \) and \(D_n = \{ \theta : \Delta_n^{1/2}(\hat{\theta}_n)\|\hat{\theta}_n - \theta\| \geq c \} \), where \(c \) is a positive constant.

In this section, we introduce the necessary conditions to establish our asymptotic results. Note that Assumptions 1–4 below may not be the weakest possible.

Assumption 1. (i) Suppose that \(f(\cdot; \theta) \) is twice differentiable with respect to \(\theta \), and the second–order derivative, \(f^{(2)}(\cdot; \theta) \), is continuous.

(ii) The density \(\pi(\theta) \) is twice differentiable and its second derivative is continuous. In addition, \(0 < \pi(\theta_0) < \infty \).

Assumption 2. (i) Conditioning on \(T_n \), \(\{\theta_{jn}\} \) is a sequence of Harris and geometrically ergodic Markov chains with stationary distribution such that \(\mathbb{E}[\theta_{1n}|T_n] = \mathbb{E}[\theta|T_n] \).

(ii) Let \(\max_{n \geq 1} \mathbb{E}[|\theta_{1n}|^{2+\epsilon_0}|T_n] < \infty \) for some \(\epsilon_0 > 0 \) and \(\frac{\Delta_n^{1/2}(\hat{\theta}_n)\sigma_n}{\sqrt{m}} \) tend to zero as \(n \to \infty \) and \(m \to \infty \), where \(0 < \sigma_n^2 \equiv \text{Var}[\theta_{1n}|T_n] + 2 \sum_{k=1}^{\infty} \gamma_n(k|T_n) < \infty \), where

\[
\gamma_n(k|T_n) = \mathbb{E}[^{\theta_{1n}}_1\theta_{1+k,n}|T_n] - \mathbb{E}[\theta_{1n}|T_n] \mathbb{E}[\theta_{1+k,n}|T_n].
\]

Assumption 3. \(\int_{\theta \in D_n} \theta f_n(\theta|T_n)d\theta = o_P(\Delta_n^{-1/2}(\hat{\theta}_n)) \) and \(\int_{\theta \in D_n} f_n(\theta|T_n)d\theta = o_P(\Delta_n^{-1/2}(\hat{\theta}_n)) \), where \(D_n = \{ \theta : \Delta_n^{1/2}(\hat{\theta}_n)\|\hat{\theta}_n - \theta\| \geq c \} \) for some positive \(c \).

Assumption 4. As \(n \to \infty \), \(\Delta_n^{1/2}(\hat{\theta}_n) \left(\hat{\theta}_n - \theta_0 \right) \to_d N(0, I_d) \), where \(I_d \) is the \(d \times d \) dimensional identity matrix.

Assumptions 1 and 3 are similar to those used by Phillips (1996), Phillips and Ploberger (1996), and Kim (1998). Assumption 1(i) is standard to ensure that \(l_n(\theta) \) is twice differentiable with respect to \(\theta \). It ensures that we can do Taylor expansion for \(l_n(\theta) \). Assumption 1(ii) is used to make sure that we can do Taylor expansion for \(\pi(\theta) \). Assumption 3 is another commonly used
one. For example, if the posterior density is a normal density, then \(\int_{\theta \in D_n} f_n(\theta|T_n) d\theta = o_P(n^{-1}) \) and \(\int_{\theta \in D_n} \theta f_n(\theta|T_n) d\theta = o_P(n^{-1}) \) and this assumption is automatically satisfied.

Assumption 2 basically requires that \(m \) going to infinity is faster than \(n \) going to infinity, and this simply reduces to requiring \(m \to \infty \) when \(\Delta_n(\hat{\theta}_n) \) is proportional to \(n \) and \(\sigma^2_n \) is proportional to \(n^{-1} \) in many cases. It has been pointed out that the geometric ergodicity assumption can be weakened to a polynomial ergodicity condition (see, for example, Corollaries 1 and 2 of Jones (2004)) without affecting the main results in Theorem 2 below. Assumption 4 imposes a general condition to allow that \(T_n \) is a vector of summary statistics of either independent, or stationary time series, or nonstationary time series. In either the independent or dependent stationary time series case, the asymptotic normality assumed in Assumption 4 holds trivially. As shown in Phillips (1996), Phillips and Ploberger (1996) and Kim (1998), Assumption 4 can be verified in the independent data as well as dependent stationary and nonstationary time series cases. In general, the asymptotic theory of the MLE is also available at Amemiya (1985), Fuller (1996) and Ling and Li (1998).

We now establish the main theorems of this paper.

Theorem 1. Under Assumptions 1–4, as \(n \to \infty \) and \(m \to \infty \), we have

\[
\Delta_n \left(\hat{\theta}_n \right) \left(\int_{C_n} f_n(\theta|T_n) d\theta - \frac{1}{\sqrt{2\pi}} \int_{-c}^c e^{-\frac{1}{2}u^2} du \right) \to_P \frac{\pi^{(2)}(\theta_0)}{2 \pi(\theta_0)} \cdot \frac{1}{\sqrt{2\pi}} \int_{-c}^c u^2 e^{-\frac{1}{2}u^2} du,
\]

(3.1)

where \(C_n = \{ \theta : \Delta_n^{1/2}(\hat{\theta}_n) \| \hat{\theta}_n - \theta \| \leq c \} \) for any positive \(c \), and \(\pi^{(2)}(\cdot) \) denotes the second-order derivative of \(\pi(\cdot) \).

Theorem 1 strengthens and complements existing results (see, for example, Walker (1969), Chen (1985) and Kim (1998)) with a fast rate of convergence. In many conventional cases, \(\Delta_n \left(\hat{\theta}_n \right) \) is proportional to \(n \). In such cases, the rate of convergence of \(\int_{C_n} f_n(\theta|T_n) d\theta \) to \(\frac{1}{\sqrt{2\pi}} \int_{-c}^c e^{-\frac{1}{2}u^2} du \) can be as fast as \(n^{-1} \).

Theorem 2. (i) Under Assumptions 1–4, as \(n \to \infty \) and \(m \to \infty \), we have

\[
\frac{\sqrt{m}}{\sigma_n} \left(\hat{\theta}_{mn} - \mathbb{E}[\theta|T_n] \right) \to_D N(0, I_d), \quad (3.2)
\]

\[
\Delta_n^{1/2}(\hat{\theta}_n) \left(\hat{\theta}_{mn} - \hat{\theta}_n \right) = o_P(1), \quad (3.3)
\]

\[
\Delta_n^{1/2}(\hat{\theta}_n) \left(\hat{\theta}_{mn} - \theta_0 \right) \to_D N(0, I_d), \quad (3.4)
\]

where \(\hat{\theta}_{mn} = \frac{1}{m} \sum_{j=1}^m \theta_{jn} \).
Let Assumptions 1, 2 and 4 hold. If we can strengthen Assumption 3 to $\int_{\theta \in \mathcal{D}} f_n(\theta | T_n) d\theta = o_P(\Delta_n^{-1}(\hat{\theta}_n))$ and $\int_{\theta \in \mathcal{D}} f_n(\theta | T_n) d\theta = o_P(\Delta_n^{-1}(\hat{\theta}_n))$, then equation (3.3) can be strengthened to

$$
\Delta_n(\hat{\theta}_n) \left(\hat{\theta}_{mn} - \hat{\theta}_n \right) \rightarrow_P \left(\frac{\pi^{(2)}(\theta_0)}{2\pi(\theta_0)} + 2\pi^{(1)}(\theta_0) \right) \cdot \frac{1}{\sqrt{2n}} \int_{|y| \leq c} y^2 e^{-y^2/2} dy
$$

(3.5)

when $\Delta_n(\hat{\theta}_n) \sigma_n \rightarrow_P 0$ as $m \rightarrow \infty$ and $n \rightarrow \infty$.

Equation (3.2) of Theorem 2 shows that the rate of convergence of $\hat{\theta}_{mn} - \mathbb{E}[\theta | T_n]$ to zero can be as fast as $\frac{1}{\sqrt{mn}}$ in the case where σ_n^2 is proportional to n^{-1}. Equation (3.3) also shows that the difference between $\hat{\theta}_{mn}$ and $\hat{\theta}_n$ is of an order higher than $\Delta_n^{-1/2}(\hat{\theta}_n)$. Equation (3.4) of Theorem 2 shows that asymptotic normality is achievable for the conditional mean estimator $\hat{\theta}_{mn}$ with a rate of convergence of an order of $\Delta_n^{-1/2}(\hat{\theta}_n)$. Equation (3.5) further shows that the rate of approximation between $\hat{\theta}_{mn}$ and $\hat{\theta}_n$ can be as fast as n^{-1}. To the best of our knowledge, both Theorem 1 and 2 contain new findings about the asymptotic consistency of the posterior density function with a rate of convergence in Theorem 1 and an asymptotic normality for the conditional mean estimator, $\hat{\theta}_{mn}$, in Theorem 2.

Before we give the proofs of Theorems 1 and 2 in the Appendix, we will evaluate the finite sample properties of the estimation method and its resulting theory in Sections 4 and 5 below.

