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SUMMARY

Approximate Bayesian computation is becoming an accepted tool for statistical analysis in models with
intractable likelihoods. With the initial focus being primarily on the practical import of this algorithm,
exploration of its formal statistical properties has begun to attract more attention. In this paper we consider
the asymptotic behaviour of the posterior distribution obtained by this method. We give general results
on: (i) the rate at which the posterior concentrates on sets containing the true parameter (vector); (ii) the
limiting shape of the posterior; and (iii) the asymptotic distribution of the ensuing posterior mean. These
results hold under given rates for the tolerance used within the method, mild regularity conditions on the
summary statistics, and a condition linked to identification of the true parameters. Important implications
of the theoretical results for practitioners are discussed.
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1. INTRODUCTION

The use of approximate Bayesian computation methods in models with intractable likelihoods has
gained increased momentum over recent years, extending beyond the original genetics applications. (See
Marin et al., 2011, Sisson and Fan, 2011 and Robert, 2015, for recent reviews.) Whilst this approach ini-
tially appeared as a practical solution, attention has now shifted to the investigation of its formal statistical
properties, especially in relation to the choice of summary statistics on which the technique typically re-
lies; see, for example, Fearnhead and Prangle (2012), Marin et al. (2014), Creel and Kristensen (2015),
Drovandi et al. (2015), the 2015 preprint of Creel et al. (arxiv:1512.07385) and the 2016 preprints of
Li and Fearnhead (arxiv:1506.03481) and Martin et al. (arxiv:1604.07949). Hereafter we denote these
preprints by Creel et al. (2015), Li and Fearnhead (2016) and Martin et al. (2016).

This paper studies the large sample properties of both posterior distributions and posterior means ob-
tained from approximate Bayesian computation algorithms. Under mild regularity conditions on the un-
derlying summary statistics, we characterize the rate of posterior concentration and show that the limiting
shape of the posterior crucially depends on the interplay between the rate at which the summaries con-
verge (in distribution) and the rate at which the tolerance used to accept parameter draws shrinks to
zero. Critically, concentration around the truth and, hence, Bayesian consistency, places a less stringent
condition on the speed with which the tolerance declines to zero than does asymptotic normality of the
resulting posterior. Further, and in contrast to the textbook Bernstein-von Mises result, we show that
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asymptotic normality of the posterior mean does not require asymptotic normality of the posterior, with
the former result being attainable under weaker conditions on the tolerance than required for the latter.
Validity of these results requires that the summaries converge toward a limit at a known rate, and that this
limit, viewed as a mapping from parameters to summaries, be injective. These conditions have a close
correspondence with those required for theoretical validity of indirect inference and related (frequentist)
estimators (Gouriéroux et al., 1993; Gallant and Tauchen, 1996).

We focus on three aspects of asymptotic behaviour: posterior consistency, limiting posterior shape,
and the asymptotic distribution of the posterior mean. This focus is broader than that of existing studies
on the large sample properties of approximate Bayesian computation algorithms, in which the asymp-
totic properties of resulting point estimators have been the primary focus; see Creel et al. (2015), Jasra
(2015) and Li and Fearnhead (2016). Our approach allows for weaker conditions than those given in the
aforementioned papers, permits a complete characterization of the limiting shape of the posterior, and dis-
tinguishes between the conditions (on both the summaries and the tolerance) required for concentration
and those required for specific distributional results. Throughout the paper, ‘posterior distribution’ refers
to the posterior distribution resulting from an approximate Bayesian computation algorithm.

2. PRELIMINARIES AND BACKGROUND

We observe data y = (y1, y2, ..., yT )ᵀ, T ≥ 1, drawn from the model {Pθ : θ ∈ Θ}, where Pθ ad-
mits the corresponding conditional density p(·|θ), and θ ∈ Θ ⊂ Rkθ . Given a prior p(θ), the aim of
the algorithms under study is to produce draws from an approximation to the posterior distribution
p(θ|y) ∝ p(y|θ)p(θ), in the case where both the parameters and pseudo-data (θ, z) can be easily sim-
ulated from p(θ)p(z|θ), but where p(z|θ) is intractable. The simplest (accept/reject) form of the algorithm
(Tavaré et al., 1997; Pritchard et al., 1999) is detailed in Algorithm 1.

Algorithm 1 Approximate Bayesian Computation algorithm
(1) Simulate θi, i = 1, 2, ..., N , from p(θ),
(2) Simulate zi = (zi1, z

i
2, ..., z

i
T )ᵀ, i = 1, 2, ..., N , from the likelihood, p(·|θi)

(3) Select θi such that d{η(y), η(zi)} ≤ ε,where η(·) is a (vector) statistic, d(·, ·) is a distance function
(or metric), and ε > 0 is the tolerance level.

Algorithm 1 thus samples θ and z from the joint posterior:

pε{θ, z|η(y)} = p(θ)p(z|θ)1lε(z)
/∫ ∫

p(θ)p(z|θ)1lε(z)dzdθ,

where 1lε(z) = 1l[d{η(y), η(z)} ≤ ε] is one if d {η(y), η(z)} ≤ ε and zero else. Clearly, when η(·) is
sufficient and ε small,

pε{θ|η(y)} =
∫
pε{θ, z|η(y)}dz (1)

approximates the exact posterior, p(θ|y), and draws of θ from pε{θ, z|η(y)} can be used to estimate
features of p(θ|y). For example, using pε{θ|η(y)}, one can estimate the posterior probability of the set
A ⊂ Θ by calculating

Πε{A|η(y)} = Π [A|d{η(y), η(z)} ≤ ε] =

∫
A

pε{θ|η(y)}dθ.

In practice however, models to which Algorithm 1 is applied are such that sufficiency is unavailable.
Hence, the draws of θ can only be used to approximate pε{θ|η(y)}, which differs from p(θ|y) (even as
ε→ 0). Given the lack of accordance between pε{θ|η(y)} and p(θ|y), a means of assessing the behavior
of pε in its own right, and of establishing whether or not pε behaves in a manner that is appropriate for
statistical inference, is required. A reasonable means by which to gauge the statistical behavior of pε is
asymptotic theory. Establishing the large sample behavior of pε, including point and interval estimates
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derived from pε, gives practitioners a set of guarantees on the reliability of approximate Bayesian com-
putations. Moreover, by carefully studying the implications of these theoretical conclusions, we provide
guidelines for producing approximate posteriors, via the implementation of Algorithm 1, that possess
desirable statistical properties.

3. CONCENTRATION OF THE APPROXIMATE BAYESIAN COMPUTATION POSTERIOR

First, we set some notation used throughout the paper. Define Z as the space of simulated data;
B = {η(z) : z ∈ Z} ⊂ Rkη the range of the simulated summaries: η(z) : Z → B; d1{·, ·} a metric on
Θ; d2{·, ·} a metric on B; C > 0 a generic constant; P0 the measure generating y and Pθ the measure
generating z(θ). We have Pθ = P0 for θ = θ0, and denote θ0 ∈ Int(Θ) as the true parameter value. Let
Π(θ) denote the prior measure with density p(θ).

For real-valued sequences {aT }T≥1 and {bT }T≥1, aT . bT denotes aT ≤ CbT for some finite C > 0
and all T large, aT � bT denotes an equivalent order of magnitude, i.e., for some C, aT /bT → C as
T → +∞, and aT�bT indicates a larger order of magnitude. For xT a random variable, xT = oP (aT ) if
limT→+∞ pr(|xT /aT | ≥ C) = 0 for any C > 0 and xT = OP (aT ) if for any C ≥ 0 there exists a finite
M > 0 such that pr(|xT /aT | ≥M) ≤ C. The symbol ‖ · ‖ denotes the Euclidean norm.

At its most fundamental level, asymptotic validity of any Bayesian procedure requires Bayesian (or
posterior) consistency. In our context Bayesian consistency equates with the following posterior concen-
tration property: for any δ > 0, as T → +∞

Π [d1{θ, θ0} > δ|d2{η(y), η(z)} ≤ ε] =

∫
d1{θ,θ0}>δ

pε{θ|η(y)}dθ = oP (1). (2)

This property is paramount in this setting since, for any A ⊂ Θ, Π [A|d2{η(y), η(z)} ≤ ε] differs from
the exact posterior probability in a manner that can rarely be quantified. Without the reassurance of exact
posterior inference, knowledge that the posterior obtained from Algorithm 1 will concentrate, in large
samples, on the true value θ0 generating the data becomes even more critical than if p(θ|y) were accessible.

Posterior concentration is related to the rate at which information about θ0 accumulates in the sam-
ple. In Algorithm 1, information about θ0 is not obtained from the intractable likelihood but through
d2{η(y), η(z)}. For a fixed kη-dimensional summary η(z), the posterior learns about θ0 if η(z) concen-
trates around some fixed value b(θ). Therefore, the amount of information Algorithm 1 provides about
θ0 depends on two factors: (1) the rate at which the observed and simulated summaries converge to well-
defined limit counterparts b(θ0) and b(θ); and (2) the rate at which information about θ0 accumulates
within the algorithm, governed by the rate at which ε goes to 0. To link both factors we consider ε as a T -
dependent sequence εT → 0 as T → +∞. We can now state the technical assumptions used to establish
our first result, with a discussion of these assumptions to follow.
[A1] There exist a non-random map b : Θ→ B, and a function ρT (u) with ρT (u)→ 0 as T → +∞ for
all u and ρT (u) monotone non-increasing in u (for any given T ), such that for all θ ∈ Θ

Pθ [d2{η(z), b(θ)} > u] ≤ c(θ)ρT (u),

∫
Θ

c(θ)dΠ(θ) < +∞,

with either of the following assumptions on c(·):
(i) There exist c0 < +∞ and δ > 0 such that for all θ satisfying d2{b(θ), b(θ0)} ≤ δ then c(θ) ≤ c0.
(ii) There exists a > 0 such that

∫
Θ
c(θ)1+adΠ(θ) < +∞.

