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Abstract

This paper considers a semiparametric spatial autoregressive panel data model with fixed

effects with time–varying coefficients. The time–varying coefficients are allowed to follow an

unknown function of time while the other parameters are assumed to be constants. We propose

a “local linear concentrated quasi–maximum likelihood estimation” method to obtain consis-

tent estimators for the spatial autoregressive coefficient, the variance of the error term and

the nonparametric time–varying coefficients. We show that the estimators of the parametric

components converge at the rate of
√
NT , and those of the nonparametric time–varying coeffi-

cients converge at the rate of
√
NTh. Monte Carlo simulations are conducted to illustrate the

finite sample performance of our proposed method. We apply our method to study the spatial

influences and the time–varying spillover effects in the wage level among 159 Chinese cities.

Key Words: Concentrated quasi–maximum likelihood estimation, local linear estimation,

time–varying coefficient.

JEL Classifications: C21, C23

1 Introduction

Panel data analysis has been used widely in many fields of social sciences as it usually enables strong

identification and increases estimation efficiency. A comprehensive review about these methodologies

can be found in Arellano (2003), Baltagi (2008) and Hsiao (2014). In classical panel data models, we

normally assume independence among different units for the errors. Even though some dependence

assumptions can be made in the error term, no clear cross–sectional dependence structure can be

modeled in pure panel data models.

Spatial econometric models, which are designed to model spatial interactions, have provided a

way to model the cross–sectional dependence with a clear structure and intuitive interpretations.

A class of spatial autoregressive (SAR) models was first proposed in Cliff and Ord (1973). Since

then, it has become an active research area in spatial econometrics. One issue with spatial econo-

metric models is that the spatial lag term is endogenous. Various estimation methods have been

The first and the second authors acknowledge the Australian Research Council Discovery Grants Program for its
financial support under Grant Numbers: DP150101012 & DP170104421.

1



proposed to deal with this issue, e.g., the instrumental variable (IV) method Kelejian and Prucha

(1998), the generalized method of moments (GMM) framework (Kelejian and Prucha, 1999) and

the quasi–maximum likelihood (QML) method (Lee, 2004). More logical concepts and details of

spatial econometrics can be found in classic spatial econometrics books, e.g., Anselin et al. (2013)

and LeSage and Pace (2009). As more temporal data becomes available, spatial panel data models

have received considerable attentions. Spatial panel data models with SAR disturbances have been

considered in Baltagi et al. (2003) and Kapoor et al. (2007). Fingleton (2008) studied a spatial panel

data model with a SAR–dependent variable and a spatial moving average–disturbance. Lee and Yu

(2010) focus on a spatial panel models with individual fixed effects. More recent studies on spatial

dynamic panel data models can be found in Yu et al. (2008), Lee and Yu (2014) and Li (2017), etc.

A common feature of the aforementioned models is that they are fully parametric with a linear

form in regressors, which may lead to model misspecification. To enhance model flexibility, non-

parametric and semi–parametric spatial econometric models have been studied in the literature. Su

and Jin (2010) consider a partially linear SAR model. Su (2012) proposes an SAR model with a

nonparametric regressor term. Functional–coefficient SAR models are also studied in Sun (2016) and

Malikov and Sun (2017). The former mentioned studies are about cross–sectional data. In terms

of nonparametric and semi–parametric panel data models in spatial econometric, Zhang and Shen

(2015) consider a partially linear SAR panel data model with functional coefficients and random

effects while Sun and Malikov (2018) study a functional–coefficient SAR panel data model with

fixed effects. It is worth noting that they focus on the case of large N and finite T . In addition,

the coefficients in these functional–coefficient spatial models are mostly permitted to be unknown

smooth functions of exogenous variables. Sometimes, finding such appropriate exogenous variables

in practice is challenging.

It has been noted that especially when the time span of data is long, coefficients of covariates are

likely to change over time in many real examples (see some discussion in Cai 2007; Silvapulle et al.

2017). The reason behind could be due to changes in the economic structure or environment, policy

reform, or technology development, etc. To accommodate such cases, time–varying coefficient models

have been well studied in the existing panel data setting, where the coefficients of the regressors

were allowed to be unknown smooth functions of time (Li et al. (2011), Chen et al. (2012) and

Robinson (2012)). One advantage of the time–varying coefficient model is that the time variable can

be self–explanatory and naturally capture the nonlinear time variation in the coefficients. To our

knowledge, the time–varying coefficient model and its estimation has not been well studied in spatial

econometrics.

In this paper we propose a semiparametric time–varying coefficient spatial panel data model with

fixed effects for large N and T . Specifically, the spatial lag term in the model is assumed to be para-
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metric while the regressor coefficients vary with time, specified as nonparametric functions of time. In

addition, regressors can be trending non–stationary. To get consistent estimators for both parametric

parameters and nonparametric time–varying components, we propose a “local linear concentrated

quasi–maximum likelihood estimation” (LLQML) method. When time–varying coefficients are con-

stant and regressors are stationary, our model reduces to a classical spatial autoregressive panel data

model which is fully parametric and has been considered in Lee and Yu (2010). Our model only

allows the coefficients of the explanatory variables to be time–varying. A more general model with a

nonparametric spatial lag term would be less restrictive since the spatial dependence would be likely

to change over time as well. However, as the spatial lag term is endogenous, it is very difficult to

estimate such a fully nonparametric model with classical nonparametric techniques. Nevertheless,

we would like to study such general models in our future work.

Our contributions in this paper are then summarized as follows.

(i) We propose a semiparametric time–varying coefficient spatial panel data model. This model is

suitable for panel data with spatial interaction and time–varying feature, as it combines the strengths

from different models, including the strong identification of panel data models, the clear interpretation

of cross–sectional dependence in spatial models, and the model flexibility of time–varying coefficient

models. In the existing literature of spatial econometrics, the regressors are often assumed to be

non–stochastic (see, e.g., Lee and Yu 2010, Su and Jin 2010). We relax such assumptions in the

theoretical derivations so that the regressors can be trending non–stationary, which renders our

model and estimation more general and practically useful.

(ii) Since the model consists of both unknown parametric and nonparametric components, we

propose the LLQML method to consistently estimate the unknown parameters and time–varying

functions by incorporating the local linear estimation (Fan and Gijbels, 1996) into the QML estima-

tion. We also establish the consistency and asymptotic normality for the proposed estimator.

(iii) We evaluate the finite–sample performance of our proposed model under several scenarios.

We find our estimator produces robust and consistent estimates, not only for the time–varying feature

or non–stationary covariates, but also for time–invariant or stationary covariates. The results also

show that if the time–varying coefficients are misspecified as constants, it would lead to severely

inconsistent estimation.

(iv) As an empirical application of our model, we analyze time–varying effects of factors on

labour compensation in urban China over 1995–2009, a period which has seen continuous reforms

and dramatic changes in the economy. Consistent with our conjecture, the estimated effects show

quite strong time–varying features.

The rest of paper is organized as follows. Section 2 discusses the model setting and the estimation

procedure. Section 3 lays out the assumption. Asymptotic theory of the proposed estimator is
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established in Section 4. We report the results of Monte–Carlo simulations and of the empirical

application in Sections 5 and 6, respectively. In Section 7, we conclude. Appendix A provides the

justification of identification condition and then gives the proofs of the main theorems. Technical

lemmas and their proofs as well as additional numerical results are given in Appendices B–D of the

supplementary material.