4 Simulation

In this simulation study, we have two objectives. First, we examine the finite sample performance of the proposed conditional mean estimator through six simulated examples. Second, we investigate the convergence of $\int_{C_n} f_n(\theta | T_n) d\theta$ to $\int_{C_n} f_{\theta}(\theta) d\theta$ graphically, where

$$
C_n = \left\{ \theta : \Delta_n^{1/2}(\hat{\theta}_n) \| \hat{\theta}_n - \theta \| \leq c \right\}.
$$

The six simulated examples that we considered include a location model, a linear model, a random coefficient model, an AR(1) process, a GARCH model and a normal mixture density. For each simulated example, we consider sample sizes $n = 200, 600$ and 1200. For each sample size, we generate 1000 samples. Let $\theta_0 = (\theta_{10}, \theta_{20}, \cdots, \theta_{p0})^\top$ denote the true value of the unknown parameter vector $\theta = (\theta_1, \theta_2, \cdots, \theta_p)^\top$ and $\hat{\theta}_{mn} = (\hat{\theta}_{1,mn}, \hat{\theta}_{2,mn}, \cdots, \hat{\theta}_{p,mn})^\top$ denote the estimated parameter vector, where p denotes the dimension of the parameter vector.

Before we discuss how to evaluate the finite sample performance of $\hat{\theta}_n$ and $\hat{\theta}_{mn}$, we show how θ_0 is related to the moments of the original data as follows:

- In Example 1 below, θ_0 is the unconditional mean of $\mathbb{E}[x_1]$.

• In Example 2 below, \(\theta_0 = (\alpha_0, \beta_0)^\top \), where \(\beta_0 = \frac{\text{Cov}(x_1, y_1)}{\text{Var}(x_1)} \) and \(\alpha_0 = \mathbb{E}[y_1] - \frac{\text{Cov}(x_1, y_1)}{\text{Var}(x_1)} \mathbb{E}[x_1] \). Similar definitions can be given for \(\beta_0 \) involved in Example 3.

• In Example 4 below, \(\rho_0 = (\mathbb{E}[y_1^2])^{-1} \mathbb{E}[y_1 y_2] \).

• In Example 5 below, \(\theta_0 = (\theta_{10}, \theta_{20}, \theta_{30})^\top \) satisfies \(\theta_{10} = (1 - \theta_{20} - \theta_{30}) \mathbb{E}[y_1^2] \).

• In Example 6 below, \(\theta_0 = \frac{1}{2} \theta_{10} + \frac{1}{2} \theta_{20} \) represents the population mean of a mixture normal distribution.

To examine the finite sample performance of the estimation method, we compute the absolute biases (abs.bias), standard deviations (std) and the mean squared errors (mse) of \(\hat{\theta}_{k,mn} \), \(k = 1, 2, \ldots, p \), as follows:

\[
\text{abs.bias}_k = \frac{1}{1000} \sum_{r=1}^{1000} \left| \hat{\theta}_{k,mn}(r) - \theta_{k0} \right|, \quad \text{std}_k = \sqrt{\frac{1}{1000} \sum_{r=1}^{1000} (\hat{\theta}_{k,mn}(r) - \bar{\theta}_k)^2},
\]

\[
\text{mse}_k = \frac{1}{1000} \sum_{r=1}^{1000} (\hat{\theta}_{k,mn}(r) - \theta_{k0})^2,
\]

in which \(\hat{\theta}_{k,mn}(r) \) is the \(r \)-th replication of the \(k \)-th component, \(\hat{\theta}_{k,mn} \), of \(\hat{\theta}_{mn} \), and \(\bar{\theta}_k = \frac{1}{1000} \sum_{r=1}^{1000} \hat{\theta}_{k,mn}(r) \).

Example 1. Consider a location model given by

\[
x_i = \theta + e_i, \quad \text{for} \quad i = 1, 2, \ldots, n,
\]

where \(\theta \) follows a normal distribution \(N(\theta_0, 1) \) and \(e_i \) is assumed to be independent and identically distributed with the standard normal distribution. Here \(\theta \) and \(e_i \) are independent. For each replication, we generate \(\theta \) from \(N(\theta_0, 1) \) and generate \(e_i \) from \(N(0, 1) \) and then obtain \(x_i \) by \(x_i = \theta + e_i \), for \(i = 1, 2, \ldots, n \).

In this example, we choose \(\theta_0 = 0.8 \). So the density of \(\theta \), \(\pi(\theta) \), is given by

\[
\pi(\theta) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{(\theta - 0.8)^2}{2} \right).
\]

Given a sample \(X_n = (x_1, x_2, \ldots, x_n)^\top \), define \(T_n = \sum_{i=1}^{n} x_i \) and \(U_n = \sum_{i=1}^{n} x_i^2 \). Then the likelihood function can be written as

\[
L(\theta|T_n) = \left(\frac{1}{\sqrt{2\pi}} \right)^n \exp \left(-\frac{U_n - 2\theta T_n + n\theta^2}{2} \right).
\]

By definition, the conditional density of \(\theta \) given \(T_n \) is

\[
f_n(\theta|T_n) = \frac{\pi(\theta)L(\theta|T_n)}{\int \pi(\theta)L(\theta|T_n)d\theta}.
\]
Substitute (4.3) and (4.4) into (4.5). Then we can get

$$f_n(\theta|T_n) = \sqrt{\frac{n+1}{2\pi}} \exp \left(-\frac{(n+1)(\theta - \frac{T_n + 0.8}{n+1})^2}{2} \right).$$

(4.6)

The conditional mean of θ is then given by

$$\mathbb{E}[\theta|T_n] = \int \theta f_n(\theta|T_n) d\theta = \frac{T_n + 0.8}{n+1}.$$

We also considered the maximum likelihood estimator (MLE) of θ_0. For the r–th replication, $r = 1, 2, \cdots, 1000$, the maximum likelihood estimate of θ can be computed by

$$\hat{\theta}_n(r) = \frac{1}{n} \sum_{i=1}^{n} x_{i,r},$$

(4.7)

where $x_{i,r}$, for $i = 1, 2, \cdots, n$, is the random sample from the r–th replication.

We compute absolute bias, standard deviation and mean squared errors for both CME and MLE using (4.1). The results are presented in Table 1. From Table 1, we find that with the increase of sample size, the absolute bias, standard deviation and mean squared errors of the proposed conditional mean estimator decrease. This indicates that the proposed conditional mean estimator has very good finite sample performance. In addition, by comparing the results of CME and MLE, we can find that CME and MLE have similar performance in terms of absolute bias, standard deviation and mean squared errors.

Table 1: Absolute bias, standard deviation and mean squared error of CME and MLE for θ in the location model based on 1000 replications.

| | n | $\mathbb{E}[\theta|T_n]$ | $\hat{\theta}_n$ |
|-----|-------|--------------------------|------------------|
| abs.bias | 200 | 0.0781 | 0.0785 |
| | 600 | 0.0469 | 0.0470 |
| | 1200 | 0.0324 | 0.0325 |
| std | 200 | 0.0984 | 0.0989 |
| | 600 | 0.0581 | 0.0582 |
| | 1200 | 0.0407 | 0.0408 |
| mse | 200 | 0.0097 | 0.0098 |
| | 600 | 0.0034 | 0.0034 |
| | 1200 | 0.0017 | 0.0017 |
From (4.6), it is easy to see that the conditional distribution of θ given T_n is a normal distribution with mean $\frac{T_n + 0.8}{n+1}$ and variance $\frac{1}{n+1}$.

We compare $\int_{C_n} f_n(\theta | T_n) d\theta$ with $\frac{1}{\sqrt{2\pi}} \int_{-c}^{c} e^{-\frac{1}{2}u^2} du$ graphically for the case of $c = 1.0$, where $C_n = \left\{ \theta : \Delta_n^{1/2}(\hat{\theta}_n) | \hat{\theta}_n - \theta | \leq c \right\}$. Based on the first replication, we produce the plots for the shaded area of $S = 0.6827$ and those for $\int_{C_n} f_n(\theta | T_n) d\theta$ in Figure 1. Note that this is only based on one replication.

Example 2. Consider a linear regression model of the form

$$y_i = \alpha + \beta x_i + e_i, \quad \text{for } i = 1, 2, \cdots, n, \quad (4.8)$$

where α and β are random parameters, and the error term e_i is assumed to be independent and identically distributed with the standard normal distribution.

In this study, x_i is generated from a stationary AR(1) process $x_i = 0.5x_{t-1} + u_t$ with u_t being generated from the standard normal distribution. We generate α from $N(1.0, 1.0)$ and β
from $N(2.5, 1.0)$. So the densities of α and β are given by

$$
\pi(\alpha) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\alpha - 1)^2}{2}\right) \quad \text{and} \quad \pi(\beta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\beta - 2.5)^2}{2}\right). \tag{4.9}
$$

Given a sample $X_n = (x_1, x_2, \ldots, x_n)^\top$ and $Y_n = (y_1, y_2, \ldots, y_n)^\top$.

Define $T_n = (T_{x1}, T_{x2}, T_{y1}, T_{y2}, T_{xy})^\top$, where $T_{x1} = \sum_{i=1}^n x_i$, $T_{x2} = \sum_{i=1}^n x_i^2$, $T_{y1} = \sum_{i=1}^n y_i$, $T_{y2} = \sum_{i=1}^n y_i^2$ and $T_{xy} = \sum_{i=1}^n x_i y_i$.