[A2] There exists some D > 0 such that, for all ξ > 0 small enough, the prior probability satisfies

Π [d2{b(θ), b(θ0)} ≤ ξ] & ξD.

[A3] (i) The map b is continuous. (ii) The map b is injective and satisfies

‖θ − θ0‖ ≤ L‖b(θ)− b(θ0)‖α

on some open neighbourhood of θ0 with L > 0 and α > 0.
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Remark 1: Assumptions [A1]-[A3] are applicable to a broad range of data structures, including, e.g.,
weakly dependent data. [A1] ensures that η(z) concentrates on b(θ). This concentration is the engine
behind posterior concentration and without [A1], or a similar assumption, Bayesian consistency will not
occur. Assumption [A2] controls the degree of prior mass in a neighbourhood of θ0 and is standard in
Bayesian asymptotics. For εT small, the larger D, the smaller the amount of prior mass near θ0. If Π
is absolutely continuous with prior density p(θ) and if p is bounded, above and below, near θ0, then
D = dim(θ) = kθ. [A3] is an identification condition that is critical for obtaining posterior concentration
around θ0, where the injectivity of b depends on both the true structural model and the particular choice
of η.

The following theorem details the behavior of Π[·|d2{η(y), η(z)} ≤ εT ] under [A1]-[A3].

THEOREM 1. Assume that [A2] is satisfied. If [A1](i) holds with ρT (εT ) = o(1) or if [A1](ii) holds for
constant a such that ρT (εT ) = o(ε

D/(1+a)
T ), then, for any M large enough,

Π
[
d2{b(θ), b(θ0)} > 4εT /3 + ρ−1

T (εDT /M)|d2{η(y), η(z)} ≤ εT
]
. 1/M. (3)

Moreover, if [A3] holds then

Π
[
d1{θ, θ0} > L{4εT /3 + ρ−1

T (εDT /M)}α|d2{η(y), η(z)} ≤ εT
]
. 1/M. (4)

Equations (3) and (4) imply Bayesian consistency and allow us to deduce a posterior concentration
rate, denoted generically by λT and depending on εT and the deviation control ρT on d2{η(z), b(θ)}.
The posterior Π [·|d2{η(y), η(z)} ≤ εT ] concentrates at rate λT → 0 if, for εT as in Theorem 1 and M
sufficiently large,

lim sup
T→+∞

Π [d1{θ, θ0} > λTM |d2{η(y), η(z)} ≤ εT ] = oP (1).

To deduce this rate one need only solve, for a given deviation control function, λT � εT + ρ−1
T (εDT ). To

demonstrate this interplay between λT and ρT , consider the following two situations for [A1]:
(a) Polynomial deviations: There exist vT → +∞ and u0, κ > 0 such that

ρT (u) = 1
/
vκTu

κ, u ≤ u0. (5)

From (5) we have ρ−1
T (εDT ) = 1/vT ε

D/κ
T , so that equating (in order) εT and ρ−1

T (εDT ) yields εT �
v
−κ/(κ+D)
T . Choosing a tolerance εT of this order implies, in turn, that the posterior distribution of b(θ)

concentrates at the rate

λT � v−κ/(κ+D)
T

to b(θ0). Under Assumption [A1](ii), the same rate can be achieved for all a > 0. Since εT � v−κ/(κ+D)
T

implies εT � v−1
T , this ensures that the deviation control given in equation (5) satisfies Assumption [A1].

(b) Exponential deviations: there exist hθ(·) > 0 and vT → +∞ such that [A1] is satisfied with

ρT (u) = exp{−hθ(uvT )}, (6)

and there exist finite u0, c, C > 0 such that∫
Θ

c(θ)e−hθ(uvT )dΠ(θ) ≤ Ce−c(uvT )τ , u ≤ u0.

Hence if c(θ) is bounded from above and hθ(u) ≥ uτ for θ in a neighbourhood of the set {θ; b(θ) =
b(θ0)}, then ρT (u) � e−c0(uvT )τ ; thus, ρ−1

T (εDT ) � {log(1/εT )}1/τ/vT . Following similar arguments
to those used in (a) above it follows that if we take εT � {log(vT )}1/τ/vT , the posterior distribution
concentrates at the equivalent rate,

λT � {log(vT )}1/τ/vT .
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Under Assumption [A1](ii), the same rate can be achieved for all a > 0. Once again, εT �
{log(vT )}1/τ/vT � v−1

T ensures that (6) will satisfy Assumption [A1].

To illustrate the above situations for [A1], we consider η(z) = T−1
∑T
i=1 g(zi) and, for simplicity,

let {g(zi)}i≤T be independent and identically distributed. First, consider the case of polynomial devi-
ations and assume g(zi) has a finite moment of order κ for θ ∈ Int(Θ). In this case b(θ) = Eθ{g(Z)}.
Furthermore, the Markov inequality implies that

Pθ {‖η(z)− b(θ)‖ > u} ≤ CEθ {|g(Z)|κ}
/

(T 1/2u)κ,

and, with reference to equation (5), vT = T 1/2. Then, if the map θ 7→ Eθ {|g(Z)|κ} is continuous at
θ0 and positive, [A1](i) and (ii) (for all a > 0) are satisfied. On the other hand, if |g(Z)| allows for an
exponential moment we can consider exponential deviations: Eθ

{
g(Z)2eaθ|g(Z)|} ≤ c(θ) < +∞, then

for aθT 1/2 ≥ s > 0,

Pθ {‖η(z)− b(θ)‖ > u} ≤ e−suT
1/2

[
1 +

s2

2T
Eθ

{
g(Z)2es|g(Z)|/T 1/2

}]T
≤ e−suT

1/2+s2c(θ)/2 ≤ e−u
2T/{2c(θ)},

choosing s = uT 1/2/c(θ) ≤ aθT 1/2, provided u ≤ aθc(θ). Thus, with reference to (6), vT = T 1/2 and
hθ(uvT ) = u2v2

T /{2c(θ)}. If the maps θ 7→ aθ and θ 7→ c(θ) are continuous at θ0 and positive, then
[A1](i) and (ii) (for all a > 0) are satisfied.
Example 1: We now illustrate the conditions of Theorem 1 in a simple moving average model of order
two:

yt = et + θ1et−1 + θ2et−2, (7)

where {et}Tt=1 is a sequence of white noise random variables such that E[e4+δ
t ] < +∞ and some δ > 0.

Our prior for θ = (θ1, θ2)ᵀ is uniform over the following invertibility region,

−2 ≤ θ1 ≤ 2, θ1 + θ2 ≥ −1, θ1 − θ2 ≤ 1. (8)

Following Marin et al. (2011), we choose as summary statistics for Algorithm 1 the sample autoco-
variances ηj(y) = T−1

∑T
t=1+j ytyt−j , for j = 0, 1, 2. For this choice the j-th component of b(θ) is

bj(θ) = Eθ(ztzt−j).
Now, take d2{η(z), b(θ)} = ‖η(z)− b(θ)‖. Under the moment condition for et given above, it can be

shown that V (θ) = E[{η(z)− b(θ)}{η(z)− b(θ)}ᵀ] satisfies tr{V (θ)} < +∞ for all θ in (B2) and, by
an application of Markov’s inequality, we can conclude that

Pθ [d2{η(z), b(θ)} > u] = Pθ
[
d2{η(z), b(θ)}2 > u2

]
≤ tr{V (θ)}

u2T
+ o(1/T ),

where the o(1/T ) term comes from the fact that there are finitely many non-zero covariance terms due to
the m-dependent nature of the series, and with condition [A1] satisfied as a result. Given the structure of
b(θ), the uniform prior p(θ) over (B2) automatically fulfills [A2] for θ0 in this space. Lastly, we note that
θ 7→ b(θ) = (1 + θ2

1 + θ2
2, (1 + θ2)θ1, θ2)ᵀ is an injective function and satisfies [A3].

Remark 2: The results of Theorem 1 can be visualised by fixing a particular value of θ, say θ̃, and gen-
erating ‘observed’ data sets ỹ of increasing length, then running Algorithm 1 on these data sets. If the
conditions of Theorem 1 are satisfied, the posterior density should concentrate on the value θ̃ and be-
come increasingly peaked as the sample size grows. This behavior is demonstrated in Section 2·1 of the
Supplementary Material, through the moving average model of Example 1.

4. SHAPE OF THE ASYMPTOTIC POSTERIOR DISTRIBUTION

While posterior concentration states that Π [d1{θ, θ0} > δ|d2{η(y), η(z)} ≤ εT ] = oP (1) for an ap-
propriate choice of εT , it does not indicate precisely how this mass accumulates, or the approximate
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amount of posterior mass within any neighbourhood of θ0. This information is needed to obtain accurate
expressions of uncertainty about point estimators of θ0 and to ensure credible regions have proper fre-
quentist coverage. To this end, we now analyse the limiting shape of the posterior measure. We consider
the shape of Π [·|d2{η(y), η(z)} ≤ εT ] for various relationships between εT and the rate at which sum-
mary statistics satisfy a central limit theorem. For notation’s sake, in this and the following sections, we
denote Π [·|d2{η(y), η(z)} ≤ εT ] as Πε(·|η0), where η0 = η(y). Let ‖ · ‖∗ denote the spectral norm.

In addition to Assumption [A2] the following conditions are needed to establish the results of this
section.

[A1′] Assumption [A1] holds and there exists a positive definite matrix ΣT (θ0), c0 > 0, κ > 1 and δ > 0
such that for all ‖θ − θ0‖ ≤ δ, Pθ [‖ΣT (θ0){η(z)− b(θ)}‖ > u] ≤ c0u−κ for all 0 < u ≤ δ‖ΣT (θ0)‖∗.
[A3′] Assumption [A3] holds, the map b is continuously differentiable at θ0 and the Jacobian∇θb(θ0) has
full column rank kθ.