2 Model Setting and Estimation

2.1 Model

The model we consider in this paper takes the following form:

Yit = ρ0

∑
j 6=i

wijYjt +X>itβ0,t + α0,i + eit, t = 1, · · · , T, i = 1, · · · , N, (2.1)

where Yit is the response of location i at time t; Xit = (Xit1, · · · , Xitd)
> is a d-dimensional vector with

the corresponding d-dimensional time–varying coefficient vector function β0,t = (β0,t1, · · · , β0,td)
>;

α0,i reflects the unobserved individual fixed effect; wij describes the spatial weight of observation j

to i, which can be a decreasing function of spatial distance between i and j; the scalar parameter ρ0

measures the strength of spatial dependence; the error component is eit with mean zero and variance

σ2
0; T and N are the time length and the number of spatial units, respectively. In this model, the

term ρ0wijYjt captures the spatial interaction and X>itβ0,t measures the covariate effects over time.

When β0,t does not vary over time, it reduces to a vector of constants. Model (2.1) becomes

the traditional spatial autoregressive panel data model as discussed in Lee and Yu (2010). If only

some components of β0,t change over time, model (2.1) gives a partially time–varying spatial panel

data model, meaning that a few covariates have effects changing over time while the effects of other

covariates stay constant. In this paper, we assume that β0,t is fully nonparametric and follows the

following specification:

β0,t = β0(τt), t = 1, · · · , T, (2.2)

where β0(·) is a d-dimensional vector of unknown smooth functions defined on Rd and τt = t/T ∈
(0, 1]. The same specification is used in Li et al. (2011) and Chen et al. (2012). The reason to rescale

time onto the interval (0,1] is for convenience when estimating the model with the kernel method.

For the purpose of identifying β0(τt) when the constant 1 is included in the regressor Xit, the

individual fixed effects are assumed to satisfy
∑N

i=1 α0,i = 0. Such condition is standard in the litera-

ture, e.g., Su and Ullah (2006) and Chen et al. (2012). The detailed justification of the identification

issue is discussed in Appendix A.1.
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Let 0n and 1n be the vectors with n elements of zeros and ones, respectively. Denote 0m1×m2 as

an m1 ×m2 matrix with all zero elements and Im as the m-dimensional identity matrix. Define an

N×N spatial weight matrix W = (wij)N×N with zero diagonal elements, i.e., wii = 0, an N×(N−1)

matrix D0 = (−1N−1, IN−1)>. A clear matrix form of (2.1) can be written as

Yt = ρ0WYt +Xtβ0(τt) +D0α0 + et, t = 1, · · · , T, (2.3)

where Yt = (Y1t, · · · , YNt)>, Xt = (X1t, · · · , XNt)
>, α0 = (α0,2, · · · , α0,N)> and et = (e1t, · · · , eNt)>.

Define an N ×N matrix SN(ρ) = IN − ρW . Model (2.3) can further be written as

SN(ρ0)Yt = Xtβ0(τt) +D0α0 + et. (2.4)

In (2.4), we move the spatial lag term (ρ0WYt) to the left side so that SN(ρ0)Yt would be regarded as

the new response variable as if ρ0 were known. The goal is to construct consistent estimators for the

unknown parameters: the spatial coefficient ρ0 and the variance σ2
0, and the unknown time–varying

coefficient function β0(τ).

2.2 Estimation

The joint quasi log-likelihood function of model (2.4) can be written as

log
(
LN,T (ρ, σ2,α,β(τ))

)
= −NT

2
log(2πσ2) + T log|SN(ρ)| − 1

2σ2

T∑
t=1

U>NUN , (2.5)

where UN = SN(ρ)Yt − D0α − Xtβ(τt). If β(τ) is a vector of constants, the model becomes fully

parametric so that the traditional QML method based on (2.5) can be used to estimate parameters

(see Lee (2004) and Lee and Yu (2010) for more details). In the presence of the nonparametric time–

varying component β(τ) in (2.5), the traditional QML would fail. Motivated by Su and Ullah (2006)

and Su and Jin (2010), we propose the LLQML method, which is a two–step procedure: (i) Estimate

β(τ) for fixed ρ and α by the weighted local likelihood or equivalently the local linear kernel method

and denote it as β̂ρ,α(τ); (ii) Plug in β̂ρ,α(τ) into (2.5), and obtain the QML estimators ρ̂, σ̂2 and

α̂. With ρ and α estimated, the estimator of β(τ) can then be updated by β̂ρ̂,α̂(τ). To be more

specific:

Step one:

For given values of ρ and α, we adopt the weighted/local likelihood approach of Fan and Gijbels

(1996) in this step to estimate β(τ).

Let K(·) and h be the kernel function and the smoothing bandwidth, respectively. Assuming

5



that β(·) has continuous derivatives of up to the second order, applying Taylor expansion we have

β(τt) = β(τ) + β′(τ)(τt − τ) +O ((τt − τ)2). where β′(·) is the first derivative of β(·) and τ ∈ (0, 1].

We also have that Xtβ(τt) ≈ Xtβ(τ) +
(
τt−τ
h
Xt

)
hβ′(τ). The weighted/local log-likelihood function

can be written as

Q(a,b) =
T∑
t=1

K

(
τt − τ
h

)(
−N

2
log(2πσ2) + log|SN(ρ)|

)
− 1

2σ2

T∑
t=1

K

(
τt − τ
h

)
Ũ>N ŨN , (2.6)

where ŨN = SN(ρ)Yt −D0α−Xta−
(
τt−τ
h
Xt

)
b. For given values of ρ, α and σ2, the maximizer of

(2.6) can be obtained equivalently by minimizing the following weighted loss function L(a,b) with

respect to (a>,b>)>

L(a,b) =

T∑
t=1

K

(
τt − τ
h

){
SN (ρ)Yt −D0α−Xta−

τt − τ
h

Xtb

}>{
SN (ρ)Yt −D0α−Xta−

τt − τ
h

Xtb

}
.

Define anNT -dimensional vector Y = (Y >1 , · · · , Y >T )> and anNT×NT matrix SN,T (ρ) = IT⊗SN(ρ),

where ⊗ denotes the Kronecker product. Denote also an NT -dimensional vector Y ∗(ρ) = SN,T (ρ)Y

and an NT × (N − 1) matrix D = 1T ⊗D0. Function L(a,b) can be re–written as

L(a,b) =
{
Y ∗(ρ)−Dα−M(τ)(a>,b>)>

}>
Ω(τ)

{
Y ∗(ρ)−Dα−M(τ)(a>,b>)>

}
,

where the NT × 2d matrix M(τ) and the NT ×NT matrix Ω(τ) are defined as follows:

M(τ) =


X1

τ1−τ
h
X1

...
...

XT
τT−τ
h
XT

 and Ω(τ) =


K
(
τ1−τ
h

)
IN

. . .

K
(
τT−τ
h

)
IN

 ,

respectively. The estimators of β(τ) and hβ′(τ) for given (ρ,α) are then represented by β̂ρ,α(τ)

hβ̂
′
ρ,α(τ)

 = arg min
(a>,b>)>

L(a,b) =
{
M>(τ)Ω(τ)M(τ)

}−1
M>(τ)Ω(τ) {Y ∗(ρ)−Dα} .