The likelihood function can be written as

$$
L(\alpha, \beta|T_n) = \left(\frac{1}{\sqrt{2\pi}}\right)^n \exp\left(-\frac{T_{y2} + \beta^2 T_{x2} - 2\beta T_{xy} + 2\alpha \beta T_{x1} - 2\alpha T_{y1} + n\alpha^2}{2}\right). \tag{4.10}
$$

By definition, the conditional density of $\theta = (\alpha, \beta)^\top$ given T_n is

$$
f_n(\theta|T_n) = \frac{\pi(\alpha) \pi(\beta) L(\alpha, \beta|T_n)}{\iint \pi(\alpha) \pi(\beta) L(\alpha, \beta|T_n) d\alpha d\beta} = \frac{1}{2\pi \sqrt{|\Sigma|}} \exp\left(-(\theta - \mu_\theta)^\top \Sigma^{-1}(\theta - \mu_\theta)\right), \tag{4.11}
$$

where $1/|\Sigma| = (n+1)(1+T_{x2}) - T_{x1}^2$ and

$$
\Sigma^{-1} = \begin{pmatrix} n+1 & T_{x1} \\ T_{x1} & 1+T_{x2} \end{pmatrix}, \quad \mu_\theta = \begin{pmatrix} \mu_\alpha \\ \mu_\beta \end{pmatrix} = \begin{pmatrix} \frac{1+T_{y1}-\mu_\beta T_{x1}}{n+1} \\ \frac{(T_{x2}+2.5)(n+1)-T_{x1}(T_{y1}+1)}{(1+T_{x2})(n+1)-T_{x1}^2} \end{pmatrix}. \tag{4.12}
$$

The maximum likelihood estimators of β_0 and α_0 are given by

$$
\hat{\beta}_n = (X_n^\top X_n)^{-1} X_n^\top Y_n \quad \text{and} \quad \hat{\alpha}_n = \bar{y} - \hat{\beta}_n \bar{x}, \tag{4.13}
$$

respectively, where $\bar{y} = \frac{1}{n} \sum_{i=1}^n y_i$ and $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$.

Then we compute the absolute bias, standard deviation and mean squared errors for CME and MLE using (4.1). The results are presented in Table 2. From Table 2, we find that with the increase of sample size, the absolute bias, standard deviation and mean squared errors of the proposed estimator decrease. This indicates that the proposed conditional mean estimator has very good finite sample performance. In addition, we find that the CME and MLE have similar performance.

From (4.11), we can see that the conditional distribution of β given T_n is a normal distribution with mean μ_β and variance $\frac{1}{1+T_{x2}}$, and the conditional distribution of α given T_n is a normal distribution with mean μ_α with variance $\frac{1}{n+1}$.

Let $c = 1.0$. Based on the first replication, we produce the plots to visually see the change of $\int_{C_{\alpha}} f_n(\alpha|T_n)d\alpha$ and $\int_{C_{\beta}} f_n(\beta|T_n)d\beta$ with the increase of sample size in Figure 2, where $C_{\alpha} = \left\{ \alpha : \Delta_n^{1/2}(\hat{\alpha}_n)|\hat{\alpha}_n - \alpha| \leq c \right\}$ and $C_{\beta} = \left\{ \beta : \Delta_n^{1/2}(\hat{\beta}_n)|\hat{\beta}_n - \beta| \leq c \right\}$.
Figure 2: Plots of $\int_{C_{\alpha}} f_n(\alpha|T_n) d\alpha$ (the upper panel with sample sizes $n=200, 600, 1200$), $\int_{C_{\beta}} f_n(\beta|T_n) d\beta$ (the middle panel with sample sizes $n=200, 600, 1200$) and $\frac{1}{\sqrt{2\pi}} \int_{-c}^{c} e^{-\frac{1}{2}u^2} du$.

standard normal

Benchmark: $S=0.6827$
Table 2: Absolute bias, standard deviation and mean squared error of CME and MLE for parameters in a linear regression model based on 1000 replications.

<table>
<thead>
<tr>
<th></th>
<th>CME</th>
<th>MLE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>$E[\alpha</td>
<td>T_n]$</td>
</tr>
<tr>
<td>abs.bias</td>
<td>200</td>
<td>0.1060</td>
<td>0.1121</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>0.0586</td>
<td>0.0628</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>0.0404</td>
<td>0.0486</td>
</tr>
<tr>
<td>std</td>
<td>200</td>
<td>0.1326</td>
<td>0.1421</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>0.0745</td>
<td>0.0774</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>0.0505</td>
<td>0.0606</td>
</tr>
<tr>
<td>mse</td>
<td>200</td>
<td>0.0176</td>
<td>0.0202</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>0.0056</td>
<td>0.0060</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>0.0026</td>
<td>0.0037</td>
</tr>
</tbody>
</table>

Example 3. Consider a random coefficient model with one explanatory variable given by

$$y_i = \beta_i x_i + e_i, \quad \text{for } i = 1, 2, \ldots, n,$$

(4.14)

where $\beta_i = \beta + 0.5u_i$ with u_i being from the standard normal distribution, and e_i follows the standard normal distribution, in which $\{u_i\}_{i=1}^n$ and $\{e_i\}_{i=1}^n$ are assumed to be independent.

Model (4.14) can be written as

$$y_i = \beta x_i + v_i,$$

(4.15)

where $v_i = 0.5x_i u_i + e_i$. It is easy to see that $E[v_i] = 0$ and $E[v_i^2] = 0.25x_i^2 + 1$. In this example, we generate β from a normal distribution $\mathcal{N}(1.5, 1)$. So the density of β, $\pi(\beta)$, is given by

$$\pi(\beta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\beta - 1.5)^2}{2}\right).$$

(4.16)

Let $Y_n = (y_1, y_2, \ldots, y_n)^\top$ and $X_n = (x_1, x_2, \ldots, x_n)^\top$. Let T_n be the generalised least squares (GLS) estimator of β, which is given by

$$T_n = (X_n^\top D^{-1} X_n)^{-1} X_n^\top D^{-1} Y_n,$$

(4.17)

where $D = \text{diag}\{E[v_1^2], E[v_2^2], \ldots, E[v_n^2]\}$.

We approximate the conditional density of T_n given β by its limiting distribution $f(T_n|\beta)$, which is a normal distribution with mean β and variance $\sigma^2 = (\sum_{i=1}^n x_i^2 (0.25x_i^2 + 1)^{-1})^{-1}$.

By definition, the conditional density of β given T_n is

$$f_n(\beta|T_n) = \frac{f(T_n|\beta)\pi(\beta)}{\int f(T_n|\beta)\pi(\beta)d\beta}.$$
It is easy to show that

\[f_n(\beta|T_n) = \sqrt{\frac{1 + \sigma^2}{2\pi\sigma^2}} \exp \left(-\frac{(1 + \sigma^2)(\beta - \frac{T_n + 1.5\sigma^2}{1 + \sigma^2})^2}{2\sigma^2} \right). \] (4.18)

The conditional mean of \(\beta \) is then given by

\[\mathbb{E}[\beta|T_n] = \int \beta f_n(\beta|Y_n) \, d\beta = \frac{T_n + 1.5\sigma^2}{1 + \sigma^2}. \]

The maximum likelihood estimator of \(\beta_0 \) can be obtained by maximizing the following likelihood function

\[L(\beta|Y_n, X_n) = \frac{1}{\prod_{i=1}^{n} \sqrt{2\pi(0.25x_i^2 + 1)}} \exp \left(-\frac{1}{2} \sum_{i=1}^{n} \frac{(y_i - x_i\beta)^2}{0.25x_i^2 + 1} \right). \] (4.19)

The resulting estimate is denoted as \(\hat{\beta}_n \). The results of the absolute bias, standard deviation and mean squared errors of CME and MLE are presented in Table 3. From Table 3, we find that with the increase of sample size, the absolute bias, standard deviation and mean squared errors of the proposed estimator decrease. This indicates that the proposed conditional mean estimator has very good finite sample performance. In addition, by comparing the results of CME and MLE, we can find that CME and MLE have similar performance in terms of absolute bias, standard deviation and mean squared errors.

Table 3: Absolute bias, standard deviation and mean squared error of CME and MLE for \(\beta \) in the random coefficient regression model based on 1000 replications.

<table>
<thead>
<tr>
<th>(n)</th>
<th>CME</th>
<th>MLE</th>
<th>GLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs.bias</td>
<td>(\mathbb{E}[\beta</td>
<td>T_n])</td>
<td>(\hat{\beta}_n)</td>
</tr>
<tr>
<td>200</td>
<td>0.098238</td>
<td>0.098890</td>
<td>0.098889</td>
</tr>
<tr>
<td>600</td>
<td>0.057195</td>
<td>0.057339</td>
<td>0.057321</td>
</tr>
<tr>
<td>1200</td>
<td>0.040029</td>
<td>0.040074</td>
<td>0.040073</td>
</tr>
<tr>
<td>std</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.124469</td>
<td>0.125299</td>
<td>0.125294</td>
</tr>
<tr>
<td>600</td>
<td>0.071303</td>
<td>0.071474</td>
<td>0.071460</td>
</tr>
<tr>
<td>1200</td>
<td>0.049653</td>
<td>0.049720</td>
<td>0.049708</td>
</tr>
<tr>
<td>mse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.015463</td>
<td>0.015670</td>
<td>0.015669</td>
</tr>
<tr>
<td>600</td>
<td>0.005104</td>
<td>0.005128</td>
<td>0.005126</td>
</tr>
<tr>
<td>1200</td>
<td>0.002471</td>
<td>0.002478</td>
<td>0.002477</td>
</tr>
</tbody>
</table>

From (4.18), it is clear that the conditional distribution of \(\beta \) given \(T_n \) is a normal distribution with mean \(\frac{T_n + 1.5\sigma^2}{1 + \sigma^2} \) and variance \(\frac{\sigma^2}{1 + \sigma^2} \).
Figure 3: Plots of $\int_{C_n} f_n(\beta | T_n) d\beta$ (the upper panel with sample sizes $n=200$, 600, 1200) and $\frac{1}{\sqrt{2\pi}} \int_{-c}^{c} e^{-\frac{1}{2}u^2} du$.