[A4] For some δ > 0 and for all ‖θ − θ0‖ ≤ δ, there exists a sequence of (kη × kη) positive definite
matrices ΣT (θ), with kη = dim{η(z)}, such that

ΣT (θ){η(z)− b(θ)} ⇒ N (0, Ikη ),

where Ikη is the (kη × kη) identity matrix.

[A5] There exists vT → +∞ such that for all ‖θ − θ0‖ ≤ δ, the sequence of functions θ 7→ ΣT (θ)v−1
T

converges to some positive definite A(θ) and is equicontinuous at θ0.

[A6] For some positive δ, all ‖θ − θ0‖ ≤ δ, and for all ellipsoids BT =
{

(t1, · · · , tkη ) :
∑kη
j=1 t

2
j/h

2
T ≤

1
}

and all u ∈ Rkη fixed, for some hT → 0 as T → +∞,

lim
T
h
−kη
T Pθ [ΣT (θ){η(z)− b(θ)} − u ∈ BT ] = ϕkη (u),

h
−kη
T Pθ [ΣT (θ){η(z)− b(θ)} − u ∈ BT ] ≤ H(u),

∫
H(u)du < +∞,

(9)

for ϕkη (·) the density of a kη-dimensional normal random variate.

Remark 3: [A1′] is a deviation control condition similar to [A1] but for ΣT (θ0){η(z)− b(θ)}. As-
sumption [A4] is like a central limit theorem for {η(z)− b(θ)} and, as such, requires the existence
of a positive-definite matrix ΣT (θ). In simple cases, such as, for example, independent and identi-
cally distributed data with η(z) = T−1

∑T
i=1 g(zi), ΣT (θ) = vTAT (θ) withAT (θ) = A(θ) + oP (1) and

V (θ) = E[{g(Z)− b(θ)}{g(Z)− b(θ)}ᵀ] = [A(θ)ᵀA(θ)]−1. Assumptions [A3′] and [A6] are regularity
conditions that ensure θ 7→ b(θ) and the variance-covariance matrix of {η(z)− b(θ)} are well-behaved,
which allows the posterior behavior of a normalized version of (θ − θ0) to be governed by the posterior
behavior of ΣT (θ0){b(θ)− b(θ0)}. [A6] governs the pointwise convergence of a normalized version of
the measure Pθ, therein dominated byH(u). [A6] allows for the application of the dominated convergence
theorem in Case (iii) of the following result, where d2{·, ·} corresponds to the Euclidean distance:

THEOREM 2. Under Assumptions [A1′], [A2] and [A3′]-[A5], with κ > kθ, the following hold:
(i) If limT vT εT = +∞, with probability approaching 1, the posterior distribution of ε−1

T (θ − θ0) con-
verges to the uniform distribution over the ellipsoid {xᵀB0x ≤ 1} withB0 = ∇θb(θ0)ᵀ∇θb(θ0), meaning
that for f continuous and bounded, with probability approaching 1,

lim
T→+∞

∫
f{ε−1

T (θ − θ0)}dΠε(θ|η0) =

∫
uᵀB0u≤1

f(u)du
/∫

uᵀB0u≤1

du. (10)

(ii) If limT vT εT = c > 0, there exists a non-Gaussian distribution on Rkη , Qc, such that

Πε

[
ΣT (θ0){b(θ)− b(θ0)} − Z0

T ∈ B|η0

]
→ Qc(B), (11)
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where Z0
T = ΣT (θ0){η(y)− b(θ0)}, and for Φkη (·) the CDF of a kη-dimensional standard normal ran-

dom variable,

Qc(B) ∝
∫
B

Φkη
{

(Z − x)ᵀA(θ0)ᵀA(θ0)(Z − x) ≤ c2
}
dx.

(iii) If limT vT εT = 0 and Assumption [A6] holds then

lim
T→+∞

Πε

[
ΣT (θ0){b(θ)− b(θ0)} − Z0

T ∈ B|η0

]
= Φkη (B). (12)

Remark 4: For a sufficiently regular η, Theorem 5 asserts that the crucial feature in determining the lim-
iting shape of the posterior is the behaviour of vT εT . If limT vT εT > 0, Πε(·|η0) is not approximately
Gaussian. In Case (i), which corresponds to a large tolerance εT , the posterior has nonstandard asymp-
totic behaviour. A heuristic argument is as follows. Under the assumptions of Theorem 5, if vT εT � 1,
‖η(z)− η(y)‖ ≤ εT is equivalent to the constraint ‖b(θ)− b(θ0)‖ ≤ εT {1 + o(1)}. Therefore, the prob-
ability Pθ{‖η(z)− η(y)‖ ≤ εT } is itself equivalent to the indicator function on this constraint, which a
Taylor series argument shows is also equivalent to ‖∇θb(θ0)(θ − θ0)‖ ≤ εT {1 + oP (1)} by the regularity
condition on b. Hence, asymptotically the posterior behaves like the prior distribution truncated over the
above ellipsoid and by prior continuity this is equivalent to the uniform distribution over this ellipsoid. It
is only when, in Case (iii), limT vT εT = 0 that a Bernstein-von Mises result is available. This behaviour
has been also demonstrated, since the initial submission of our article, in a preprint by Li and Fearnhead
(arXiv:1609.07135) where they observe that asymptotically the posterior distribution behaves like a con-
volution of a Gaussian distribution with variance of order 1/v2

T and a uniform distribution over a ball of
order εT , and depending on the order vT εT one of the two distributions dominates.
Remark 5: An immediate, and critical, consequence of Theorem 5 is that credible regions calculated
from the posterior will coincide with frequentist confidence regions only if εT = o(1/vT ). When εT =
O(1/vT ) credible regions have radius with the correct order of magnitude but miss the correct asymptotic
coverage. Lastly, if εT � v−1

T the credible regions have frequentist coverage going to 1.
Remark 6: As with Theorem 1, the behavior of Π(·|η0) described by Theorem 5 can be visualised. This
is demonstrated in Section 2·2 of the Supplementary Material, through the model of Example 1. Formal
verification of the conditions underpinning Theorem 2 is quite challenging, even in this case. Numerical
results nevertheless highlight that for this particular choice of model and summaries a Bernstein-von Mises
result holds, conditional on εT = o(1/vT ), with vT = T 1/2.
Remark 7: Assumption [A6], which is only required when vT εT = o(1), only applies to random variables
η(z) that are absolutely continuous with respect to the Lebesgue measure (or in the case of sums of random
variables, to sums that are non-lattice; see Bhattacharya and Rao, 1986). For discrete η(z), Assumption
[A6] must be adapted for Theorem 5 to be satisfied. One such adaptation is given as [A6∗]:
[A6∗] There exist δ > 0 and a countable set ET such that for all ‖θ − θ0‖ < δ,

Pθ {η(z) ∈ ET } = 1; for all x ∈ ET , Pθ {η(z) = x} > 0

and

sup
‖θ−θ0‖≤δ

∑
x∈ET

∣∣∣p[ΣT (θ){x− b(θ)}|θ]− v−kηT |A(θ0)|−1/2ϕkη [ΣT (θ){x− b(θ)}]
∣∣∣ = o(1).

Assumption [A6∗] is satisfied, for instance, in the case when η(z) is a sum of independent lattice ran-
dom variables, as in the population genetics experiment detailed in Section 3.3 of Marin et al. (2014),
which compares evolution scenarios of separated populations from a most recent common ancestor. Fur-
thermore, this example is such that Assumptions [A1′], [A2] and [A3′]-[A5] also hold, which means that
the conclusions of both Theorems 1 and 5 apply to this model with a large number of discrete summary
statistics.
Remark 8: Theorem 5 generalises to the case where the components of η(z) have different rates of conver-
gence. The statement and proof of this more general result are deferred to Section 1 of the Supplementary
Material.
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5. ASYMPTOTIC DISTRIBUTION OF THE POSTERIOR MEAN

5·1. Main Result

As noted above, the current literature on the asymptotics of approximate Bayesian computation has
focused primarily on conditions guaranteeing asymptotic normality of the posterior mean (or functions
thereof). To this end, it is important to stress that the posterior normality result in Theorem 5 is not a
weaker, or stronger, result than the asymptotic normality of an approximate point estimator; both results
simply focus on different objects. That said, existing proofs of the asymptotic normality of the posterior
mean all require asymptotic normality of the posterior. In this section, we demonstrate that this is not a
necessary condition.

To present the ideas as clearly as possible, we focus on the case of a scalar parameter θ and scalar
summary η(y); i.e., in this section we take kθ = kη = 1. An extension to the multivariate case is then
presented in Section 5·2.

In addition to Assumptions [A1′], [A2] and [A3′]-[A6], we require a further assumption on the prior.
[A7] The prior density p is such that (i) For θ0 ∈ Int(Θ), p(θ0) > 0; (ii) The density function p is β-
Hölder in a neighbourhood of θ0: there exist δ, L > 0 such that for all |θ − θ0| ≤ δ, and ∇(j)

θ p(θ0) the
(j)-th derivative of p(θ0),

∣∣p(θ)− bβ/2c∑
j=0

(θ − θ0)j
∇(j)
θ p(θ0)

j!

∣∣ ≤ L|θ − θ0|β .

(iii) For Θ ⊂ R,
∫

Θ
|θ|βp(θ)dθ < +∞.

THEOREM 3. Assumptions [A1′], [A2], [A3′]-[A5], with κ > β + 1 and [A7] are satisfied. Let b =
b(θ). Assume that b is β-Hölder in a neighbourhood of θ0 and that ∇θb(θ0) 6= 0. Denoting EΠε(θ) and
EΠε(b) as the posterior mean of θ and b, respectively, we then have the following characterisation:
(i) If limT vT εT = +∞ then, for b0 = b(θ0),

EΠε(b− b0) = {η(y)− b(θ0)}+

k∑
j=1

∇(2j−1)
θ p(b0)

(2j − 1)!(2j + 1)
ε2j
T +O(ε1+β

T ) + oP (1/vT ),

where k = bβ/2c, and ∇(j)
b b−1(b0) is the j-th derivative of the inverse of the map b,

EΠε(θ − θ0) =
{η(y)− b(θ0)}
∇θb(θ0)

+

bβc∑
j=1

∇(j)
b b−1(b0)

j!

b(j+k)/2c∑
l=dj/2e

ε2l
T∇

(2l−j)
b p(b0)

p(b0)(2l − j)!
+O(ε1+β

T ) + oP (1/vT ).