Denoting a d × NT matrix Φ(τ) = (Id, 0d×d)
{
M>(τ)Ω(τ)M(τ)

}−1
M>(τ)Ω(τ), the estimator of

time–varying coefficient β0(·) can be expressed by

β̂ρ,α(τ) = Φ(τ){Y ∗(ρ)−Dα}. (2.7)

Step Two:
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In this step, we plug in β̂ρ,α(τ) into the original log-likelihood (2.5) and estimate ρ0 and σ2
0 by

maximizing the quasi log-likelihood function:

logLN,T (ρ, σ2,α) = −NT
2

log(2πσ2) + T log|SN(ρ)|

− 1

2σ2

T∑
t=1

{
SN(ρ)Yt −Xtβ̂ρ,α(τt)−D0α

}> {
SN(ρ)Yt −Xtβ̂ρ,α(τt)−D0α

}
= −NT

2
log(2πσ2) + T log|SN(ρ)| − 1

2σ2

{
Ỹ (ρ)− D̃α

}> {
Ỹ (ρ)− D̃α

}
, (2.8)

where Ỹ (ρ) = (INT − S)Y ∗(ρ) and D̃ = (INT − S)D are the smoothing versions of Y ∗(ρ) and D by

NT × NT matrix S = X̃Φ̃, in which the NT × dT matrix X̃ is a diagonal block matrix with the

N × d matrix Xt being its t-th diagonal block, and dT × NT matrix Φ̃ = (Φ(τ1)>, · · · ,Φ(τT )>)>.

Taking the derivative of (2.8) with respect to α and setting it to be zero, we have

α̂(ρ) = (D̃>D̃)−1D̃>Ỹ (ρ).

Define an NT ×NT matrix QN,T = INT − D̃(D̃>D̃)−1D̃>. Plugging α̂(ρ) into (2.8) leads to

logLN,T (ρ, σ2) = −NT
2

log(2πσ2) + T log|SN(ρ)| − 1

2σ2
Ỹ >(ρ)QN,T Ỹ (ρ). (2.9)

Then, taking the derivative of (2.9) with respect to σ2 and equating it to zero, we have the estimator

of σ2 as the following function of ρ:

σ̂2(ρ) =
1

NT
Ỹ >(ρ)QN,T Ỹ (ρ).

Replacing σ2 with σ̂2(ρ) in (2.9), we obtain the concentrated quasi log-likelihood function:

logLN,T (ρ) = −NT
2
{log(2π) + 1} − NT

2
log

{
1

NT
Ỹ >(ρ)QN,T Ỹ (ρ)

}
+ T log|SN(ρ)|.

Therefore, we estimate the parameters θ0 = (ρ0, σ
2
0)> and α0 by θ̂ = (ρ̂, σ̂2)> and α̂ as follows:

ρ̂ = max
ρ

logLN,T (ρ), σ̂2 =
1

NT
Ỹ >(ρ̂)QN,T Ỹ (ρ̂), α̂ = (D̃>D̃)−1D̃>Ỹ (ρ̂).

Finally, the updated estimator of β0(τ) is obtained by plugging ρ̂ and α̂ into (2.7):

β̂(τ) = Φ(τ){Y ∗(ρ̂)−Dα̂}. (2.10)

In order to establish asymptotic properties for the proposed estimators, we need to introduce the
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following assumptions.

3 Model Assumptions

In this section, we lay out the assumptions for our model. Denote ‖a‖s = (
∑n

i=1 |ai|s)1/s as the s-

norm (s ≥ 1) for any generic vector a = (a1, · · · , an)>. For any generic m×m matrix A = (aij)m×m,

define the diagonal vector of A as diag(A) = (a11, · · · , amm)>, ‖A‖1 = max
1≤j≤m

∑m
i=1 |aij| and ‖A‖∞ =

max
1≤i≤m

∑m
j=1 |aij| as the 1-norm and ∞-norm, respectively.

Assumption 1. Let d-dimensional vector Xit = g(τt) + vit contain a deterministic time trend part

g(τ) = (g1(τ), · · · , gd(τ))> and a random component vit = (vit1, · · · , vitd)>.

(i) Suppose that g(τ) is a continuous function for any 0 < τ ≤ 1.

(ii) Denote vt = (v1t, · · · ,vNt)>. Suppose that {vt, t ≥ 1} is a strictly stationary sequence with

mean zero and α-mixing with mixing coefficient αmix,N(t), and that there exists a function αmix(t)

and a constant δ such that αmix,N(t) ≤ αmix(t) and
∑∞

t=1 αmix(t)δ/(4+δ) <∞ for some δ > 0.

(iii) Let {vit, i ≥ 1, t ≥ 1} be identically distributed in index i. In addition, we assume E|vitk|4+δ <

∞ for k = 1, · · · , d and let E(vitv
>
it) = Σv = (σ

(k1,k2)
v )d×d where σ

(k1,k2)
v = E(vitk1vitk2).

Remark: Assumption 1 is a list of assumptions about the d-dimensional explanatory variable Xit.

Assumption 1(i) assumes that the time trend g(τ) is continuous, which is a standard assumption

to model the trend in Xit. With this structure, the regressors can be either stationary or non–

stationary over time. Specially, if g(τt) reduces to a constant vector, it covers the case with stationary

Xit. Otherwise, Xit is generally non–stationary. By assuming this, we take the non–stationarity of

Xit into account when we derive the theoretical properties of the estimators. The reason why g(τ)

is defined over (0, 1] is to scale the time domain to a bounded set, for the same reason as for β0(τ).

Note that g(τ) here can be further generalized to allow for an individual time trend gi(τ). To make

theoretical derivations less complicated, we consider the homogeneous trend. The trend g(τ) can be

estimated by ĝ(τ) = 1
N

∑N
i=1 ĝi(τ), where ĝi(τ) =

∑T
t=1K(

τt−τ
h

)Xit∑T
t=1K(

τt−τ
h

)
.

To allow for serial dependence in {vt}, we impose the stationarity and α-mixingness in Assumption

1(ii) on vt (see, e.g., examples and discussions in Fan and Yao 2008; Gao 2007). Since vt is a high

dimensional vector depending on N , we need to assume that there exists an upper bound αmix(t).

Similar assumptions can be found in Chen et al. (2012). Moreover,
∑∞

t=1 αmix(t)δ/(4+δ) < ∞ is

commonly used in the literature; see, e.g., Dou et al. (2016). This assumption is weaker than the

exponentially decaying α-mixing coefficient αmix(t) = cαψ
t for 0 < cα <∞ and 0 < ψ < 1; see, e.g.,

Chen et al. (2012, 2019).

It is worth noting that we only assume {vit, i ≥ 1, t ≥ 1} to be identically distributed in index

i, which is weaker than the i.i.d. assumption for covariates in Sun and Malikov (2018). This also
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means the cross–sectional dependence for vit across index i can be allowed as long as the mixing

condition for vt = (v1t, · · · ,vNt)> in Assumption 1(ii) is satisfied.

Meanwhile, it is allowed the constant 1 term to be included in Xit. When g1(τt) reduces to

constant 1 and vit1 degenerates to vit1 ≡ 0, Xit1 ≡ 1 is exactly the constant 1 term.