Unlike Examples 1–3, we cannot obtain any closed forms for $f_n(\theta | T_n)$ and the conditional cumulative distribution function $F_n(\theta | T_n)$ in Examples 4 and 5 below. In those examples, $F_n(\theta | T_n)$ is approximated by

$$
\hat{F}_n(\theta | T_n) = \frac{1}{m} \sum_{j=1}^{m} \Phi \left(\frac{\hat{\theta}_{jn} - \theta}{h} \right),
$$

where $\Phi(\cdot)$ denotes the distribution function of the standard normal distribution. The bandwidth h is obtained by using the normal reference rule $h = 1.06 \sigma_\theta m^{-1/5}$, where σ_θ denotes the standard deviation of simulated draws $\{\hat{\theta}_{jn}, j = 1, 2, \cdots, m\}$.

The conditional density function $f_n(\theta | T_n)$ is approximated by a kernel density estimator $\hat{f}_n(\theta | T_n)$ with the form of

$$
\hat{f}_n(\theta | T_n) = \frac{1}{mh} \sum_{j=1}^{m} \phi \left(\frac{\hat{\theta}_{jn} - \theta}{h} \right),
$$

where h is bandwidth and $\phi(\cdot)$ is the density function of the standard normal distribution. The choice of h is same as that in (4.20).
Based on the first replication, Figure 3 shows the finite sample behaviour of $\int_{C_n} \tilde{f}_n(\beta|T_n)d\beta$ for the case of $c = 1$, where $C_n = \{ \beta : \Delta_n^{1/2}(\tilde{\beta}_n - \beta) \leq c \}$.

Example 4. Consider an autoregressive model of the form

$$y_t = \rho y_{t-1} + e_t,$$

(4.21)

where ρ is random with expectation $\rho_0 = 1$, $y_0 = O_P(1)$, and $\{e_t\}$ is a sequence of independent and identically distributed random errors with $E[e_1] = 0$ and $E[e_1^2] = 1$.

We generate data from (4.21) with ρ being generated from an uniform distribution $U(0.9, 1.1)$, which implies that y_t is nearly nonstationary when $0.9 < \rho < 1.0$ and nonstationary when $\rho \geq 1$.

We generate e_t from the standard normal distribution. We set $y_0 = 1$.

Given a sample $Y_n = (y_1, y_2, \cdots, y_n)\top$. Define $T_n = (T_{n1}, T_{n2}, T_{n3})\top$, where $T_{n1} = \sum_{t=1}^{n} y_t^2$, $T_{n2} = \sum_{t=1}^{n} y_t y_{t-1}$ and $T_{n3} = \sum_{t=1}^{n} y_{t-1}^2$.

The likelihood function can be written as

$$L(\rho|T_n) = \left(\frac{1}{\sqrt{2\pi}} \right)^n \exp \left(-\frac{T_{n1} - 2\rho T_{n2} + \rho^2 T_{n3}}{2} \right).$$

By definition, the conditional density of ρ given T_n is

$$f_n(\rho|T_n) = \frac{\pi(\rho) L(\rho|T_n)}{\int \pi(\rho) L(\rho|T_n) d\rho}.$$

The conditional mean of ρ is then given by $\mathbb{E}[\rho|T_n] = \int \rho f_n(\rho|T_n) d\rho$.

For the r–th replication, $r = 1, 2, \cdots, 1000$, we use the random–walk Metropolis algorithm to sample ρ from $f_n(\rho|T_n)$. We record ρ at each iteration after the burn–in period to obtain the sequence $\{\rho_{jn}(r)\}$, for $j = 1, 2, \cdots, 10,000$. Then the conditional mean estimate will be the ergodic mean of each recorded chain given by

$$\hat{\rho}_{mn}(r) = \frac{1}{m} \sum_{j=1}^{m} \rho_{jn}(r),$$

where $m = 10,000$.

Then we compute the absolute bias, standard deviation and mean squared errors using (4.1). We also compare the finite sample performance of our estimate with the MLE of the form

$$\hat{\rho}_n = \left(\sum_{t=1}^{n} y_{t-1}^2 \right)^{-1} \sum_{t=1}^{n} y_{t-1} y_t.$$

The results are presented in Table 4. From Table 4, we find that with the increase of sample size, the absolute bias, standard deviation and mean squared errors of the proposed estimator decrease. This indicates that the proposed conditional mean estimator has very good finite
sample performance. In addition, the performance of estimates of \(\rho \) by MLE and CME are very close.

Table 4: Absolute bias, standard deviation and mean squared error of CME and MLE for the parameter \(\rho \) in AR(1) model based on 1000 replications.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\hat{\rho}_{mn})</th>
<th>(\hat{\rho}_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs.bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.01264</td>
<td>0.01275</td>
</tr>
<tr>
<td>600</td>
<td>0.00532</td>
<td>0.00544</td>
</tr>
<tr>
<td>1200</td>
<td>0.00377</td>
<td>0.00372</td>
</tr>
</tbody>
</table>

std		
200	0.01631	0.01661
600	0.00583	0.00605
1200	0.00351	0.00347

mse		
200	0.00036	0.00038
600	0.00005	0.00006
1200	0.00002	0.00002

Figure 4: Plots of \(\int_{C_n} \tilde{f}_n(\rho|T_n) \) (the upper panel with sample sizes \(n=200, 600, 1200 \)) and \(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}u^2} du \).
Based on the first replication, we produce the plots to visually see the change of \(\int_{C_n} \hat{f}_n(\rho|T_n) d\rho \) for the case of \(c = 1 \), where \(C_n = \left\{ \rho : \Delta_n^{1/2}(\hat{\rho}_n)|\hat{\rho}_n - \rho| \leq c \right\} \). The finite sample closeness can be seen from Figure 4.

Example 5. A GARCH (1,1) model with Gaussian innovations can be written as

\[
y_t = c_t \sigma_t, \quad c_t \sim N(0, 1), \quad t = 1, 2, \ldots, n,
\]

\[
\sigma_t^2 = \theta_1 + \theta_2 y_{t-1}^2 + \theta_3 \sigma_{t-1}^2,
\]

where \(\theta_1 > 0, \theta_2, \theta_3 \geq 0, \theta_2 + \theta_3 < 1 \). Note that the restrictions on the GARCH parameters \(\theta_1, \theta_2 \) and \(\theta_3 \) guarantee positivity of the conditional variance \(\sigma_t^2 \) and make sure that the series \(y_t \) is covariance stationary. In this model, we assume \(\theta = (\theta_1, \theta_2, \theta_3) \) is random.

We generate data from the GARCH model with \(\theta_1 \) being generated from an uniform distribution \(U(0.01, 1) \), \(\theta_3 \) from \(U(0, 1) \) and \(\theta_2 \) from \(U(0, 1 - \theta_3) \), respectively.

For this GARCH model, we choose the summary statistics \(T_n \) to be the maximum likelihood estimates of \(\theta \). As the exact closed form of conditional density of \(T_n \) given \(\theta \) is unknown, we use its limiting distribution \(f(T_n|\theta) \), which is a normal distribution with mean \(\theta \) and covariance matrix \(\Sigma_\theta \), in which \(\Sigma_\theta \) can be computed using the method proposed by Ma (2008).

By definition, the conditional density of \(\theta \) given \(T_n \) is

\[
f_n(\theta|T_n) = \frac{\pi(\theta_1) \pi(\theta_2) \pi(\theta_3) f(T_n|\theta)}{\int \int \int \pi(\theta_1) \pi(\theta_2) \pi(\theta_3) f(T_n|\theta) d\theta_1 d\theta_2 d\theta_3}.
\]

The conditional mean of \(\theta \) is then given by \(\mathbb{E}[\theta|T_n] = \int \theta f_n(\theta|T_n) d\theta \).

For the \(r \)-th replication, \(r = 1, 2, \ldots, 1000 \), we use the random–walk Metropolis algorithm to sample \((\theta_1, \theta_2, \theta_3)^T \) from \(f_n(\theta|T_n) \). We record \(\theta_1, \theta_2 \) and \(\theta_3 \) at each iteration after the burn–in period to obtain sequences \(\{\theta_{1,jn}(r)\} \), \(\{\theta_{2,jn}(r)\} \) and \(\{\theta_{3,jn}(r)\} \), for \(j = 1, 2, \ldots, m \). In this study, \(m = 10,000 \). Then the conditional mean estimates will be the ergodic mean of each recorded chain given by

\[
\hat{\theta}_{1,mn}(r) = \frac{1}{m} \sum_{j=1}^{m} \theta_{1,jn}(r), \quad \hat{\theta}_{2,mn}(r) = \frac{1}{m} \sum_{j=1}^{m} \theta_{2,jn}(r) \quad \text{and} \quad \hat{\theta}_{3,mn}(r) = \frac{1}{m} \sum_{j=1}^{m} \theta_{3,jn}(r).
\]

Then we compute the absolute bias, standard deviation and mean squared errors using (4.1).