(13)
Hence, if ε2∧(1+β)

T = o(1/vT ),

EΠε(θ − θ0) =
{η(y)− b(θ0)}
∇θb(θ0)

+ oP (1/vT ), EΠε {vT (θ − θ0)} ⇒ N (0, V (θ0)/{∇θb(θ0)}2), (14)

where V (θ0) = limT var[vT {η(y)− b(θ0)}].
(ii) If limT vT εT = c ≥ 0, and when c = 0 Assumption [A6] holds, then (14) also holds.

Remark 9: Equation (13) highlights a potential deviation from the expected asymptotic behaviour of the
posterior mean EΠε(θ), i.e., the behaviour corresponding to T → +∞ and εT → 0. Indeed, the posterior
mean is asymptotically normal for all values of εT = o(1), but is asymptotically unbiased only if the
leading term in equation (13) is [∇θb(θ0)]−1{η(y)− b(θ0)}, which is satisfied under Case (ii) and in
Case (i) if vT ε2

T = o(1) (given β ≥ 1). However, in Case (i), if lim infT vT ε
2
T > 0, when β ≥ 3, the

posterior mean has a bias

ε2
T

[
∇bp(b0)

3p(b0)∇θb(θ0)
−
∇(2)
θ b(θ0)

2{∇θb(θ0)}2

]
+O(ε4

T ) + oP (1/vT ).
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Remark 10: Part (i) of Theorem 3 demonstrates that asymptotic normality of the posterior mean does
not require asymptotic normality of the posterior. However, part (ii) of Theorem 3 states that asymptotic
normality of both the posterior and the posterior mean can be achieved if εT = o(1/vT ). Therefore, an
immediate consequence of Theorems 5 and 3 is that the posterior mean of Πε(·|η0) is asymptotically
Gaussian with zero bias provided vT ε2

T = o(1) but to obtain both an asymptotically Gaussian posterior
mean and credible regions with asymptotically proper coverage we require εT = o(1/vT ). If vT � εT or
εT � v−1

T , then the frequentist coverage of credible balls centered at EΠε(θ) is not equal to the nominal
level. It goes to 1 in the latter case and to some constant greater than the nominal value in the former.

Remark 11: One consequence of Theorem 3 is that the ‘two-stage’ procedure advocated by Fearnhead
and Prangle (2012) does not yield a reduction in asymptotic variance over a point estimate produced
via Algorithm 1 using the ‘first-stage’ set of summaries. Consider a first-stage summary statistic η(y)
with dimension kη = kθ = 1. When either vT εT → +∞ or limT vT εT = c ≥ 0, and vT ε2

T = o(1), such
that vT {η(y)− b(θ)} ⇒ N{0, V (θ0)}, then vTEΠε{θ − θ0} ⇒ N(0, V (θ0)/{∇θb(θ0)}2). Then, using
a regression-adjusted version of η(y) as a summary statistic at the second stage, and applying Algorithm
1 with the same tolerance εT , leads to an equivalent asymptotic distribution for the ABC posterior mean.
This comment remains valid when kη > kθ ≥ 1.

Remark 12: As in the earlier cases, the implications of Theorem 3 can be visualised. In particular, using
the moving average example for illustration, the fact that asymptotic normality of the posterior mean does
not require = o(1/vT ) is highlighted in Section 2·3 of the Supplementary Material.

5·2. Comparison with Existing Results

Li and Fearnhead (2016) have, in parallel, analysed the asymptotic properties of the posterior mean or
some function thereof. (See also Creel et al., 2015.) Under the assumption of a central limit theorem for
the summary statistic and further regularity assumptions on the convergence of the density of the sum-
mary statistics to this normal limit, including the existence of an Edgeworth expansion with exponential
controls on the tails, Li and Fearnhead (2016) demonstrate asymptotic normality, with no bias, of the
posterior mean if εT = o(v

−3/5
T ). Heuristically, the authors derive this result using an approximation of

the posterior density pε{θ|η(y)}, based on the Gaussian approximation of the density of η(z) given θ and
using properties of the maximum likelihood estimator conditional on η(y). In contrast to our analysis,
these authors allow the acceptance probability defining the algorithm to be an arbitrary density kernel in
‖η(y)− η(z)‖. Consequently, their approach is more general than the accept/reject version considered in
Theorem 3.

However, the conditions Li and Fearnhead (2016) require of η(y) are stronger than ours. In particular,
our results on asymptotic normality for the posterior mean only require weak convergence of vT {η(z)−
b(θ)} under Pθ, with polynomial deviations that need not be uniform in θ. These assumptions allow for
the explicit treatment of models where the parameter space Θ is not compact. In addition, asymptotic
normality of the posterior mean requires Assumption [A6] only if εT = o(1/vT ). Hence if εT � v−1

T ,
then only deviation bounds and weak convergence are required, which are much weaker than convergence
of the densities. When εT = o(1/vT ) then Assumption [A6] essentially implies local (in θ) convergence of
the density of vT {η(z)− b(θ)}, but with no requirement on the rate of this convergence. This assumption
is weaker than the uniform convergence required in Li and Fearnhead (2016). Our results also allow for
an explicit representation of the bias that obtains for the posterior mean when lim infT vT ε

2
T > 0.

Li and Fearnhead (2016) also provide the interesting result that when kη > kθ ≥ 1 and if εT =

o(v
−3/5
T ), the posterior mean is asymptotically normal, and unbiased, but is not asymptotically efficient.

To help shed light on this phenomenon, the following result gives an alternative to Theorem 3.1 of these
authors and contains an explicit representation of the asymptotic expansion for the posterior mean when
kη > kθ ≥ 1.

THEOREM 4. Assumptions [A1′], [A2], [A3′]-[A5], with κ > 2, and [A7] are satisfied. Assume that
vT εT → +∞ and vT ε2

T = o(1). Assume also that b(.) and p(.) are Lipschitz in a neighbourhood of θ0.
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Then

EΠε{vT (θ − θ0)} = {∇θb(θ0)ᵀ∇θb(θ0)}−1∇θb(θ0)ᵀvT {η(y)− b(θ0)}+ op(1).

In addition, if {∇θb(θ0)ᵀ∇θb(θ0)}−1∇θb(θ0)ᵀ 6= ∇θb(θ0)ᵀ, the matrix

var
[
{∇θb(θ0)ᵀ∇θb(θ0)}−1∇θb(θ0)ᵀvT {η(y)− b(θ0)}

]
− {∇θb(θ0)ᵀV −1(θ0)∇θb(θ0)}−1,

is positive semi-definite, where {∇θb(θ0)ᵀV −1(θ0)∇θb(θ0)}−1 is the optimal asymptotic variance
achievable given η(y).

Finally, and in contrast to Li and Fearnhead (2016), our results in Theorem 5 completely characterize
the asymptotic distribution of the posterior for all εT = o(1) that admit posterior concentration. This
general characterization allows us to demonstrate, via Theorem 3 part (i), that asymptotic normality and
unbiasedness of the posterior mean remain achievable even if limT vT εT = +∞, provided the tolerance
satisfies εT = o(v

−1/2
T ).

6. PRACTICAL IMPLICATIONS OF THE RESULTS

6·1. General Implications

Algorithm 1 does not reflect the way in which approximate Bayesian computation is typically applied
in practice. The most common version replaces the acceptance step by a nearest-neighbour selection step,
whereby draws of θ are retained only if they yield distances in the left tail of {θ ∈ Θ : d2{η(z), η(y)}};
see, for example, Biau et al. (2015). More precisely, Step (3) in Algorithm 1 is substituted with
(3′) Select all θi associated with the α = δ/N smallest distances d2{η(zi), η(y)} for some δ.

This nearest-neighbour version corresponds to accepting draws of θ associated with an empirical quan-
tile over the simulated distances d2{η(z), η(y)}, which defines the acceptance probability for Algorithm
1. A key practical insight of this section is that, on the one hand, the order of magnitude of the accep-
tance probability, αT = pr (‖η(z)− η(y)‖ ≤ εT ), is only affected by the dimension of θ, as formalised
in Corollary 1. On the other hand, if εT becomes much smaller than 1/vT , the dimension of η(·) impacts
on our ability to consistently estimate this acceptance probability, as formalized in Corollary 2.

COROLLARY 1. Under the conditions in Theorem 5:
(i) If εT � v−1

T or εT = o(v−1
T ), then the acceptance rate associated with the threshold εT is

αT = pr (‖η(z)− η(y)‖ ≤ εT ) � (vT εT )kη × v−kθT . v−kθT .

(ii) If εT � v−1
T , then

αT = pr (‖η(z)− η(y)‖ ≤ εT ) � εkθT � v−kθT .

This shows that choosing a tolerance εT = o(1) is equivalent to choosing an αT = o(1) quantile of
‖η(z)− η(y)‖ and, hence, theoretically rationalizes the nearest-neighbour version of Algorithm 1. It also
demonstrates the role played by the dimension of θ on the rate at which αT declines to zero. In Case (i), if
εT � v−1

T , then αT � v−kθT . On the other hand, if εT = o(v−1
T ), as required for the Bernstein-von Mises

result in Theorem 5, the associated acceptance probability goes to zero at the faster rate, αT = o(v−kθT ).

In Case (ii), where εT � v−1
T , it follows that αT � v−kθT .