Assumption 2. The error term {et = (e1t, · · · , eNt)> : t ≥ 1} is a stationary process such that

(i) for some δ > 0, supi≥1 E(|eit|4+δ) <∞;

(ii) E(et|Et−1) = 0N and E(ete
>
t |Et−1) = σ2

0IN , where Et−1 = FV ∨ σ〈e1, · · · , et−1〉, is the σ-

field generated by FV ∪ 〈e1, · · · , et−1〉 and FV = σ〈{vit : i ≥ 1, t ≥ 1}〉 is the σ-field generated by

{vit : i ≥ 1, t ≥ 1};
(iii) Given Et−1, ẽi = (ei1, · · · , eiT )> is a vector of conditionally independent random errors with

E(ejit|Et−1) = E(ejit) = mj ∈ R for j = 3 and 4.

Remark: Assumption 2 summarizes the conditions on the error term. Assumption 2 (ii) implies

E(eit|FV ) = 0, indicating Xit is strictly exogenous. Sun and Malikov (2018) also consider the

exogenous covariates. A sufficient condition for the conditional independence of ẽi in Assumption 2

(iii) is that eit are independent in both i and t (e.g., see Assumption 2 of Yu et al. 2008) and {eit}
is independent of FV . It is worth noting that the conditional independence of eit in Assumption 2

(iii) along with Assumption 2 (ii) can help form a martingale difference array in both i and t in the

theoretical derivations; see, e.g., the proof of Theorem 2 in Appendix A.2. Further, this technique of

the proof can be adapted to model (2.3) if a cross–sectional dependent random structure is specified.

Specifically, we still impose Assumption 2 but we replace et in model (2.3) by a cross–sectional

dependent random error εt = Let, where L is a non–stochastic matrix and E(εtε
>
t |Et−1) = σ2

0LL
>

can measure the cross–sectional dependence. If we assume that L is uniformly bounded in both row

and column sums in absolute value (analogously to Assumption 4 below), similar theoretical results

can be established but more complicated derivations are involved.

Assumption 3. (i) The kernel function K(·) is a continuous and symmetric probability density

function with compact support.

(ii) The bandwidth is assumed to satisfy h→ 0 as min(N, T )→∞, Th→∞ and NTh8 → 0.

Remark: Assumption 3 first imposes the conditions on the kernel function used in estimation, which

is common in the literature; see, e.g., Chen et al. (2012). Conditions on the bandwidth h along with

T and N are also considered in Assumption 3; see similar conditions in Assumption A5 of Chen et al.

(2012).

Assumption 4. W is a non–stochastic spatial weight matrix with zero diagonals and is uniformly

bounded in both row and column sums in absolute value (for short, UB), i.e., supn≥1 ‖W‖1 <∞ and

supn≥1 ‖W‖∞ <∞.
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Assumption 5. SN(ρ) is invertible for all ρ ∈ 4, where 4 is a compact interval with the true value

ρ0 as an interior point. Also, SN(ρ) and S−1
N (ρ) are both UB, uniformly in ρ ∈ 4.

Remark: Assumptions 4 and 5 are standard assumptions originated from Kelejian and Prucha

(1998, 2001) and also used in Lee (2004). When W is row–normalized, a compact subset of (−1, 1)

has often been taken as the parameter space for ρ. The UB conditions limit the spatial correlation

to a manageable degree. To save space, we refer readers to Kelejian and Prucha (2001) for more

discussions.

Assumption 6. The time–varying coefficient β0(·) has continuous derivatives of up to the second

order.

Assumption 7. The fixed effects satisfy that ‖D0α0‖1 <∞.

Remark: Assumption 6 is a mild condition on the smoothness of the functions which is required

by the local linear fitting procedure. Such an assumption is common for nonparametric estimation

methods, e.g., Condition 2.1 of Li and Racine (2007), Assumption 2.7 of Gao (2007) and Assumption

A3 of Chen et al. (2012). Assumption 7 guarantees the uniform boundedness of the sum of absolute

fixed effects.

To proceed, we need to introduce the following notation. Let SN = SN(ρ0), SN,T = SN,T (ρ0),

GN(ρ) = WS−1
N (ρ), GN = GN(ρ0), GN,T = IT ⊗ GN , PN,T = (INT − S)>QN,T (INT − S) and

RN,T = GN,T (X̃β̃0 +Dα0) where β0 =
(
β>0 (τ1), · · · ,β>0 (τT )

)>
.

Assumption 8. ΨR,R = limN,T→∞
1
NT

E(R>N,TPN,TRN,T ) > 0.

Remark: Assumption 8 is a condition for the identification of ρ0, which is similar to Assumption 8 in

Lee (2004), Assumption 4 in Lee and Yu (2010), Assumption 7 in Su and Jin (2010). This assumption

requires implicitly that after removing the time trend, the generated regressor RN,T and the original

regressor XN,T = (X11, · · · , XNT )> (NT × d matrix) are not asymptotically multicollinear. To check

the suitability of this assumption in practice, their correlation coefficients or variance inflation factors

(VIF) can be used to determine if there exist any multicollinearity problems.

4 Asymptotic Properties

Asymptotic consistency of θ̂ = (ρ̂, σ̂2)> to θ0 = (ρ0, σ
2
0)> is established in Theorem 1. The asymptotic

distributions of θ̂ and β̂(τ) are provided in Theorems 2 and 3. The proofs of these theorems are

given in Appendix A.2.

Theorem 1. Under Assumptions 1-8, θ0 is globally identifiable and θ̂ is consistent to θ0.
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Denote c1 = limN,T→∞ tr(G2
N,T + G>N,TGN,T )/NT , c2 = limN,T→∞ tr(GN,T )/NT where the exis-

tence proofs of the limits are shown in Lemma C.7 of Appendix C of the supplementary material.

Theorem 2. Under Assumptions 1-8, as T →∞ and N →∞ simultaneously, then

√
NT

(
θ̂ − θ0

)
d→ N

(
02,Σ

−1
θ0

+ Σ−1
θ0

Ωθ0Σ
−1
θ0

)
, (4.1)

where Ωθ0 = limN,T→∞ΩNT,θ0 with ΩNT,θ0 being defined by

ΩNT,θ0 = 2m3E(R>
N,TPN,T diag(PN,TGN,T ))

NTσ4
0

+
(m4−3σ4

0)E(
∑NT

i=1(gp)
2
ii)

NTσ4
0

m3E(R>
N,TPN,T diag(PN,T ))

2NTσ6
0

+
(m4−3σ4

0)E(
∑NT

i=1(gp)iipii)

2NTσ6
0

m3E(R>
N,TPN,T diag(PN,T ))

2NTσ6
0

+
(m4−3σ4

0)E(
∑NT

i=1(gp)iipii)

2NTσ6
0

(m4−3σ4
0)E(

∑NT
i=1 p

2
ii)

4σ8
0NT

 ,

in which pii and (gp)ii are the i-th main diagonal elements of PN,T and PN,TGN,T , respectively, and

Σθ0 =

 1
σ2
0
ΨR,R + c1

c2
σ2
0

c2
σ2
0

1
2σ4

0

 is positive definite as shown in Lemma C.9.

Since we use the QML method to estimate θ0, it relaxes the normality assumption on the error

term but it adds an additional term to the variance that is a function of the error term’s third and

fourth moments. If the third and fourth moments are satisfied with m3 = 0 and m4 = 3σ2
0, the

asymptotic covariance matrix in (4.1) reduces to Σ−1
θ0

, as shown in the following proposition.