We also compute the overall absolute bias and standard deviation for \(\theta_2 \) and \(\theta_3 \) together as follows. Define \(\theta_{23} = (\theta_2, \theta_3)^T \) and \(\hat{\theta}_{23} = (\hat{\theta}_{2,mn}, \hat{\theta}_{3,mn})^T \).

\[
\text{abs.bias}_{\theta_{23}} = \frac{1}{1000} \sum_{r=1}^{1000} \left| \hat{\theta}_{2,mn}(r) - \theta_{23} \right| + \frac{1}{1000} \sum_{r=1}^{1000} \left| \hat{\theta}_{3,mn}(r) - \theta_{30} \right|
\]
std\(\theta_{23} = \sqrt{\sum_{i,j} \sigma_{ij}^2}\), where \(\sigma_{ij}^2 = \text{cov}(\theta_i, \theta_j)\), for \(i, j = 2, 3\),

\[\text{mse}_{\theta_{23}} = \frac{1}{1000} \sum_{r=1}^{1000} (\hat{\theta}_{2,mn}(r) - \theta_{20})^2 + \frac{1}{1000} \sum_{r=1}^{1000} (\hat{\theta}_{3,mn}(r) - \theta_{30})^2.\]

We also compare the performance of CME with that of maximum likelihood estimator of \(\theta\). The results of parameter estimates are presented in Table 5. From Table 5, we find that with the increase of sample size, the absolute bias, standard deviation and mean squared errors of the proposed estimator decrease. This indicates that the proposed conditional mean estimator has very good finite sample performance. In addition, we find that CME has slightly better performance than MLE in terms of the absolute bias, standard deviation and mean squared errors.

Table 5: Absolute bias, standard deviation and mean squared error of CME and MLE for parameters in GARCH (1,1) model based on 1000 replications.

<table>
<thead>
<tr>
<th></th>
<th>CME</th>
<th>MLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n) (\hat{\theta}{1,mn}) (\hat{\theta}{2,mn}) (\hat{\theta}{3,mn}) (\hat{\theta}{23,mn})</td>
<td>(\hat{\theta}{1,n}) (\hat{\theta}{2,n}) (\hat{\theta}{3,n}) (\hat{\theta}{23,n})</td>
</tr>
<tr>
<td>abs.bias</td>
<td>200 0.1698 0.0893 0.1501 0.2394</td>
<td>0.2456 0.1171 0.2030 0.3202</td>
</tr>
<tr>
<td></td>
<td>600 0.1064 0.0614 0.0875 0.1489</td>
<td>0.1476 0.0717 0.1180 0.1896</td>
</tr>
<tr>
<td></td>
<td>1200 0.0915 0.0414 0.0710 0.1123</td>
<td>0.1000 0.0584 0.0899 0.1483</td>
</tr>
<tr>
<td>std</td>
<td>200 0.1906 0.0899 0.1739 0.1240</td>
<td>0.3045 0.1402 0.2262 0.1861</td>
</tr>
<tr>
<td></td>
<td>600 0.1239 0.0783 0.1191 0.0890</td>
<td>0.1891 0.0726 0.1312 0.1108</td>
</tr>
<tr>
<td></td>
<td>1200 0.1116 0.0497 0.0870 0.0735</td>
<td>0.1263 0.0537 0.0910 0.0729</td>
</tr>
<tr>
<td>mse</td>
<td>200 0.0451 0.0109 0.0330 0.0439</td>
<td>0.1035 0.0226 0.0640 0.0866</td>
</tr>
<tr>
<td></td>
<td>600 0.0176 0.0061 0.0141 0.0202</td>
<td>0.0399 0.0082 0.0248 0.0330</td>
</tr>
<tr>
<td></td>
<td>1200 0.0133 0.0025 0.0077 0.0102</td>
<td>0.0180 0.0052 0.0131 0.0184</td>
</tr>
</tbody>
</table>

Based on the first replication, we produce the plots for \(\int_{C_{n1}} \hat{f}_n(\theta_1| T_n) d\theta_1\), \(\int_{C_{n2}} \hat{f}_n(\theta_2| T_n) d\theta_2\) and \(\int_{C_{n3}} \hat{f}_n(\theta_3| T_n) d\theta_3\) with sample size 1200 in Figure 5, where \(C_{ni} = \left\{ \theta_i : n^{1/2} |\hat{\theta}_{i,n} - \theta_i| \leq c \right\}\), for \(i = 1, 2, 3\). We can see that when sample size is large, \(\int_{C_{ni}} \hat{f}_n(\theta_i| T_n) d\theta_i\) is quite close to \(\frac{1}{\sqrt{2\pi}} \int_{-c}^{c} e^{-\frac{1}{2}u^2} du\) for the case of \(c = 1\).
Figure 5: Plots of $\int C_{ni} \hat{f}_n(\theta_i|T_n) d\theta_i$ (from left to right in the upper panel, i=1,2,3, respectively) and $\frac{1}{\sqrt{2\pi}} \int_c^c e^{-\frac{1}{2}u^2} du$.

We then consider the final simulated example, in which we consider the case where it is difficult to obtain an easily computable MLE, while it is easy to compute $\hat{\theta}_{mn}$.

Example 6. Consider a mixture of two normal distributions with the density function given by $f(x|\theta) = w_1 \phi(x|\mu_1, \sigma_1^2) + w_2 \phi(x|\mu_2, \sigma_2^2)$. Let $w_1 = w_2 = 0.5$ and $\sigma_1^2 = \sigma_2^2 = 1$ for the two normal components, which means that we generate x from $N(\mu_1, 1)$ with probability 0.5 and generate x from $N(\mu_2, 1)$ with probability 0.5. So in one sample, we have n_1 observations $\{x_{1i}\}_{i=1}^{n_1}$ from $N(\mu_1, 1)$ and n_2 observations $\{x_{2i}\}_{i=n_1+1}^{n}$ from $N(\mu_2, 1)$. Let $n = n_1 + n_2$. We generate μ_1 from $N(-3, 1)$ and μ_2 from $N(3, 1)$. So the densities of μ_1 and μ_2 are given by

$$
\pi(\mu_1) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\mu_1 + 3)^2}{2}\right) \quad \text{and} \quad \pi(\mu_2) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\mu_2 - 3)^2}{2}\right).
$$

Denote $\theta = (\mu_1, \mu_2)^T$. Define $T_n = (T_{n1}, T_{n2})^T$, where $T_{n1} = \frac{1}{n_1} \sum_{i=1}^{n_1} x_{1i}$ and $T_{n2} = \frac{1}{n_2} \sum_{i=n_1+1}^{n} x_{2i}$. Define $U_n = (U_{n1}, U_{n2})^T$, where $U_{n1} = \frac{1}{n_1} \sum_{i=1}^{n_1} x_{1i}^2$ and $U_{n2} = \frac{1}{n_2} \sum_{i=n_1+1}^{n} x_{2i}^2$. Then the likelihood function can be written as

$$
L(\theta|T_n) = \left(\frac{1}{\sqrt{2\pi}}\right)^n \exp\left(-\frac{n_1 U_{n1} + n_2 U_{n2}}{2}\right) \exp\left(-\frac{n_1 \mu_1^2 - 2 \mu_1 n_1 T_{n1}}{2}\right) \exp\left(-\frac{n_2 \mu_2^2 - 2 \mu_2 n_2 T_{n2}}{2}\right).
$$
By definition, the conditional density of θ given T_n is

$$f_n(\theta|T_n) = \frac{\pi(\theta)L(\theta|T_n)}{\int \pi(\theta)L(\theta|T_n)d\theta}. \quad (4.24)$$

Substitute (4.22) and (4.23) into (4.24), then we can get the conditional distribution of μ_1, μ_2 given T_n as follows.

$$\mu_1|T_n \sim N\left(\frac{n_1T_{n_1} - 3}{n_1 + 1}, \frac{1}{n_1 + 1}\right) \text{ and } \mu_2|T_n \sim N\left(\frac{n_2T_{n_2} + 3}{n_2 + 1}, \frac{1}{n_2 + 1}\right).$$

The conditional mean of μ_1 and μ_2 is then given by

$$E[\mu_1|T_n] = \frac{n_1T_{n_1} - 3}{n_1 + 1} \text{ and } E[\mu_2|T_n] = \frac{n_2T_{n_2} + 3}{n_2 + 1}.$$

The maximum likelihood estimators of μ_1 and μ_2 are given by $\hat{\mu}_{1n} = T_{n_1}$ and $\hat{\mu}_{2n} = T_{n_2}$. We then compute the absolute bias, standard deviation and mean squared errors for CME and MLE using (4.1). The results are presented in Table 6. From Table 6, we find that with the increase of sample size, the absolute bias, standard deviation and mean squared errors of the proposed estimator decrease. This indicates that the proposed conditional mean estimator has very good finite sample performance. We also find that the CME and MLE have similar performance.

Table 6: Absolute bias, standard deviation and mean squared error of CME and MLE for parameters in a normal mixture density based on 1000 replications.