Linking εT and αT as shown gives a means of choosing the αT quantile of the simulations, or
equivalently the tolerance εT , in such a way that a particular type of posterior behaviour occurs for
large T : choosing αT & v

−kθ
T gives a posterior that concentrates; under the more stringent condition

αT = o(v−kθT ) the posterior both concentrates and is approximately Gaussian in large samples. Such re-
sults are of critical importance as they give practitioners an understanding of what to expect from the
procedure, and a means of detecting potential issues if this expected posterior behaviour is not produced
when choosing a certain αT quantile. Moreover, given that there is no direct link between the posterior
Πε(·|η0) and the exact posterior based on the full likelihood, this result at least gives researchers some
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understanding of the statistical properties that Πε(·|η0) should display, for large T , when it is obtained
from the popular nearest-neighbour version of the algorithm.

Furthermore, Corollary 1 demonstrates that to obtain reasonable statistical behavior, the rate at which
αT declines to zero must be faster the larger the dimension of θ, with the order of αT unaffected by the
dimension of η. This result thus provides theoretical evidence of a curse-of-dimensionality encountered in
these algorithms as the dimension of the parameter of interest increases, with this being the first piece of
work, to our knowledge, to link the dimension of θ to the acquisition of certain asymptotic properties for
the posterior Πε(·|η0). This finding also provides theoretical justification for dimension reduction methods
that process parameter dimensions individually and independent of the other remaining dimensions; see,
for example, the regression adjustment approaches of Beaumont et al. (2002), Blum (2010) and Fearnhead
and Prangle (2012), and the integrated auxiliary likelihood approach of Martin et al. (2016), all of which
treat parameters one at a time in the hope of obtaining more accurate marginal posterior inference.

The striking result of Corollary 1 is that, under the nearest-neighbour interpretation of Algorithm 1
and for an acceptance probability αT = o(1), our asymptotic results are achievable if αT decays to
zero as some power of v−kθT ; i.e., the order of αT is unaffected by the dimension of the summaries,
kη . However, αT can not be accessed in practice and so the nearest-neighbour version of Algorithm 1
is implemented using a Monte Carlo approximation to αT , which is based on the accepted draws of θ.
It then makes sense to tie our results to this Monte Carlo approximation of αT . To do so, we link the
tolerance εT to the Monte Carlo error associated with estimating αT , which depends on the number
of draws in Algorithm 1, which we index explicitly by T and refer to as NT hereafter. Specifically, for
α̂T =

∑NT
i=1 1l [d2{η(y), η(z)} ≤ εT ] /NT , Corollary 2 establishes conditions onNT and εT under which

α̂T = αT {1 + op(1)}.

COROLLARY 2. In the setting of Corollary 1, letNT be the number of Monte Carlo draws in Algorithm
1. If either of the following is satisfied
(i) εT = o(v−1

T ) and (vT εT )−kηε−kθT M ≤ NT for M large enough;
(ii) εT & v−1

T and ε−kθT M ≤ NT for M large enough;
then the proportion of accepted draws, α̂T , satisfies, with probability going to 1,

α̂T = αT {1 + op(1)}.

Corollary 2 demonstrates that the large sample properties of approximate Bayesian posteriors discussed
herein are achievable using the nearest-neighbour interpretation of Algorithm 1 and the estimated accep-
tance probability α̂T . Furthermore, it is also critical to note that, depending on the choice of εT , con-
sistency of α̂T , for αT , may require a larger number of Monte Carlo draws, NT , the larger is kη , the
dimension of η. In particular, kη impacts on NT only if εT converges to zero fast enough to obtain an
asymptotically Gaussian posterior. Hence, if one is not concerned with obtaining asymptotic Gaussian-
ity and, thus, accurate frequentist coverage, it is best to choose εT = δv

−1/2
T for some small constant

δ > 0. However, if a Bernstein-von Mises result is a goal, then the dimension kη has a negative impact.
Interpreted this way, Corollary 2 elucidates the tension between posterior accuracy and the computational
cost required to obtain that accuracy. In addition, taken together, Corollaries 1 and 2 provide a theoret-
ically sound rule for choosing εT (or αT ) and the number of Monte Carlo draws NT that can easily be
implemented in practice. Contrary to Li and Fearnhead (2016), we do not explore importance sampling
approaches that would possibly allow for a non-vanishing acceptance rate, but study the basic Monte Carlo
approximation. In particular, for the Monte Carlo error of the estimator of EΠε(θ) to be of smaller order
than the estimation error, which is the larger of εT and v−1

T , one would need the number of simulations to
satisfy NT � α−1

T , which is satisfied under the conditions of Corollary 2.
Lastly, the results in this section suggest that the persistent opinion in the literature that εT in Algorithm

1 should always be taken “as small as the computing budget allows” is questionable. Once εT is chosen
small enough to satisfy Case (iii) of Theorem 5, which leads to the most stringent requirement on the
tolerance, vT εT = o(1), there may well be no gain in pushing εT (or, equivalently, αT ) closer to zero (as
shown in Corollary 1) and thereby incurring an even larger computational cost (as shown in Corollary 2).
We explore these ideas in the following section via a simple numerical illustration. The example adopted is
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sufficiently regular to ensure that the central limit theorem behind the Bernstein-von Mises result holds for
a reasonably small sample size, and that the associated order condition on εT has practical content. This
illustration highlights the fact that, despite the asymptotic foundations of the conclusions drawn above
regarding the optimal choice of εT , those conclusions can be relevant even for sample sizes encountered
in practice.

6·2. Numerical Illustration of Quantile Choice

Consider the simple example where we observe a sample {yt}Tt=1 from yt ∼ N (µ, σ) with T = 100,
and our goal is posterior inference on θ = (µ, σ)ᵀ. We use as summaries the sample mean and variance,
x̄ and s2

T , which satisfy a central limit theorem at rate T 1/2. In order to guarantee approximate posterior
normality, we choose an αT quantile of the simulated distances according to αT = o(1/T ), because of
the joint inference on µ and σ. For the purpose of this illustration, we will compare inference based on the
nearest-neighbour version of Algorithm 1 using four different choices of αT , where we drop the subscript
T for notational simplicity: α1 = 1/T 1.1, α2 = 1/T 3/2, α3 = 1/T 2 and α4 = 1/T 5/2.

Draws for (µ, σ) are simulated on [0.5, 1.5]× [0.5, 1.5] according to independent uniforms U [0.5, 1.5].
The number N of draws is chosen so that we retain 250 accepted draws for each of the different choices
(α1, ..., α4). The exact (finite sample) marginal posteriors of µ and σ are produced by numerically evalu-
ating the likelihood function, normalizing over the support of the prior and marginalizing with respect to
each parameter. Given the sufficiency of (x̄, s2

T ), the exact marginal posteriors for µ and σ are equal to
those based directly on the summaries themselves.

We summarize the accuracy of the resulting posterior estimates, across these four quantile choices, by
computing the average, over 50 replications, of the root mean squared error of the estimates of the exact
posteriors for each parameter. For example, in the case of the parameter µ, we define the root mean squared
error between the marginal posterior obtained from Algorithm 1 using αj and denoted by p̂αj{µ|η(y)},
and the exact marginal posterior p(µ|y) as

RMSEµ(αj) =

(
1

G

G∑
g=1

[
p̂gαj{µ|η(y)} − pg(µ|y)

]2)1/2

, (15)

where p̂g is the ordinate of the density estimate from the nearest-neighbour version of Algorithm 1 and
pg the ordinate of the exact posterior density, at the g-th grid point upon which the density is estimated.
The root mean squared error for the σ marginal is computed analogously. Across the 50 replications we
fix T = 100 and generate observations according to the parameter values µ0 = 1, σ0 = 1.

Before presenting the replication results, it is instructive to consider the graphical results of one par-
ticular run of the algorithm (for each of the αj values). Figure 2 plots the resulting marginal posterior
estimates and compares these with the exact (finite sample) marginal posteriors of µ and σ (respectively),
the implication of the argument presented at the end of the previous section being that for large enough
T , once εT reaches a certain threshold, decreasing the tolerance further will not necessarily result in more
accurate estimates of these exact posteriors. This implication is in evidence in Figure 2: in the case of
µ, there is a clear visual decline in the accuracy with which ABC estimates the exact marginal posterior
when choosing quantiles smaller than α2; whilst in the case of σ, the worst performing estimate is the one
associated with the smallest value of αj .

The results in Table 1 report average root mean squared errors, each as a ratio to the value associated
with α4 = 1/T 5/2. Values smaller than 1 thus indicate that the larger and less computationally burden-
some value of αj yields on average a more accurate posterior estimate than that yielded by α4. In brief,
Table 1 paints a similar picture to that of Figure 2: for σ, the estimates based on αj , j = 1, 2, 3, are all
more accurate on average than those based on α4, with there being no gain but a slight decline in accuracy
beyond α1 = 1/T 1.1; for µ, estimates based on α2 and α3 are both more accurate that those based on α4

and there is minimal gain in pushing the quantile below α1.
These numerical results have important computational implications. To wit, and as we have done in this

study, the retention of 250 draws and, hence, the maintenance of a given level of Monte Carlo accuracy,
requires taking: N = 210e03 for α1, N = 1.4e06 for α2, N = 13.5e06 for α3, and N = 41.0e06 for
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Figure 1. Exact marginal posteriors (—). Approximate
Bayesian computation posteriors based on αj : α1 =

1/T 1.1. (· · · ); α2 = 1/T 3/2 (- - -); α3 = 1/T 2 (— · —
); α4 = 1/T 5/2 —∗—

α4. That is, the computational burden associated with decreasing the quantile in the manner indicated
increases drastically: posteriors based on α4 (for example) require a value of N that is three orders of
magnitude greater than those based on α1, but this increase in computational burden yields no, or minimal,
gain in accuracy. The extension of such explorations to more scenarios is beyond the scope of this paper;
however, we speculate that, with due consideration given to the properties of both the true data generating
process and the chosen summary statistics and, hence, of the sample sizes for which Theorem 5 has
practical content, the same sort of qualitative results will continue to hold.