Proposition 1. Let Assumptions 1-8 hold. Then as T →∞ and N →∞ simultaneously

√
NT

(
θ̂ − θ0

)
d→ N

(
02,Σ

−1
θ0

)
when {eit, i ≥ 1, t ≥ 1} is independent and identically normally distributed with Ωθ0 = 02×2 due to

m3 = 0 and m4 = 3σ4
0.

Define µj =
∫
ujK(u)du and νj =

∫
ujK2(u)du. Let β

′′

0(τ) be the second derivative of β0(τ). An

asymptotic distribution for β̂(τ) is established in the following theorem.

Theorem 3. Let Assumptions 1–8 hold. As T →∞ and N →∞ simultaneously, we have

√
NTh

(
β̂(τ)− β0(τ)− bβ(τ)h2 + oP(h2)

)
d→ N

(
0d, σ

2
0ν0Σ−1

X (τ)
)
, (4.2)

provided that ΣX(τ) is positive definite for each given τ , where bβ(τ) = 1
2
µ2β

′′

0(τ) and ΣX(τ) =

g(τ)g(τ)> + Σv.

Thus, the rate of convergence of β̂(τ) is
√
NTh, which is the fastest possible rate in the nonpara-

metric structure. It is also clear that the covariance matrix is related to g(τ) since it involves the
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trend of Xit. When Xit is stationary, the asymptotic covariance matrix in (4.2) reduces to a constant

matrix σ2
0ν0(µXµ

>
X + Σv)−1 where µX = E(Xit).

One can use the following sample version to estimate the unknown covariance matrices in-

volved: Σ̂θ0 =

 1
σ̂2 Ψ̂R,R + ĉ1

ĉ2
σ̂2

ĉ2
σ̂2

1
2σ̂4

, Ω̂θ0 = ΩNT,θ0 and Σ̂X(τ) = ĝ(τ)ĝ(τ)> + Σ̂v, where Ψ̂R,R =

(NT )−1R>N,TPN,TRN,T , ĉ1 = tr(G2
N,T + G>N,TGN,T )/NT , ĉ2 = tr(GN,T )/NT , ĝ(τ) =

∑
i,tK( τt−τh )Xit∑
i,tK( τt−τh )

,

Σ̂v = (NT )−1
∑

i,t v̂itv̂
>
it and v̂it = Xit − ĝ(τt). The consistency of these sample estimators is shown

in Lemma C.10 of Appendix C in the supplementary material.

5 Monte Carlo Simulations

We now conduct a number of simulations to evaluate the finite sample performance and the ro-

bustness of our proposed model and estimation method under a rich set of scenarios, which are

different in stationarity of the covariates, variation in time of the coefficients, and the degree of

spatial dependence.

The simulated data are generated from the following model:

Yt = ρ0WYt +Xtβ0(τt) +D0α0 + et, t = 1, · · · , T.

The data generating process for our simulation is summarized below. First, the spatial matrix W in

the data generating process is chosen as a “q step head and q step behind” spatial weights matrix

as in Kelejian and Prucha (1999) with q = 2 in this section. The procedure is as follows: all the

units are arranged in a circle and each unit is affected only by the q units immediately before it

and immediately after it with the weight being 1, and then following Kelejian and Prucha (1999).

We also normalize the spatial weights matrix by letting the sum of each row equal to 1 so that it

generates an equal weight influence from all the neighbouring units to each unit. Then, the regressor

is set to be Xit = (1, Xit2)> where Xit2 = g(τt) + vit2. The component vit2 is the i-th element of

an N -dimensional vector vt generated by vt = 0.2vt−1 + N(0N ,Σ
∗) with Σ∗ = (0.5|i−j|)N×N for

−99 ≤ t ≤ T and v−100 = 0N . It is obvious that {vit2} is both serially and cross–sectionally

dependent. The error term eit is independent and identically generated from the distribution of

N(0, 1) so that σ2
0 = 1. The fixed effects follow α0,i = T−1

∑T
t=1 vit2 for i = 1, · · · , N − 1 and

α0,1 = −
∑N

i=2 α0,i. The time–varying coefficient vector is set to be β0(τ) = (β0,1(τ), β0,2(τ))> where

β0,1(τ) and β0,1(τ) represent the time–varying coefficient associated with the constant 1 and Xit2 in

Xit, respectively. Various simulation settings are defined by changing the specification of g(τ), β0(τ)

and ρ0. Specifically, we consider the following scenarios:
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• Set I (Setting of g(τ)): (I-1) g(τ) = 0; (I-2) g(τ) = 1 and (I-3) g(τ) = 2sin(πτ);

• Set II (Setting of β0(τ)): (II-1) β0(τ) = (1, 1)>; (II-2) β0(τ) = (1, 1 + 2τ + 2τ 2)>, (II-3)

β0(τ) = (1 + 3τ, 1 + 2τ + 2τ 2)>;

• Set III (Setting of spatial coefficient): (IV-1) ρ0 = 0.3, (IV-2) ρ0 = 0.7.

Each of these sets (and combinations of them) will generate data of 1) covariates of different station-

arity (Set I): in Sets I-1 and I-2 Xit2 is stationary and in Set I-3 Xit2 is non–stationary; 2) coefficient

β0(τ) with different time–varying feature (Set II): from Set II-1 to Set II-2, β0(τ) changes from time–

invariant, partially time–varying to fully time-varying respectively; and 3) different spatial autore-

gressive coefficient or spatial dependence among cross–sectional units (Set III). For each scenario, sim-

ulations are conducted on 1000 replications. The Epanechnikov kernel K(u) = 3/4(1−u2)I(|u| ≤ 1)

is used where I(·) is the indicator function. The bandwidth is selected through a leave–one–unit–out

cross–validation method explained in Appendix A.3.

The simulated data are first estimated by our proposed model and estimation method, and then

estimated by a standard time–invariant spatial panel data model considered in Lee and Yu (2010)

and their proposed estimation. For short, we call it “Lee–Yu model”. Tables 1 and 2 report the

means and standard deviations (SDs) (in parentheses) of the bias for the estimates of our model for

ρ0 and σ2
0 under different settings of g(τ) and β0(τ), together with those of Lee–Yu model (with ρ0

fixed at 0.3). A few comments can be made on the results.

Firstly, our estimates of ρ0 and σ2
0 are consistent under all settings as the means and SDs of the

bias of ρ0 and σ2
0 are getting smaller when either N or T is increasing. It shows the robustness of

our model in both the time and cross dimensions.

Secondly, if the data are generated by a time–invariant process (Set II-1), the estimates of ρ0 and

σ2
0 from Lee–Yu model are consistent with smaller biases compared to ours. It makes senses as a

time–invariant spatial panel date model is a special case of our model. However, when the coefficient

of the covariate involves time–varying features (Set II-2 and Set II-3) in the data generating process,

the estimates of ρ0 and σ2
0 from Lee–Yu model are not consistent and exhibit large biases. For

example, under the combination of Set I-2 and Set II-2, the biases are around 0.27 for ρ0 and 1.9 for

σ2
0. When there are more coefficients having time–varying features, (e.g., from Set II-2 to II-3), the

biases become larger. These findings confirm that when the time–varying model is misspecified as a

time-invariant model, following the estimation of Lee–Yu model will lead to inconsistent estimation.

Thirdly, comparing different data generating processes, if the data are generated from a fully

time–varying model (Set III-3), our estimates have smallest biases and SDs, followed by a a partially

linear model (Set II-2) and then a time–invariant model (Set II-1) given the setting of Xit2. For

example, when N = 15, T = 15 and Xit2 follows Set I-3, the means and SDs of biases of our

13



Table 1: Means and standard deviations of bias of ρ̂ (ρ0 = 0.3, σ2
0 = 1).