<table>
<thead>
<tr>
<th></th>
<th>CME</th>
<th>MLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$E[\mu_1</td>
<td>T_n]$</td>
</tr>
<tr>
<td>200</td>
<td>0.1109</td>
<td>0.1043</td>
</tr>
<tr>
<td>abs.bias</td>
<td>0.0625</td>
<td>0.0672</td>
</tr>
<tr>
<td>1200</td>
<td>0.0442</td>
<td>0.0457</td>
</tr>
<tr>
<td>600</td>
<td>0.1386</td>
<td>0.1305</td>
</tr>
<tr>
<td>std</td>
<td>0.0786</td>
<td>0.0836</td>
</tr>
<tr>
<td>1200</td>
<td>0.0566</td>
<td>0.0567</td>
</tr>
<tr>
<td>200</td>
<td>0.0192</td>
<td>0.0171</td>
</tr>
<tr>
<td>mse</td>
<td>0.0062</td>
<td>0.0070</td>
</tr>
<tr>
<td>1200</td>
<td>0.0032</td>
<td>0.0032</td>
</tr>
</tbody>
</table>

21
For \(c = 1.0 \) and \(i = 1, 2 \), recall \(C_{n\mu_i} = \left\{ \mu_i : \Delta_n^{1/2}(\hat{\mu}_i)\Delta_n^{1/2}(\mu_i) \leq c \right\} \). Based on the first replication, we produce the plots to compare \(\int_{C_{n\mu_i}} f_n(\mu_i|T_n) d\mu_i \) with and \(\frac{1}{\sqrt{2\pi}} \int_{-c}^{c} e^{-\frac{1}{2}u^2} du \) graphically in Figure 6.

Figure 6: Plots of \(\int_{C_{n\mu_1}} f_n(\mu_1|T_n) d\mu_1 \) (the upper panel with sample sizes \(n=200, 600, 1200 \)), \(\int_{C_{n\mu_2}} f_n(\mu_2|T_n) d\mu_2 \) (the middle panel with sample sizes \(n=200, 600, 1200 \)) and \(\frac{1}{\sqrt{2\pi}} \int_{-c}^{c} e^{-\frac{1}{2}u^2} du \).
5 Application

In this section, we use our conditional mean estimator to estimate a GARCH (1,1) model for S&P 500 daily stock return. We downloaded the S&P 500 daily closing prices, \(p_t \), during the period from 2 January 2002 to the 9 December 2009 from `http://finance.yahoo.com`. The date \(t \) return is calculated as \(r_t = \log(p_t/p_{t-1}) \), and there are \(T = 2000 \) observations of the return. The time series plot of the return series is presented in Figure 7.

We fit a GARCH (1,1) model for the demeaned log–returns \(\{y_t\} \) given as follows, where \(y_t = r_t - \frac{1}{T} \sum_{t=1}^{T} r_t, y_t = e_t \sigma_t \) and \(\sigma_t^2 = \theta_1 + \theta_2 y_{t-1}^2 + \theta_3 \sigma_{t-1}^2 \), in which \(\theta_1 > 0, \theta_2, \theta_3 \geq 0, \theta_2 + \theta_3 < 1 \). Note that the restrictions on the GARCH parameters \(\theta_1, \theta_2 \) and \(\theta_3 \) guarantee positivity of the conditional variance and the log–return series is covariance stationary.

Let \(\theta = (\theta_1, \theta_2, \theta_3)^\top \). By using quasi–maximum likelihood estimation method, we obtain the estimates of \(\theta \), \(\hat{\theta}_n = (0.0000, 0.0651, 0.9282)^\top \). Use the estimation procedure outlined in Example 5 in simulation studies, we obtain the conditional mean estimates of \(\theta \), \(\hat{\theta}_{mn} = (0.0166, 0.069, 0.7733)^\top \). As a by–product of conditional mean estimation, we produce the kernel density estimates of conditional density of \(\theta_1, \theta_2 \) and \(\theta_3 \) in Figure 8.

Figure 7: Time series plot of S&P 500 daily returns.
Figure 8: Kernel density estimates of conditional density function of θ given T_n. From left to right, we have $f(\theta_1|T_n)$, $f(\theta_2|T_n)$ and $f(\theta_3|T_n)$.

Figure 9: Kernel density estimates of return on 10 December 2009 with CME and QMLE.
Based on the parameter estimates $\hat{\theta}_{mn}$ and $\hat{\theta}_n$, we estimate the density of return on 10 December 2009 using kernel estimation method:

$$
\hat{f}(y|\hat{\theta}_{mn}) = \frac{1}{T h \hat{\sigma}_{T+1}(\hat{\theta}_{mn})} \sum_{t=1}^{T} K \left(\frac{y/\hat{\sigma}_{T+1}(\hat{\theta}_{mn}) - y_t/\hat{\sigma}_t(\hat{\theta}_{mn})}{h} \right),
$$

$$
\hat{f}(y|\hat{\theta}_n) = \frac{1}{T h \hat{\sigma}_{T+1}(\hat{\theta}_n)} \sum_{t=1}^{T} K \left(\frac{y/\hat{\sigma}_{T+1}(\hat{\theta}_n) - y_t/\hat{\sigma}_t(\hat{\theta}_n)}{h} \right),
$$

where $K(\cdot)$ is chosen to be the Gaussian kernel function and h is selected by normal reference rule. The density estimates are displayed in Figure 9, from which we can find that $\hat{f}(y|\hat{\theta}_{mn})$ and $\hat{f}(y|\hat{\theta}_n)$ have different characteristics at the peak and tail areas.

As in practice, the true data generating process is unknown, we cannot tell which method is better just based on these estimation results. In the following discussion, we evaluate our conditional mean method and quasi–maximum likelihood estimation method based on the performance of out–of–sample density forecasting and squared return forecasting.

For density forecasting, we employ the scoring rule introduced by Amisano and Giacomini (2007). Using this scoring rule, we are able to decide which method performs better. We conducted a rolling–sample procedure to evaluate the performance of each estimation method. Let T denote the number of all observations, and let y_t denote return at day t, for $t = 1, 2, \cdots, T$. The first sample contains the first n observations, y_1, y_2, \cdots, y_n, and is used to obtain the parameter estimates, based on which, we can obtain the estimated variance at time $n+1$, $\hat{\sigma}_{n+1}$. As the error distribution is unknown, here we forecast the density of y_{n+1} by kernel density estimation method:

$$
\hat{f}(y_{n+1}|\hat{\theta}) = \frac{1}{n h \hat{\sigma}_{n+1}(\hat{\theta})} \sum_{t=1}^{n} K \left(\frac{y_{n+1}/\hat{\sigma}_{n+1}(\hat{\theta}) - y_t/\hat{\sigma}_t(\hat{\theta})}{h} \right),
$$

where $K(\cdot)$ is chosen to be the Gaussian kernel function and h is selected by normal reference rule.

The second sample contains $y_2, y_3, \cdots, y_{n+1}$, which are obtained by rolling the first sample forward for one step. Using this sample, we repeat what was done based on the previous sample and forecast the density of y_{n+2}. This rolling procedure continues until the density of y_T is forecasted.

We calculated the average likelihood scores over the out–of–sample period:

$$
S_n = \frac{1}{T-n} \sum_{r=1}^{T-n} \hat{f}(y_{n+r}|\hat{\theta}_n^{(r)}), \quad S_{mn} = \frac{1}{T-n} \sum_{r=1}^{T-n} \hat{f}(y_{n+r}|\hat{\theta}_{mn}^{(r)}),
$$
where \(\hat{\theta}_n^{(r)} = (\hat{\theta}_{1,n}^{(r)}, \hat{\theta}_{2,n}^{(r)}, \hat{\theta}_{3,n}^{(r)}) \top \) and \(\hat{\theta}_m^{(r)} = (\hat{\theta}_{1,m}^{(r)}, \hat{\theta}_{2,m}^{(r)}, \hat{\theta}_{3,m}^{(r)}) \top \) are the parameter estimates based on the \(r \)-th rolling sample. In terms of the average likelihood score, the larger it is, the better the corresponding estimation method performs.

The number of all observations is \(T = 2000 \), and the size of a rolling sample is \(n = 1000 \), which implies that we have 1000 rolling samples in total. By 1000 rolling samples, we obtained \(S_n = 69.98 \) and \(S_m = 71.33 \), which means that the forecast with the use of our conditional mean estimator leads to a slightly higher score. To see this more clearly, we plot the likelihood score \((\tilde{f}(y_{n+r} | \hat{\theta}^{(r)})) \) in different out-of-sample period \((r) \) with both methods in Figure 10. From this plot, we can see that most of the time, the likelihood score with CME is higher than that with MLE. This means that the use of our conditional mean estimator outperforms the use of maximum likelihood estimation method in terms of density forecasting.

Figure 10: Out-of-sample likelihood score with MLE and CME.