Table 1. Ratio of the root mean square error for marginal posterior estimates based on the
smallest quantile, α4 = 1/T 5/2

α1 = 1/T 1.1 α2 = 1/T 1.5 α3 = 1/T 2

RMSEµ(αj) 1.17 0.99 0.98
RMSEσ(αj) 0.86 0.87 0.91
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SUPPLEMENTARY MATERIALS

The following appendices contain proofs of all theoretical results, as well as numerical examples that
illustrate the theoretical results.

A. PROOFS

A·1. Proof of Theorem 1

Let εT > 0 and assume that y ∈ Ωε = {y : d2{η(y), b(θ0)} ≤ εT /3}. From Assumption [A1] and
ρT (εT /3) = o(1), P0 (Ωε) = 1 + o(1). Consider the joint event Aε(δ′) = {(z, θ) : d2{η(z), η(y)} ≤
εT } ∩ d2{b(θ), b(θ0)} > δ′}. For all (z, θ) ∈ Aε(δ′)

d2{b(θ), b(θ0)} ≤ d2{η(z), η(y)}+ d2{b(θ), η(z)}+ d2{b(θ0), η(y)}
≤ 4εT /3 + d2{b(θ), η(z)}

so that (z, θ) ∈ Aε(δ′) implies that

d2{b(θ), η(z)} > δ′ − 4εT /3

and choosing δ′ ≥ 4εT /3 + tε leads to

P {Aε(δ′)} ≤
∫

Θ

Pθ (d2{b(θ), η(z)} > tε) dΠ(θ),
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and

Π (d2{b(θ), b(θ0)} > 4εT /3 + tε|d2{η(y), η(z)} ≤ εT ) = Πε (d2{b(θ), b(θ0)} > 4εT /3 + tε|η0)

≤
∫

Θ
Pθ (d2{b(θ), η(z)} > tε) dΠ(θ)∫

Θ
Pθ (d2{η(z), η(y)} ≤ εT ) dΠ(θ)

. (A1)

Moreover, since

d2{η(z), η(y)} ≤ d2{b(θ), η(z)}+ d2{b(θ0), η(y)}+ d2{b(θ), b(θ0)} ≤ εT /3 + εT /3 + d2{b(θ), b(θ0)}

provided d2{b(θ), η(z)} ≤ εT /3, then∫
Θ

Pθ (d2{η(z), η(y)} ≤ εT ) dΠ(θ) ≥
∫
d2{b(θ),b(θ0)}≤εT /3

Pθ (d2{η(z), η(y)} ≤ εT /3) dΠ(θ)

≥ Π (d2{b(θ), b(θ0)} ≤ εT /3)− ρ(εT /3)

∫
d2{b(θ),b(θ0)}≤εT /3

c(θ)dΠ(θ).

If part (i) of Assumption [A1] holds,∫
d2{b(θ),b(θ0)}≤εT /3

c(θ)dΠ(θ) ≤ c0Π (d2{b(θ), b(θ0)} ≤ εT /3)

and for εT small enough,∫
Θ

Pθ (d2{η(z), η(y)} ≤ εT ) dΠ(θ) ≥ Π (d2{b(θ), b(θ0)} ≤ εT /3)

2
, (A2)

which, combined with (A1) and Assumption [A2], leads to

Πε (d2{b(θ), b(θ0)} > 4εT /3 + tε|η0) . ρT (tε)ε
−D
T .

1

M
(A3)

by choosing tε = ρ−1
T (εDT /M) with M large enough. If part (ii) of Assumption [A1] holds, a Hölder

inequality implies that∫
d2{b(θ),b(θ0)}≤εT /3

c(θ)dΠ(θ) . Π (d2{b(θ), b(θ0)} ≤ εT /3)
a/(1+a)

and if εT satisfies

ρT (εT ) = o
(
ε
D/(1+a)
T

)
= O

(
Π (d2{b(θ), b(θ0)} ≤ εT /3)

1/(1+a)
)

then (A3) remains valid.

A·2. Proof of Theorem 2

Herein we state and prove a generalization of Theorem 2 that allows for differing rates of convergence
for η(y). The result for Theorem 2 in the text is a direct consequence of this generalization.

In particular, in this section we assume that there exists a sequence of (kη × kη) positive definite ma-
trices ΣT (θ) such that for all θ in a neighbourhood of θ0 ∈ Int(Θ),

c1DT ≤ ΣT (θ) ≤ c2DT , DT = diag(vT (1), · · · , vT (k)), (A4)

with 0 < c1, c2 < +∞, vT (j)→ +∞ for all j and the vT (j) possibly all distinct and A ≤ B meaning
that the matrix B −A is semi-definite positive. Thus, in the presentation and proof of this generalization
to Theorem 2 we do not restrict ourselves to identical convergence rates for the components of the statistic
η(z). For simplicity’s sake we order the components so that

vT (1) ≤ · · · ≤ vT (kη). (A5)
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For all j, we assume limT vT (j)εT = lim supT vT (j)εT . For any square matrixA of dimension kη , if q ≤
kη , A[q] denotes the (q × q) square upper sub-matrix of A. Also, let jmax = max{j : limT vT (j)εT = 0}
and if, for all j, limT vT (j)εT > 0 then jmax = 0.

In addition to [A2] in Section 3 of the text, the following conditions (reproduced from the main paper
here for the convenience of the reader) are needed to establish the generalization of Theorem 2, with
Assumptions [A4′]–[A6′] being modifications of Assumptions [A4]–[A6], respectively, that cater for the
extension to varying rates of convergence for η(z).

[A1′] Assumption [A1] holds andthere exist a positive definite matrix ΣT (θ0), κ > 1 and δ > 0 such that
for all ‖θ − θ0‖ ≤ δ, Pθ (‖ΣT (θ0){η(z)− b(θ)}‖ > u) ≤ c0

uκ for all 0 < u ≤ δvT (1) and c0 < +∞.

[A3′] Assumption [A3] holds, the function b(·) is continuously differentiable at θ0 and the Jacobian
∇θb(θ0) has full column rank kθ.

[A4′] Given the sequence of (kη × kη) positive definite matrices ΣT (θ) defined in (A4), for some δ > 0
and all ‖θ − θ0‖ ≤ δ,

ΣT (θ){η(z)− b(θ)} ⇒ N (0, Ikη ),

where Ikη is the (kη × kη) identity matrix.

[A5′] For all ‖θ − θ0‖ ≤ δ, the sequence of functions θ 7→ ΣT (θ)D−1
T converges to some positive definite

A(θ) and is equicontinuous at θ0.

[A6′] For some positive δ and all ‖θ − θ0‖ ≤ δ, and for all ellipsoids

BT =

(t1, · · · , tjmax
) :

jmax∑
j=1

t2j/hT (j)2 ≤ 1


with limT hT (j) = 0, for all j ≤ jmax and all u ∈ Rjmax fixed,

lim
T

Pθ
[
{ΣT (θ)}[jmax]{η(z)− b(θ)} − u ∈ BT

]∏jmax

j=1 hT (j)
= ϕjmax

(u),

Pθ
[
{ΣT (θ)}[jmax]{η(z)− b(θ)} − u ∈ BT

]∏jmax

j=1 hT (j)
≤ H(u),

∫
H(u)du < +∞,

(A6)

for ϕjmax
(·) the density of a jmax-dimensional normal random variate.

THEOREM 5. Assume that [A1′], with κ > kθ, [A2] and [A3′] -[A5′], are satisfied, where for η1, η2 ∈
B, d2{η1, η2} = ‖η1 − η2‖. The following results hold:

(i) limT vT (1)εT = +∞: With probability approaching one, the posterior distribution of ε−1
T (θ − θ0)

converges to the uniform distribution over the ellipse {xᵀB0x ≤ 1} with B0 = ∇θb(θ0)
ᵀ∇θb(θ0). In

other words, for all f continuous and bounded, with probability approaching one∫
f{ε−1

T (θ − θ0)}dΠε(θ|η0)→
∫
uᵀB0u≤1

f(u)du∫
uᵀB0u≤1

du
. (A7)

(ii) There exists k0 < kη such that limT vT (1)εT = limT vT (k0)εT = c, 0 < c < +∞, and

limT vT (k0 + 1)εT = +∞: Assume Leb
(∑k0

j=1

[
{∇θb(θ0)(θ − θ0)}[j]

]2
≤ cε2

T

)
= +∞, then

Πε

[
ΣT (θ0){b(θ)− b(θ0)} − Z0

T ∈ B|η0

]
→ 0, (A8)

for all bounded measurable sets B.

(iii) There exists jmax < kη such that limT vT (jmax)εT = 0 and limT vT (jmax + 1)εT = +∞: Assume
that Assumption [A6′] is satisfied, then (A7) is satisfied.
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(iv) limT vT (j)εT = c > 0 for all j ≤ kη or, and with reference to case (ii),

Leb

(∑k0
j=1

[
{∇θb(θ0)(θ − θ0)}[j]

]2
≤ cε2

T

)
< +∞: There exists a non-Gaussian probability distribu-

tion on Rkη , Qc that depends on c and is such that

Πε

[
ΣT (θ0){b(θ)− b(θ0)} − Z0

T ∈ B|η0

]
→ Qc(B). (A9)

More precisely, for Φkη (·) the CDF of a kη-dimensional standard normal random variable

Qc(B) ∝
∫
B

Φkη
{

(Z − x)ᵀA(θ0)ᵀA(θ0)(Z − x) ≤ c2
}
dx

(v) limT vT (kη)εT = 0: Assume that Assumption [A6′] holds for jmax = kη , then

lim
T→+∞

Πε

[
ΣT (θ0){b(θ)− b(θ0)} − Z0

T ∈ B|η0

]
= Φkη (B). (A10)

Proof. We work with b instead of θ as the parameter, with injectivity of θ 7→ b(θ) required to re-state
all results in terms of θ. Set ΣT (θ0){η(y)− b0} = Z0

T , for b0 = b(θ0), and η0 = η(y). We control the
approximate Bayesian computation posterior expectation of non-negative and bounded functions fT (θ −
θ0):

EΠε {fT (θ − θ0)|η0} =

∫
fT (θ − θ0)dΠε (θ|η0)

=

∫
fT (θ − θ0)1l‖θ−θ0‖≤λT dΠε (θ|η0) + oP (1)

=

∫
‖θ−θ0‖≤λT p(θ)fT (θ − θ0)Pθ (‖η(z)− η(y)‖ ≤ εT ) dθ∫

‖θ−θ0‖≤λT p(θ)Pθ (‖η(z)− η(y)‖ ≤ εT ) dθ
+ oP (1)

where the second equality uses the posterior concentration of ‖θ − θ0‖ at the rate λT�1/vT (1). Now,

ΣT (θ0){η(z)− η(y)} = ΣT (θ0){η(z)− b(θ)}+ ΣT (θ0){b(θ)− b0} − ΣT (θ0){η(y)− b0}
= ΣT (θ0){η(z)− b(θ)}+ ΣT (θ0){b(θ)− b0} − Z0

T .