(a) Our model

(II-1) (II-2) (II-3)

N=10 N=15 N=30 N=10 N=15 N=30 N=10 N=15 N=30

(I-1)

T=10
-0.0662 -0.0493 -0.0208 -0.0166 -0.0140 -0.0053 -0.0131 -0.0122 -0.0046

(0.1123) (0.0837) (0.0563) (0.0533) (0.0429) (0.0275) (0.0511) (0.0425) (0.0272)

T=15
-0.0403 -0.0293 -0.0131 -0.0097 -0.0071 -0.0030 -0.0078 -0.0060 -0.0026

(0.0861) (0.0678) (0.0451) (0.0428) (0.0333) (0.0226) (0.0423) (0.0332) (0.0225)

T=30
-0.0244 -0.0162 -0.0074 -0.0056 -0.0029 -0.0011 -0.0051 -0.0025 -0.0010

(0.0573) (0.0465) (0.0310) (0.0267) (0.0224) (0.0151) (0.0264) (0.0224) (0.0150)

(I-2)

T=10
-0.0662 -0.0493 -0.0208 -0.0099 -0.0095 -0.0028 -0.0085 -0.0084 -0.0022

(0.1123) (0.0837) (0.0563) (0.0516) (0.0427) (0.0273) (0.0513) (0.0432) (0.0275)

T=15
-0.0403 -0.0293 -0.0131 -0.0055 -0.0040 -0.0009 -0.0051 -0.0033 -0.0003

(0.0861) (0.0678) (0.0451) (0.0428) (0.0336) (0.0228) (0.0427) (0.0335) (0.0230)

T=30
-0.0244 -0.0162 -0.0074 -0.0032 -0.0009 0.0004 -0.0026 -0.0004 0.0008

(0.0573) (0.0465) (0.0310) (0.0267) (0.0224) (0.0151) (0.0269) (0.0225) (0.0152)

(I-3)

T=10
-0.0663 -0.0500 -0.0222 -0.0223 -0.0199 -0.0126 -0.0201 -0.0183 -0.0109

(0.1060) (0.0805) (0.0547) (0.0445) (0.0369) (0.0248) (0.0447) (0.0375) (0.0252)

T=15
-0.0409 -0.0301 -0.0144 -0.0162 -0.0148 -0.0111 -0.0145 -0.0129 -0.0086

(0.0847) (0.0665) (0.0435) (0.0373) (0.0297) (0.0207) (0.0378) (0.0303) (0.0212)

T=30
-0.0234 -0.0170 -0.0082 -0.0127 -0.0111 -0.0085 -0.0112 -0.0087 -0.0061

(0.0561) (0.0452) (0.0302) (0.0241) (0.0207) (0.0149) (0.0244) (0.0208) (0.0145)

(b) Lee–Yu model

(II-1) (II-2) (II-3)

N=10 N=15 N=30 N=10 N=15 N=30 N=10 N=15 N=30

(I-1)

T=10
-0.0137 -0.0136 -0.0054 0.0768 0.0816 0.0878 0.1899 0.1913 0.2002

(0.0989) (0.0761) (0.0537) (0.0887) (0.0757) (0.0528) (0.0935) (0.0799) (0.0571)

T=15
-0.0073 -0.0064 -0.0026 0.0897 0.0929 0.0977 0.2018 0.2045 0.2083

(0.0808) (0.0648) (0.0437) (0.0758) (0.0616) (0.0437) (0.0809) (0.0644) (0.0467)

T=30
-0.0069 -0.0056 -0.0028 0.0982 0.1028 0.1027 0.2104 0.2125 0.2134

(0.0546) (0.0452) (0.0299) (0.0543) (0.0423) (0.0328) (0.0556) (0.0452) (0.0320)

(I-2)

T=10
-0.0137 -0.0136 -0.0054 0.2608 0.2594 0.2634 0.4073 0.4054 0.4059

(0.0989) (0.0761) (0.0536) (0.0919) (0.0762) (0.0541) (0.0593) (0.0486) (0.0338)

T=15
-0.0074 -0.0064 -0.0026 0.2725 0.2716 0.2713 0.4168 0.4141 0.4121

(0.0808) (0.0648) (0.0437) (0.0773) (0.0605) (0.0440) (0.0479) (0.0391) (0.0280)

T=30
-0.0069 -0.0056 -0.0028 0.2807 0.2779 0.2755 0.4196 0.4169 0.4147

(0.0546) (0.0452) (0.0299) (0.0515) (0.0419) (0.0293) (0.0327) (0.0264) (0.0194)

(I-3)

T=10
-0.0121 -0.0103 -0.0041 0.1732 0.1756 0.1861 0.3170 0.3191 0.3265

(0.0876) (0.0683) (0.0492) (0.0784) (0.0686) (0.0474) (0.0692) (0.0587) (0.0408)

T=15
-0.0051 -0.0066 -0.0040 0.1855 0.1865 0.1926 0.3271 0.3290 0.3331

(0.0742) (0.0593) (0.0392) (0.0652) (0.0551) (0.0394) (0.0586) (0.0479) (0.0347)

T=30
-0.0047 -0.0050 -0.0029 0.1902 0.1944 0.1971 0.3303 0.3340 0.3371

(0.0501) (0.0402) (0.0285) (0.0476) (0.0391) (0.0284) (0.0428) (0.0338) (0.0241)
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Table 2: Means and standard deviations of bias of σ̂2 (ρ0 = 0.3, σ2
0 = 1).

(a) Our model

(II-1) (II-2) (II-3)

N=10 N=15 N=30 N=10 N=15 N=30 N=10 N=15 N=30

(I-1)

T=10
-0.1677 -0.1157 -0.0576 -0.1609 -0.1110 -0.0517 -0.1565 -0.1076 -0.0499

(0.1349) (0.1070) (0.0802) (0.1332) (0.1062) (0.0794) (0.1310) (0.1057) (0.0791)

T=15
-0.1392 -0.0963 -0.0479 -0.1349 -0.0907 -0.0422 -0.1317 -0.0885 -0.0414

(0.1058) (0.0933) (0.0661) (0.1052) (0.0932) (0.0656) (0.1042) (0.0927) (0.0656)

T=30
-0.1249 -0.0817 -0.0415 -0.1195 -0.0765 -0.0361 -0.1183 -0.0755 -0.0357

(0.0759) (0.0645) (0.0459) (0.0751) (0.0644) (0.0458) (0.0753) (0.0645) (0.0457)

(I-2)

T=10
-0.1677 -0.1157 -0.0576 -0.1513 -0.1030 -0.0462 -0.1496 -0.1015 -0.0449

(0.1349) (0.1070) (0.0802) (0.1318) (0.1065) (0.0796) (0.1310) (0.1068) (0.0802)

T=15
-0.1392 -0.0963 -0.0479 -0.1283 -0.0852 -0.0375 -0.1276 -0.0831 -0.0360

(0.1058) (0.0933) (0.0661) (0.1046) (0.0929) (0.0660) (0.1047) (0.0935) (0.0660)

T=30
-0.1249 -0.0817 -0.0415 -0.1149 -0.0721 -0.0325 -0.1133 -0.0706 -0.0312

(0.0759) (0.0645) (0.0459) (0.0761) (0.0650) (0.0460) (0.0760) (0.0654) (0.0465)