![Out-of-sample likelihood score with MLE and CME](image)

Using the same rolling-sample procedure, we also evaluate the performance of squared return forecasting. We compute the mean absolute error (MAE) and mean squared error (MSE) for 1-step ahead squared return using conditional mean estimator as follows.

\[
\text{MAE} \left(\hat{\theta}_m \right) = \frac{1}{T-n} \sum_{t=1}^{T-n} \left| y_{n+r}^2 - \hat{\sigma}_{n+r}^2 \left(\hat{\theta}_m \right) \right| ,
\]

\[
\text{MSE} \left(\hat{\theta}_m \right) = \frac{1}{T-n} \sum_{t=1}^{T-n} \left[y_{n+r}^2 - \hat{\sigma}_{n+r}^2 \left(\hat{\theta}_m \right) \right]^2 .
\]
Similarly, we define MAE and MSE with parameter estimated by quasi–maximum likelihood estimation method.

\[
\text{MAE} \left(\hat{\theta}_n \right) = \frac{1}{T - n} \sum_{t=1}^{T-n} \left| y_{n+r}^2 - \hat{\sigma}_{n+r}^2 \left(\hat{\theta}_n \right) \right|
\]

\[
\text{MSE} \left(\hat{\theta}_n \right) = \frac{1}{T - n} \sum_{t=1}^{T-n} \left[y_{n+r}^2 - \hat{\sigma}_{n+r}^2 \left(\hat{\theta}_n \right) \right]^2.
\]

We obtain that

\[
\text{MAE} \left(\hat{\theta}_{mn} \right) = 1.8366 \times 10^{-5}, \quad \text{MSE} \left(\hat{\theta}_{mn} \right) = 1.4409 \times 10^{-8}
\]

and

\[
\text{MAE} \left(\hat{\theta}_n \right) = 5.3789 \times 10^{-5}, \quad \text{MSE} \left(\hat{\theta}_n \right) = 2.1873 \times 10^{-8}.
\]

Given the smaller MAE and MSE results for the conditional mean estimator, we can conclude that conditional mean has better performance in squared return forecasting. Therefore, we can conclude that the conditional mean estimator performs better than the quasi–maximum likelihood estimator in terms of the out–of–sample density forecasting and squared return forecasting.

6 Conclusions

This paper has established some new asymptotic properties for Bayesian estimators. The simulation studies have shown that our proposed conditional mean estimators have very good finite sample performance. We have used the conditional mean estimation method to estimate a GARCH(1,1) model for S&P 500 daily returns and we found that compared with quasi–maximum likelihood estimation method, our conditional mean estimator has better out–of–sample forecasting performance.

7 Acknowledgements

The second author would like to specially thank Han Hong for various constructive discussions about this topic. Thanks also go to participants of several seminars and conferences for their comments and suggestions on earlier versions of this paper. The first and the second authors would also like to acknowledge financial support by the Australian Research Council Discovery Grants Program under Grant Numbers: DP1314229 & DP150101012.
Appendix

This appendix gives the full proofs of Theorems 1 and 2. For notational simplicity, we only consider the case where the dimensionality of θ is $d = 1$.

Proof of Theorem 1

Define $q_n(T_n) = \int \theta e^{l_n(\theta)} \pi(\theta) d\theta$ and $p_n(T_n) = \int e^{l_n(\theta)} \pi(\theta) d\theta$. Let us first deal with $p_n(T_n)$. Observe that

$$
p_n(T_n) = \int e^{l_n(\theta)} \pi(\theta) d\theta = e^{l_n(\hat{\theta}_n)} \int e^{l_n(\theta) - l_n(\hat{\theta}_n)} \pi(\theta) d\theta
= e^{l_n(\hat{\theta}_n)} \int_{C_n} e^{l_n(\theta) - l_n(\hat{\theta}_n)} \pi(\theta) d\theta + e^{l_n(\hat{\theta}_n)} \int_{D_n} e^{l_n(\theta) - l_n(\hat{\theta}_n)} \pi(\theta) d\theta
= p_{1n}(T_n) + p_{2n}(T_n),$$

(A.1)

where $C_n = \{ \theta : \frac{1}{\Delta_n(\hat{\theta}_n)}||\theta - \hat{\theta}_n|| \leq c \}$ and $D_n = \{ \theta : \frac{1}{\Delta_n(\hat{\theta}_n)}||\theta - \hat{\theta}_n|| > c \}$ for some $0 < c < \infty$.

For $\theta \in C_n$, using Assumptions 1 and 4, we can have the following Taylor expansion:

$$
l_n(\theta) - l_n(\hat{\theta}_n) = l_n^{(1)}(\hat{\theta}_n) + \frac{1}{2} l_n^{(2)}(\hat{\theta}_n)(\theta - \hat{\theta}_n)^2 = -\frac{1}{2} \Delta_n(\hat{\theta}_n)(\theta - \hat{\theta}_n)^2,
$$

(A.2)

using the fact that $l_n^{(1)}(\hat{\theta}_n) = 0$, where $\hat{\theta}_n$ is between θ and $\hat{\theta}_n$, $l_n^{(i)}(\cdot)$, for $i = 1, 2$, denote the first and second derivatives of $l_n(\cdot)$, and both exist under Assumption 1.

For $p_{1n}(T_n)$, in view of (A.2), using Assumptions 1–4, we have

$$
p_{1n}(T_n) = e^{l_n(\hat{\theta}_n)} \int_{C_n} e^{l_n(\theta) - l_n(\hat{\theta}_n)} \pi(\theta) d\theta = (1 + o_p(1)) \int_{C_n} e^{-\frac{1}{2} \Delta_n(\hat{\theta}_n)(\theta - \hat{\theta}_n)^2} \pi(\theta) d\theta
= (1 + o_p(1)) e^{l_n(\hat{\theta}_n)} \Delta_n^{-1/2}(\hat{\theta}_n) \int_{|y| \leq c} e^{-\frac{y^2}{2}} \pi\left(\hat{\theta}_n + \Delta_n^{-1/2}(\hat{\theta}_n)y\right) dy
= (1 + o_p(1)) e^{l_n(\hat{\theta}_n)} \Delta_n^{-1/2}(\hat{\theta}_n) \pi(\hat{\theta}_n) \int_{|y| \leq c} e^{-\frac{y^2}{2}} dy
\frac{1}{2} (1 + o_p(1)) e^{l_n(\hat{\theta}_n)} \Delta_n^{-3/2}(\hat{\theta}_n) \int_{|y| \leq c} y^2 e^{-\frac{y^2}{2}} dy.
$$

(A.3)

In view of the arguments used in the proofs of Theorem 1 of Walker (1969) and Theorem 2.1 of Chen (1985), we have

$$
p_n(T_n) = p_{1n}(T_n) + p_{2n}(T_n) = (1 + o_P(1)) e^{l_n(\hat{\theta}_n)} \Delta_n^{-1/2}(\hat{\theta}_n) \pi(\hat{\theta}_n) \int_{|y| \leq c} e^{-\frac{y^2}{2}} dy
= (1 + o_P(1)) e^{l_n(\hat{\theta}_n)} \Delta_n^{-1/2}(\hat{\theta}_n) \pi(\hat{\theta}_n) \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy
= (1 + o_P(1)) e^{l_n(\hat{\theta}_n)} \Delta_n^{-1/2}(\hat{\theta}_n) \pi(\hat{\theta}_n) \sqrt{2\pi}
$$

(A.4)

by letting $c \to \infty$.

Equations (A.3) and (A.4) then imply

$$
\Delta_n(\hat{\theta}_n) \left(\int_{C_n} f_n(\theta\mid T_n) d\theta - \frac{1}{\sqrt{2\pi}} \int_{|y| \leq c} e^{-\frac{y^2}{2}} dy \right)
$$

(A.5)
\[
\frac{\pi^{(2)}(\hat{\theta}_n)}{2\pi(\hat{\theta}_n)} \frac{1}{\sqrt{2\pi}} \int_{|y|\leq c} \frac{y^2e^{-\frac{y^2}{2}}}{2\pi} dy \rightarrow \frac{\pi^{(2)}(\theta_0)}{2\pi(\theta_0)} \frac{1}{\sqrt{2\pi}} \int_{|y|\leq c} \frac{y^2e^{-\frac{y^2}{2}}}{2\pi} dy,
\]

which completes the proof of Theorem 1.

Proof of Theorem 2

Recall that we define \(\hat{\theta}_{mn} = \frac{1}{m} \sum_{j=1}^{m} \theta_{jn} \), in which \(\theta_{jn} \) denotes the \(j \)th posterior draw and \(m \) denotes the number of Markov chain Monte Carlo (MCMC) iterations. It is assumed here that conditioning on \(T_n, \{\theta_{jn}\} \) is a sequence of Harris ergodic Markov chains.

In order to show the properties of \(\hat{\theta}_{mn} \), we proceed with the following three steps.

1. First, by Assumption 1(ii) and using an existing result (see, for example, Corollary 2 of Jones (2004)), we have \(\frac{1}{\sqrt{\sigma_n}} \sum_{j=1}^{m} (\theta_{jn} - E[\theta|T_n]) \rightarrow_D N(0,1) \) as \(m \to \infty \) and \(n \to \infty \), where \(\sigma_n^2 \) is the same as defined in Assumption 2.

2. Second, we show that \(\Delta_n^{1/2}(\hat{\theta}_n) (E[\theta|T_n] - \theta_0) \rightarrow_D N(0,1) \), as \(n \to \infty \).

3. Third, we combine the previous two steps to show that \(\Delta_n^{1/2}(\hat{\theta}_n) \left(\frac{1}{m} \sum_{j=1}^{m} \theta_{jn} - \theta_0 \right) \rightarrow_D N(0,1) \), as \(m \to \infty \) and \(n \to \infty \).

By definition, we have that

\[
E[\theta|T_n] = \int \theta f_n(\theta|T_n) d\theta = \frac{\int \theta e^{l_n(\theta)} \pi(\theta)d\theta}{\int e^{l_n(\theta)} \pi(\theta)d\theta} = \frac{q_n(T_n)}{\pi(T_n)};
\]

where \(q_n(T_n) = \int \theta e^{l_n(\theta)} \pi(\theta)d\theta \) and \(\pi(T_n) = \int e^{l_n(\theta)} \pi(\theta)d\theta \).