Set ZT = ΣT (θ0){η(z)− b(θ)} and Z0
T = ΣT (θ0){η(y)− b(θ0)}. For fixed θ,

‖Σ−1
T (θ0) [ΣT (θ0){η(z)− b(θ)} − x] ‖ � ‖D−1

T [ΣT (θ0){η(z)− b(θ)} − x] ‖

and

ΣT (θ0){b(θ)− b0} − Z0
T = ΣT (θ0)∇θb(θ0)(θ − θ0)[1 + o(1)]− Z0

T ∈ B.

Case (i) : limT vT (1)εT = +∞. Consider x(θ) = ε−1
T (b(θ)− b0) and fT (θ − θ0) = f{ε−1

T (θ − θ0)},
where f(·) is a non-negative, continuous and bounded function. On the event Ωn,0(M) = {‖Z0

T ‖ ≤
M/2} which has probability smaller than ε by choosing M large enough, we have that

Pθ
(
‖ZT − Z0

T ‖ ≤M
)
≥ Pθ (‖ZT ‖ ≤M/2) ≥ 1− c(θ)

Mκ
≥ 1− c0

Mκ
≥ 1− ε

for all ‖θ − θ0‖ ≤ λT . Since, η(z)− η(y) = Σ−1
T (θ0)(ZT − Z0

T ) + εTx, we have that on Ωn,0,

Pθ
(
‖Σ−1

T (θ0)(ZT − Z0
T ) + εTx‖ ≤ εT

)
≥ Pθ

{
‖Σ−1

T (θ0)(ZT − Z0
T )‖ ≤ εT (1− ‖x‖)

}
≥ Pθ

{
‖ZT − Z0

T ‖ ≤ vT (1)εT (1− ‖x‖)
}
≥ 1− ε
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as soon as ‖x‖ ≤ 1−M/{vT (1)εT } with M as above. This, combined with the continuity of p(·) at θ0

and condition [A3′], implies that∫
f{ε−1

T (θ − θ0)}dΠε (θ|η0)

=

∫
‖θ−θ0‖≤λT f{ε

−1
T (θ − θ0)}Pθ

(
‖Σ−1

T (θ0)(ZT − Z0
T ) + εTx‖ ≤ εT

)
dθ∫

‖θ−θ0‖≤λT Pθ
(
‖Σ−1

T (θ0)(ZT − Z0
T ) + εTx‖ ≤ εT

)
dθ

{1 + o(1)}+ oP (1)

=

∫
‖x(θ)‖≤1−M/{vT (1)εT } f{ε

−1
T (θ − θ0)}dθ∫

‖x(θ)‖≤1−M/{vT (1)εT } dθ
{1 + o(1)}

+

∫
‖θ−θ0‖≤λT 1l‖x(θ)‖>1−M/{vT (1)εT }f{ε

−1
T (θ − θ0)}Pθ

(
‖Σ−1

T (θ0)(ZT − Z0
T ) + εTx‖ ≤ εT

)
dθ∫

‖x(θ)‖≤1−M/{vT (1)εT } dθ
+ oP (1).

(A11)

The first term is approximately equal to

N1 =

∫
‖b(εTu+θ0)−b0‖≤1

f(u)du∫
‖b(εTu+θ0)−b0‖≤1

du

and the regularity of the function θ → b(θ) implies that∫
‖b(εTu+θ0)−b0‖≤εT

du =

∫
‖∇θb(θ0)u‖≤1

du+ o(1) =

∫
uᵀB0u≤1

du+ o(1)

with B0 = ∇θb(θ0)ᵀ∇θb(θ0). This leads to

N1 =

∫
uᵀB0u≤1

f(u)du
/∫

uᵀB0u≤1

du.

We now show that the second term of the right hand side of (A11) converges to 0. We split it into an in-
tegral over 1 +M{vT (1)εT }−1 ≥ ‖x(θ)‖ ≥ 1−M{vT (1)εT }−1 and 1 +M{vT (1)εT }−1 ≤ ‖x(θ)‖.
This leads, for the first part, to an upper bound

N2 ≤
‖f‖∞

∫
1+M/{vT (1)εT }≥‖x(θ)‖>1−M/{vT (1)εT } dθ∫

‖x(θ)‖≤1−M/{vT (1)εT } dθ
. {vT (1)εT }−1 = o(1)

Finally, for the third integral over ‖x(θ)‖ > 1 +M{vT (1)εT }−1 we have

Pθ
(
‖Σ−1

T (θ0)(ZT − Z0
T ) + εTx(θ)‖ ≤ εT

)
≤ Pθ

(
‖Σ−1

T (θ0)(ZT − Z0
T )‖ ≥ εT ‖x(θ)‖ − εT

)
≤ Pθ

(
‖ZT − Z0

T ‖ ≥ vT (1)εT (‖x(θ)‖ − 1)
)
≤ c0{vT (1)εT (‖x(θ)‖ − 1)}−κ,

which leads to

N3 =

∫
‖θ−θ0‖≤λT 1l‖x(θ)‖>1+M/{vT (1)εT }f{ε

−1
T (θ − θ0)}Pθ

(
‖Σ−1

T (θ0)(ZT − Z0
T ) + εTx(θ)‖ ≤ εT

)
dθ∫

‖x(θ)‖≤1−M/{vT (1)εT } dθ

.M−κε−kθT

∫
2≥‖x‖>1+M/{vT (1)εT }

dθ + 2κε−kθT

∫
2≤‖x(θ)‖

{vT (1)εT ‖x(θ)‖}−κdθ

.M−κ + ε−kθT

∫
c1εT≤‖θ−θ0‖

{vT (1)‖∇θb(θ0)(θ − θ0)‖}−κdθ .M−κ

provided κ > 1. Since M can be chosen arbitrarily large, putting N1, N2 and N3 together, we obtain that
the approximate Bayesian computation posterior distribution of ε−1

T (θ − θ0) is asymptotically uniform
over the ellipsoid {xᵀB0x ≤ 1} and (i) is proved.
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Case (ii) : +∞ > limT vT (1)εT = c > 0 and limT vT (kη)εT = +∞. We consider fT (θ − θ0) =
1l[ΣT (θ0){b(θ)− b0} − Z0

T ∈ B] and x(θ) = ΣT (θ0){b(θ)− b0} − Z0
T .

Set k0 such that for all j ≤ k0, limT vT (j)εT = c and for all j > k0, limT vT (j)εT = +∞. We write
ΣT (θ0) = AT (θ0)DT , so that AT (θ0)→ A(θ0) as T → +∞, where A(θ0) is positive definite and sym-
metric.

Pθ
(
‖Σ−1

T (θ0) [ΣT (θ0){η(z)− b(θ)} − x] ‖ ≤ εT
)

= Pθ
(
‖D−1

T A−1
T (θ0) (ZT − x) ‖ ≤ εT

)
= Pθ

(
‖D−1

T (Z̃T − xT )‖ ≤ εT
)

where Z̃T = A−1
T (θ0)ZT ⇒ N (0, A(θ0)IkηA(θ0)ᵀ) and xT = A−1

T (θ0)x = A−1(θ0)x+ oP (1).
We then have for MT → +∞ such that MT {vT (k0 + 1)εT }−2 = o(1).

Pθ
(
‖D−1

T (Z̃T − xT )‖ ≤ εT
)
≤ Pθ

 k0∑
j=1

{Z̃T (j)− xT (j)}2 ≤ vT (1)2ε2
T


≥ Pθ

 k0∑
j=1

{Z̃T (j)− xT (j)}2 ≤ vT (1)2ε2
T [1−MT {vT (k0 + 1)εT }−2]


− Pθ

 k∑
j=k0+1

{Z̃T (j)− xT (j)}2 > M−1
T {εT vT (k0 + 1)}−2


≥ Pθ

 k0∑
j=1

{Z̃T (j)− xT (j)}2 ≤ vT (1)2ε2
T [1−M−1

T {vT (k0 + 1)εT }−2]

− o(1)

(A12)

This implies that for all x and all ‖θ − θ0‖ ≤ λT

Pθ

(
‖D−1

T (Z̃T − xT )‖ ≤ εT
)

= Pθ

 k0∑
j=1

[{
A−1(θ0)ZT

}
(j)− {A−1(θ0)x}(j)

]2 ≤ c
+ o(1)

Since A−1(θ0)x = DT∇θb(θ0)(θ − θ0)−A−1(θ0)Z0
T , if

Leb

 k0∑
j=1

[
{∇θb(θ0)(θ − θ0)}[j]

]2
≤ cε2

T

 = +∞ ,

then as in case (i) we can bound

Πε

{
ΣT (θ0)(b− b0)− Z0

T ∈ B|η0
}
≤

∫
A−1(θ0)x∈B Pθ

(∑k0
j=1

[{
A−1(θ0)ZT

}
(j)− z(j)

]2 ≤ c) dθ∫
|θ|≤M Pθ

(∑k0
j=1 [{A−1(θ0)ZT } (j)− z(j)]2 ≤ c

)
dθ

+ oP (1)

which goes to zero when M goes to infinity. Since M can be chosen arbitrarily large, (12) is proven.