(I-3)

T=10
-0.1662 -0.1149 -0.0574 -0.1417 -0.0945 -0.0387 -0.1423 -0.0965 -0.0430

(0.1336) (0.1064) (0.0802) (0.1318) (0.1067) (0.0802) (0.1316) (0.1065) (0.0795)

T=15
-0.1388 -0.0953 -0.0473 -0.1174 -0.0756 -0.0308 -0.1203 -0.0794 -0.0363

(0.1050) (0.0933) (0.0657) (0.1044) (0.0932) (0.0654) (0.1046) (0.0931) (0.0655)

T=30
-0.1239 -0.0810 -0.0410 -0.1066 -0.0648 -0.0273 -0.1100 -0.0696 -0.0324

(0.0764) (0.0648) (0.0460) (0.0754) (0.0652) (0.0467) (0.0760) (0.0653) (0.0460)

(b) Lee–Yu model

(II-1) (II-2) (II-3)

N=10 N=15 N=30 N=10 N=15 N=30 N=10 N=15 N=30

(I-1)

T=10
-0.0216 -0.0170 -0.0074 1.2871 1.3011 1.2988 1.6606 1.6689 1.6666

(0.1474) (0.1153) (0.0824) (0.4128) (0.3395) (0.2321) (0.5083) (0.4168) (0.2815)

T=15
-0.0083 -0.0072 -0.0030 1.3137 1.2993 1.2992 1.6963 1.6724 1.6611

(0.1175) (0.1003) (0.0681) (0.3459) (0.2689) (0.1943) (0.4357) (0.3400) (0.2388)

T=30
-0.0086 -0.0039 -0.0023 1.3162 1.3194 1.3020 1.6955 1.6872 1.6642

(0.0846) (0.0692) (0.0476) (0.2466) (0.1838) (0.1335) (0.2981) (0.2317) (0.1661)

(I-2)

T=10
-0.0216 -0.0170 -0.0074 1.9066 1.9021 1.8800 2.3929 2.3879 2.3492

(0.1474) (0.1153) (0.0824) (0.5532) (0.4513) (0.3006) (0.6869) (0.5590) (0.3731)

T=15
-0.0083 -0.0072 -0.0030 1.9372 1.8994 1.8689 2.4061 2.3633 2.3205

(0.1175) (0.1003) (0.0681) (0.4755) (0.3698) (0.2546) (0.5856) (0.4605) (0.3123)

T=30
-0.0086 -0.0039 -0.0023 1.9383 1.9122 1.8717 2.3997 2.3658 2.3162

(0.0846) (0.0692) (0.0476) (0.3211) (0.2497) (0.1778) (0.3918) (0.3087) (0.2191)

(I-3)

T=10
-0.0210 -0.0173 -0.0076 2.0818 2.0406 1.9949 2.9138 2.8141 2.6892

(0.1477) (0.1155) (0.0827) (0.5574) (0.4374) (0.2958) (0.6650) (0.5303) (0.3507)

T=15
-0.0083 -0.0068 -0.0025 2.1024 2.0328 1.9842 2.9110 2.7826 2.6595

(0.1171) (0.1005) (0.0682) (0.4473) (0.3461) (0.2520) (0.5418) (0.4245) (0.2930)

T=30
-0.0090 -0.0036 -0.0023 2.1010 2.0478 1.9840 2.9043 2.7783 2.6477

(0.0844) (0.0692) (0.0476) (0.3224) (0.2429) (0.1691) (0.3835) (0.2840) (0.2014)
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Table 3: Means and standard deviations of MSE of β̂(τ) = (β̂1(τ), β̂2(τ))> (ρ0 = 0.3, σ2
0 = 1).

(a) β̂1(τ)

(II-1) (II-2) (II-3)

N=10 N=15 N=30 N=10 N=15 N=30 N=10 N=15 N=30

(I-1)

T=10
0.0792 0.0480 0.0193 0.0447 0.0296 0.0124 0.0774 0.0531 0.0209

(0.1034) (0.0537) (0.0206) (0.0455) (0.0285) (0.0116) (0.0887) (0.0653) (0.0225)

T=15
0.0463 0.0287 0.0128 0.0283 0.0176 0.0081 0.0505 0.0307 0.0145

(0.0587) (0.0314) (0.0126) (0.0283) (0.0165) (0.0074) (0.0597) (0.0352) (0.0150)

T=30
0.0202 0.0124 0.0058 0.0125 0.0077 0.0036 0.0218 0.0140 0.0065

(0.0205) (0.0123) (0.0058) (0.0107) (0.0066) (0.0032) (0.0237) (0.0158) (0.0072)

(I-2)

T=10
0.1983 0.1166 0.0446 0.1287 0.0840 0.0337 0.2105 0.1403 0.0540

(0.2750) (0.1498) (0.0524) (0.1491) (0.1015) (0.0347) (0.2535) (0.1922) (0.0650)

T=15
0.1116 0.0672 0.0291 0.0826 0.0493 0.0238 0.1365 0.0791 0.0384

(0.1462) (0.0792) (0.0307) (0.0881) (0.0548) (0.0239) (0.1634) (0.1010) (0.0439)

T=30
0.0480 0.0287 0.0130 0.0366 0.0224 0.0103 0.0581 0.0362 0.0163

(0.0528) (0.0301) (0.0141) (0.0383) (0.0223) (0.0101) (0.0707) (0.0428) (0.0183)

(I-3)

T=10
0.1946 0.1164 0.0443 0.1016 0.0692 0.0285 0.1665 0.1158 0.0477

(0.3156) (0.1710) (0.0594) (0.1308) (0.0901) (0.0333) (0.2311) (0.1621) (0.0607)

T=15
0.1119 0.0647 0.0276 0.0647 0.0386 0.0194 0.1075 0.0648 0.0331

(0.1572) (0.0881) (0.0313) (0.0834) (0.0442) (0.0207) (0.1442) (0.0792) (0.0387)

T=30
0.0459 0.0288 0.0125 0.0288 0.0186 0.0089 0.0474 0.0313 0.0151

(0.0541) (0.0365) (0.0146) (0.0342) (0.0207) (0.0106) (0.0610) (0.0393) (0.0191)

(b) β̂2(τ)

(II-1) (II-2) (II-3)

N=10 N=15 N=30 N=10 N=15 N=30 N=10 N=15 N=30

(I-1)

T=10
0.0419 0.0263 0.0123 0.0482 0.0326 0.0167 0.0467 0.0312 0.0169

(0.0410) (0.0263) (0.0112) (0.0405) (0.0266) (0.0122) (0.0395) (0.0253) (0.0120)

T=15
0.0289 0.0181 0.0076 0.0352 0.0236 0.0125 0.0341 0.0231 0.0127

(0.0276) (0.0182) (0.0068) (0.0288) (0.0192) (0.0085) (0.0277) (0.0183) (0.0086)

T=30
0.0139 0.0083 0.0040 0.0181 0.0127 0.0087 0.0178 0.0130 0.0089

(0.0133) (0.0076) (0.0035) (0.0141) (0.0090) (0.0054) (0.0135) (0.0091) (0.0055)

(I-2)

T=10
0.0419 0.0263 0.0123 0.0464 0.0309 0.0168 0.0462 0.0305 0.0172

(0.0410) (0.0263) (0.0112) (0.0387) (0.0248) (0.0120) (0.0372) (0.0242) (0.0118)