Similarly to equations (A.1)–(A.4), we can write

\[
q_n(T_n) = \int_{C_n} \theta e^{l_n(\theta)} \pi(\theta)d\theta + \int_{D_n} \theta e^{l_n(\theta)} \pi(\theta)d\theta = (1 + o_P(1)) \int_{C_n} \theta e^{l_n(\tilde{\theta}_n)} e^{-\frac{1}{2}\Delta_n(\tilde{\theta}_n)(\theta - \tilde{\theta}_n)^2} \pi(\theta)d\theta + \int_{D_n} \theta e^{l_n(\theta)} \pi(\theta)d\theta = (1 + o_P(1)) q_1n(T_n) + q_2n(T_n),
\]

(A.6)

where \(q_1n(T_n) = \int_{C_n} \theta e^{l_n(\tilde{\theta}_n)} e^{-\frac{1}{2}\Delta_n(\tilde{\theta}_n)(\theta - \tilde{\theta}_n)^2} \pi(\theta)d\theta \) and \(q_2n(T_n) = \int_{D_n} \theta e^{l_n(\theta)} \pi(\theta)d\theta \).

In a similar way to equation (A.3), we also have

\[
q_1n(T_n) = e^{l_n(\tilde{\theta}_n)} \Delta_n^{-1/2}(\tilde{\theta}_n) \int_{|y|\leq c} \left(\tilde{\theta}_n + \Delta_n^{-1/2}(\tilde{\theta}_n)y \right) \pi \left(\tilde{\theta}_n + \Delta_n^{-1/2}(\tilde{\theta}_n)y \right) e^{-y^2/2} dy
\]

\[
= (1 + o_P(1)) e^{l_n(\tilde{\theta}_n)} \Delta_n^{-1/2}(\tilde{\theta}_n) \hat{\theta}_n \pi(\hat{\theta}_n) \int_{|y|\leq c} e^{-y^2/2} dy
\]

\[
+ (1 + o_P(1)) e^{l_n(\tilde{\theta}_n)} \Delta_n^{-3/2}(\tilde{\theta}_n) \left(2 \hat{\theta}_n \pi(\hat{\theta}_n) + \pi(\hat{\theta}_n) \right) \int_{|y|\leq c} y^2 e^{-y^2/2} dy,
\]

(A.7)
which, along with equation \((A.4)\), implies that as \(n \to \infty\)

\[
\Delta_n^{1/2} (\hat{\theta}_n) \left(E[\theta|T_n] - \hat{\theta}_n \right) = \Delta_n^{1/2} (\hat{\theta}_n) \left(\int_{C_n} \theta f_n(\theta|T_n)d\theta - \hat{\theta}_n \right) f_n(\theta|T_n)d\theta
\]

\[- \Delta_n^{1/2} (\hat{\theta}_n) \int_{D_n} f_n(\theta|T_n)d\theta - \Delta_n^{1/2} (\hat{\theta}_n) \int_{D_n} \theta f_n(\theta|T_n)d\theta
\]

\[
= (1 + o_P(1)) \Delta_n^{-1/2} (\hat{\theta}_n) \left(\frac{\pi(2)}{2\pi} (\hat{\theta}_n) + 2\pi(1) (\hat{\theta}_n) \right) \cdot \frac{1}{\sqrt{2\pi}} \int_{|y| \leq c} y^2e^{-y^2/2}dy
\]

\[- \Delta_n^{1/2} (\hat{\theta}_n) \int_{D_n} f_n(\theta|T_n)d\theta + \Delta_n^{1/2} (\hat{\theta}_n) \int_{D_n} \theta f_n(\theta|T_n)d\theta \to P 0
\]

(A.8)

by Assumption 3 and Theorem 1. Furthermore, we will have that

\[
\Delta_n (\hat{\theta}_n) \left(E[\theta|T_n] - \hat{\theta}_n \right) \to P \left(\frac{\pi(2)}{2\pi} (\theta_0) + 2\pi(1) (\theta_0) \right) \cdot \frac{1}{\sqrt{2\pi}} \int_{|y| \leq c} y^2e^{-y^2/2}dy
\]

(A.9)

if both \(\Delta_n (\hat{\theta}_n) \int_{D_n} f_n(\theta|T_n)d\theta = o_P(1)\) and \(\Delta_n (\hat{\theta}_n) \int_{D_n} \theta f_n(\theta|T_n)d\theta = o_P(1)\).

Equation \((A.8)\), along with Assumption 4, implies

\[
\Delta_n^{1/2} (\hat{\theta}_n) \left(E[\theta|T_n] - \theta_0 \right) = \Delta_n^{1/2} (\hat{\theta}_n) \left(E[\theta|T_n] - \hat{\theta}_n \right) + \Delta_n^{1/2} (\hat{\theta}_n) \left(\hat{\theta}_n - \theta_0 \right)
\]

\[
= \Delta_n^{1/2} (\hat{\theta}_n) \left(\hat{\theta}_n - \theta_0 \right) + o_P(1) \to D N(0,1).
\]

(A.10)

Meanwhile, Assumption 2, along with an application of an existing central limit theorem for stationary Markov chains (see, for example, Corollary 2 of Jones (2004)), implies that as \(m \to \infty\)

\[
\frac{1}{\sqrt{m}} \sum_{j=1}^{m} (\theta_j - E[\theta|T_n]) \to D N(0,1),
\]

(A.11)

which completes the proof of equation \((3.2)\) of Theorem 2.

In addition, equations \((A.11)\) and \((A.8)\) show that as \(m \to \infty\) and \(n \to \infty\)

\[
\Delta_n^{1/2} (\hat{\theta}_n) \left(\hat{\theta}_{mn} - \hat{\theta}_n \right) = \Delta_n^{1/2} (\hat{\theta}_n) \left(\hat{\theta}_{mn} - E[\theta|T_n] \right) + \Delta_n^{1/2} (\hat{\theta}_n) \left(E[\theta|T_n] - \hat{\theta}_n \right)
\]

\[
= \Delta_n^{1/2} (\hat{\theta}_n) \left(\frac{1}{\sqrt{m}} \sum_{j=1}^{m} (\theta_j - E[\theta|T_n]) \right) + \Delta_n^{1/2} (\hat{\theta}_n) \left(E[\theta|T_n] - \hat{\theta}_n \right)
\]

\[
\to P 0,
\]

(A.12)

which completes the proof of equation \((3.3)\) of Theorem 2.

Therefore, under Assumptions 1–4, as \(m \to \infty\) and \(n \to \infty\), we have that

\[
\Delta_n^{1/2} (\hat{\theta}_n) \left(\frac{1}{m} \sum_{j=1}^{m} \theta_j - \theta_0 \right) = \Delta_n^{1/2} (\hat{\theta}_n) \left(\frac{1}{m} \sum_{j=1}^{m} \theta_j - E[\theta|T_n] + E[\theta|T_n] - \theta_0 \right)
\]

\[
= \Delta_n^{1/2} (\hat{\theta}_n) \left(\frac{1}{m} \sum_{j=1}^{m} \theta_j - E[\theta|T_n] \right) + \Delta_n^{1/2} (\hat{\theta}_n) \left(E[\theta|T_n] - \theta_0 \right)
\]
\[
\frac{\Delta_n^{1/2}(\hat{\theta}_n) \sigma_n}{\sqrt{m}} \left(\frac{1}{\sqrt{m} \sigma_n} \sum_{j=1}^{m} (\theta_{jn} - \mathbb{E}[\theta|T_n]) \right) + \Delta_n^{1/2}(\hat{\theta}_n) \left(\mathbb{E}[\theta|T_n] - \theta_0 \right) \rightarrow_D N(0,1),
\]

which completes the proof of equation (3.4) of Theorem 2.

Using equation (A.9), we have as \(m \to \infty \) and \(n \to \infty \)

\[
\Delta_n(\hat{\theta}_n) (\hat{\theta}_n - \tilde{\theta}_n) = \Delta_n(\hat{\theta}_n) (\tilde{\theta}_n - \mathbb{E}[\theta|T_n]) + \Delta_n(\tilde{\theta}_n) (\mathbb{E}[\theta|T_n] - \tilde{\theta}_n)
\]

\[
= \frac{\Delta_n(\hat{\theta}_n) \sigma_n}{\sqrt{m}} \left(\frac{1}{\sqrt{m} \sigma_n} \sum_{j=1}^{m} (\theta_{jn} - \mathbb{E}[\theta|T_n]) \right) + \Delta_n(\tilde{\theta}_n) \left(\mathbb{E}[\theta|T_n] - \tilde{\theta}_n \right)
\]

\[\rightarrow_p \frac{\left(\pi^{(2)}(\theta_0) \theta_0 + 2\pi^{(1)}(\theta_0) \right)}{2\pi (\theta_0)} \cdot \frac{1}{\sqrt{2\pi}} \int_{|y|\leq c} y^2 e^{-y^2/2} dy \quad \text{(A.13)}\]

when \(\frac{\Delta_n(\hat{\theta}_n) \sigma_n}{\sqrt{m}} \to_p 0 \). Equation (A.13) completes the proof of equation (3.5) of Theorem 2.

References

URL: http://ssrn.com/abstract=889461