T=15
0.0289 0.0181 0.0076 0.0344 0.0232 0.0124 0.0342 0.0232 0.0128

(0.0276) (0.0182) (0.0068) (0.0282) (0.0185) (0.0084) (0.0275) (0.0178) (0.0083)

T=30
0.0139 0.0083 0.0040 0.0177 0.0128 0.0084 0.0179 0.0131 0.0089

(0.0133) (0.0076) (0.0035) (0.0136) (0.0090) (0.0054) (0.0134) (0.0090) (0.0056)

(I-3)

T=10
0.0374 0.0238 0.0111 0.0406 0.0287 0.0163 0.0403 0.0283 0.0150

(0.0388) (0.0248) (0.0102) (0.0327) (0.0217) (0.0106) (0.0313) (0.0216) (0.0109)

T=15
0.0260 0.0161 0.0070 0.0305 0.0215 0.0124 0.0299 0.0206 0.0103

(0.0254) (0.0162) (0.0065) (0.0235) (0.0152) (0.0084) (0.0236) (0.0152) (0.0077)

T=30
0.0123 0.0074 0.0035 0.0169 0.0132 0.0086 0.0158 0.0112 0.0062

(0.0123) (0.0070) (0.0032) (0.0122) (0.0088) (0.0058) (0.0120) (0.0083) (0.0044)
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estimates for ρ0 are -0.0301 (0.665), -0.0148 (0.0297), -0.0086 (0.0212), respectively from Set II-1 to

Set II-3.

We also evaluate our model by examining the finite–sample performance of the estimates for the

two time–varying coefficients β0,1(τ) and β0,2(τ). In Table 3, the means and SDs (in parentheses) of

the mean squared errors (MSEs) of the estimates of the time–varying coefficient β0,1(τ) and β0,2(τ)

are reported, respectively, where for an estimate β̂k(τ) (k = 1, 2), the MSE is defined by

MSE =
1

T

T∑
t=1

{
β̂k(τt)− β0,k(τt)

}2

.

The results show that both the means and SDs of MSE for β̂k(τ) (k = 1, 2) decrease when either

N or T increases, confirming the consistency of our estimation. The results for a different spatial

coefficient ρ0 = 0.7 are similar to our benchmark case of (ρ0 = 0.3) and the corresponding simulation

results can be found in Tables D.8-D.10 of Appendix D in the supplementary material.

6 Empirical Application

As a case study, we apply our model to analyze the level of real wages in 159 Chinese cities over

the period between 1995 and 2009. The level of real wages measures the demand for labour and is

closely related to productivity; see for example Van Biesebroeck (2015) for a literature review and

Combes et al. (2017) for another example. We believe that this is an ideal empirical application for

our proposed model for the following two reasons. First, China’s vast internal urban labour markets

are inter–linked. The wage level in each city is not only determined by the characteristics and/or

performance of itself, but also depends on those around it. The spatial effects of wages are also

discussed in the literature; see, e.g., Braid (2002) and Baltagi et al. (2012). Secondly, China has

experienced an unprecedented economic growth and change in economic structure during the last

four decades or so. During the period, the organization of the economy, the environment in which

economic agents operated, and perhaps even the agents themselves have changed dramatically. For

example, the reforms of State–owned Firm started in 1997 changed the ownership of most of the firms,

the way they are managed, the productivity of labour, and how renumeration was determined. The

series of reforms in housing, the health system, and education also changed both demand and supply

of labour. In other words, it is likely that the economy has experienced “structural changes” over

the years and that many of the key relations between economic variables may not remain constant

over time.

In this case study, we explain the logarithm of the average wage level of a city by a number of

variables including capital (measured by asset), investment (measured by FDI), and the economic
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structure of the city (measured by the proportion of industries and sectors). Ideally, a variable

reflecting the level of labour input should be included in the model. The only variable that is

available to us is the size of population in each city. The variable appears to be highly correlated

with the time trend–the correlation coefficient between the average (log) population size of the cities

and the time trend is about 0.98. Thus we chose not to include the variable. The impact of labour

input is absorbed by the coefficient of the time trend when the constant term is included in the

time-varying model. Table 4 provides the definitions of these variables. Our model captures spatial

inter–dependence and potential change in the effects of these explanatory variables.

Table 4: Variable definitions.

Dependent Variable (Y) Definition

log(wage) Log value of average wage per worker (1994 price)

Independent Variables (X) Definition

log(FDI) Log value of FDI (10 thousand yuans, 1994 price)

log(Asset) Log value of total asset (million yuans, 1994 price)

GDPm Proportion of GDP by the manufactural sector

GDPs Proportion of GDP by the services sector

Empms Proportion of employed persons in the manufactural

sector out of the non–agricultural sector

Our data are derived from Statistic Year Books of China (various years), for 1995 to 2009 (T = 15)

and cover 159 (N) cities, including four cities like Beijing, Shanghai, Tianjin, and Chongqing directly

administrated by the central government, and other 155 cities at or above prefectural levels in China.

A prefectural city in China means a city that directly controlled by provincial governments. The

geographical location of these cities can be found in Figure 1. Following the convention, we divide

China into seven regions, East China (EC), South China (SC) Southwest (SW), North China (NC),

Northwest China (NW), Central China (CC), and Northeast China (NE). The densities of cities in

these regions are quite different that EC has 56 cities, almost one third of the whole country while

it is very sparse in the western region, reflecting the uneven distribution of cities. We use highway

distances between pairs of cities in kilometers to measure the spatial distances between cities, as they

can reflect economic distances between cities. These data are collected using the service provided by

Google Map Services. We specify W as the inverse of highway distances between cities, standardized

by its maximum eigenvalue.

As described in the Assumptions of Section 3, regressors are allowed to be trending non–stationary.

To checked whether the macro–level regressors considered here are trending stationary, we first fit

the unknown trend in the regressors with the local linear estimation method. After removing the
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Figure 1: Map of 159 Chinese cities where each color represents one of the following regions from
Central China (CC), East China (EC), North China (NC), North East (NE), North West (NW),
South China (SC) and South West(SW).

Table 5: IPS unit root test statistics and p-values for the regressor residuals.

Residuals in Regressors Wtbar p-value Ztbar p-value

log(FDI) -17.7893 < 0.0001 -17.9520 < 0.0001

log(Asset) -5.3533 < 0.0001 -5.3726 < 0.0001

GDPm -12.4843 < 0.0001 -12.5689 < 0.0001

GDPs -12.5017 < 0.0001 -12.6032 < 0.0001

Empms -13.6499 < 0.0001 -13.7323 < 0.0001

fitted trend, we obtain the residuals in regressors. Then, we conduct the Im–Pesaran–Shin (IPS)

panel unit root tests on these residuals. Refer to Equation (4.10) and (4.6) in Im et al. (2003) for

the IPS test statistics Wtbar and Ztbar, respectively. According to the test statistics and p-values in

Table 5, the null hypotheses of panel unit root for these variables are all rejected, indicating that the

assumption of the trend stationary regressors is valid for our dataset.

It is known that bandwidth choice is crucial for nonparametric kernel estimation. We first estimate

the model with the optimal bandwidth (hopt = 0.4000) obtained by the leave–one–unit–out cross–

validation method, and then compare the results with a number of different bandwidths around it:
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