Case (iii) : limT vT (1)εT = 0 and limT vT (kη)εT = +∞. Again we consider fT (θ − θ0) =
1l[ΣT (θ0){b(θ)− b0} − Z0

T ∈ B] and x(θ) = ΣT (θ0){b(θ)− b0} − Z0
T . As in the computations leading
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to (A12), we have: setting eT = MT (vT (k0 + 1)ε−1
T )−2, under Assumption [A6′],

Pθ

(
‖D−1

T (Z̃T − xT )‖ ≤ εT
)
≤ Pθ

jmax∑
j=1

vT (j)−2{Z̃T (j)− xT (j)}2 ≤ ε2
T


≥ Pθ

jmax∑
j=1

vT (j)−2{Z̃T (j)− xT (j)}2 ≤ ε2
T (1− eT )


= ϕjmax

(x[k1]){1 + o(1)}
jmax∏
j=1

{vT (j)εT },

when ‖θ − θ0‖ < λT where ϕjmax
is the centered Gaussian density of the jmax dimensional vector, with

covariance {A(θ0)2}[jmax] . This implies as in case (ii) that, with probability going to 1

lim sup
T

Πε

{
ΣT (θ0)(b− b0)− Z0

T ∈ B|η0

}
≤

∫
A(θ0)B

ϕjmax(x[jmax])dx∫
|x|≤M ϕjmax

(x[jmax])dx
≤M−(kη−jmax)

and choosing M arbitrary large leads to equation (11) in the text.

Case (iv) : If limT vT (j)εT = c > 0 for all j ≤ kη . To prove equation (13) in the text, we use the compu-
tation of case (ii) with k0 = kη , so that (A12) implies that

Pθ

(
‖D−1

T (Z̃T − xT )‖ ≤ εT
)

= Pθ

(
‖Z̃T − xT ‖2 ≤ vT (1)2ε2

T

)
= P

(
‖A−1(θ0)ZT −A−1(θ0)x‖2 ≤ c2

)
+ o(1)

and for all δ > 0, choosing M large enough, and when T is large enough

Πε

{
ΣT (θ0)(b− b0)− Z0

T ∈ B|η0
}
≤
∫
x∈B Pθ

(
‖A−1(θ0)ZT −A−1(θ0)x‖2 ≤ c2

)
dx∫

|x|≤M Pθ (‖A−1(θ0)ZT −A−1(θ0)x‖2 ≤ c2) dx

≥
∫
x∈B Pθ

(
‖A−1(θ0)ZT −A−1(θ0)x‖2 ≤ c2

)
dx∫

|x|≤M Pθ (‖A−1(θ0)ZT −A−1(θ0)x‖2 ≤ c2) dx+ δ
+ oP (1)

Since M can be chosen arbitrarily large and since when M goes to infinity,∫
|x|≤M

Pθ

(
‖Z̃T −A−1(θ0)x‖2 ≤ c2

)
dx→

∫
x∈Rkη

Pθ

(
‖Z̃T −A−1(θ0)x‖2 ≤ c2

)
dx < +∞,

the result follows.

Case (v) : limT vT (k)εT = 0. Take ΣT (θ0) = AT (θ0)DT . For some δ > 0 and all ‖θ − θ0‖ ≤ δ,

Pθ
(∥∥D−1

T {A
−1
T (θ0)ZT −A−1

T (θ0)x}
∥∥ ≤ εT ) = Pθ

(∥∥D−1
T {A

−1(θ0)ZT −A−1(θ0)x}
∥∥ ≤ εT )+ o(1)

= Pθ

(∥∥A−1(θ0)ZT −A−1(θ0)x
∥∥2 ≤ v2

T (k)ε2
T

)
+ o(1)

= Pθ
[{
A−1(θ0)ZT −A−1(θ0)x

}
∈ BT

]
+ o(1).

From both assertions of Assumption [A6′] and the dominated convergence theorem, the above implies
(for jmax = kη)

1∏kη
j=1 εT vT (j)

∫
Pθ
[{
A−1(θ0)ZT −A−1(θ0)x

}
∈ BT

]
dx =

∫
ϕkη (x)dx+ o(1) = 1 + o(1) .
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Likewise, similar arguments yield

1∏kη
j=1 εT vT (j)

∫
1lx∈BPθ

[{
A−1(θ0)ZT −A−1(θ0)x

}
∈ BT

]
dx =

∫
1lx∈Bϕkη (x)dx+ o(1)

= Φkη (B) + o(1).

Together, these two equivalences yield the desired result. �

A·3. Proof of Theorem 3

Proof of Theorem 3, Case (i). vT εT → +∞ Defining b = b(θ), b0 = b(θ0) and x = vT (b− b0)− Z0
T .

With a slight abuse of notation, in this proof we let Z0
T = vT {η(y)− b(θ0)}. We approximate the ratio

EΠε{vT (b− b0)} − Z0
T =

NT
DT

=

∫
xPx (|η(z)− η(y)| ≤ εT ) p{b0 + (x+ Z0

T )/vT }dx∫
Px (|η(z)− η(y)| ≤ εT ) p{b0 + (x+ Z0

T )/vT }dx

We first approximate the numerator NT : vT {η(z)− η(y)} = vT {η(z)− b}+ x and b = b0 + (x+
Z0
T )/vT . Denote ZT = vT {η(z)− b}, then

NT =

∫
xPx (|η(z)− η(y)| ≤ εT ) p{b0 + (x+ Z0

T )/vT }dx

=

∫
|x|≤vT εT−M

xPx (|ZT + x| ≤ vT εT ) p{b0 + (x+ Z0
T )/vT }dx

+

∫
|x|≥vT εT−M

xPx (|ZT + x| ≤ vT εT ) p{b0 + (x+ Z0
T )/vT }dx,

(A13)

where the condition limT vT εT = +∞ is used in the representation of the real line over which the integral
defining NT is specified.

We start by studying the first integral term in (A13). If 0 ≤ x ≤ vT εT −M , then

1 ≥ Px (|ZT + x| ≤ vT εT ) = 1− Px (ZT > vT εT − x)− Px (ZT < −vT εT − x)

≥ 1− 2(vT εT − x)−κ.

Using a similar argument for x ≤ 0, we obtain, for all |x| ≤ vT εT −M ,

1− 2(vT εT − |x|)−κ ≤ Px (|ZT + x| ≤ vT εT ) ≤ 1

and choosing M large enough implies that if κ > 2,

N1 =

∫
|x|≤vT εT−M

xPx (|ZT + x| ≤ vT εT ) p{b0 + (x+ Z0
T )/vT }dx

=

∫
|x|≤vT εT−M

xp[b0 + {x+ Z0
T }/vT ]dx+O(M−κ+2)

A Taylor expansion of p{b0 + (x+ Z0
T )/vT } around γ0 = b0 + Z0

T /vT then leads to, for∇jbp(θ) the j-th
derivative of p(b) (with respect to b),

N1 = 2

k∑
j=1

∇(2j−1)
b p(γ0)

(2j − 1)!(2j + 1)v2j−1
T

(εT vT )2j+1 +O(M−κ+2) +O(ε2+β
T v2

T ) + oP (1)

= 2v2
T

k∑
j=1

∇(2j−1)
b p(γ0)

(2j − 1)!(2j + 1)
ε2j+1
T +O(M−κ+2) +O(ε2+β

T v2
T ) + oP (1),
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where k = bβ/2c. We split the second integral of (A13) into vT εT −M ≤ |x| ≤ vT εT +M and |x| ≥
vT εT +M . We treat the latter as before: with probability going to 1,

|N3| ≤
∫
|x|≥vT εT+M

|x|Px (|ZT + x| ≤ vT εT ) p{b0 + (x+ Z0
T )/vT }dx

≤
∫
|x|≥vT εT+M

|x|c[b0 + {x+ Z0
T }/vT ]

(|x| − vT εT )κ
p{b0 + (x+ Z0

T )/vT }dx

≤ c0‖p‖∞
∫
vT εT+M≤|x|≤δvT

|x|
(|x| − vT εT )κ

dx+
vT

(δvT )κ−1

∫
c(θ)dΠ(θ)

.M−κ+2 +O(v−κ+2
T ) .

Finally, we study the second integral term for NT in (A13) over vT εT −M ≤ |x| ≤ vT εT +M . Using
the assumption that p(·) is Hölder we obtain that

|N2| =

∣∣∣∣∣
∫ vT εT+M

vT εT−M
xPx (|ZT + x| ≤ vT εT ) p{b0 + (x+ Z0

T )/vT }dx

+

∫ −vT εT+M

−vT εT−M
xPx (|ZT + x| ≤ vT εT ) p{b0 + (x+ Z0

T )/vT }dx

∣∣∣∣∣
≤ p(b0)

∣∣∣∣∣
∫ vT εT+M

vT εT−M
xPx (|ZT + x| ≤ vT εT ) dx+

∫ −vT εT+M

−vT εT−M
xPx (|ZT + x| ≤ vT εT ) dx

∣∣∣∣∣
+ LMε1+β∧1

T vβ∧1
T + oP (1)

.

∣∣∣∣∣vT εT
∫ M

−M
[Py (ZT ≤ −y)− Py (ZT ≥ −y)] dy

∣∣∣∣∣
+

∣∣∣∣∣vT εT
∫ M

−M
y [Py (ZT ≤ −y) + Py (ZT ≥ −y)] dy

∣∣∣∣∣+O(Mε1+β∧1
T vβ∧1

T ) + oP (1),

with M fixed but arbitrarily large. By the dominated convergence theorem and the Gaussian limit of ZT ,
for any arbitrarily large, but fixed M ,∫ M

−M
{Py (ZT ≤ −y)− Py (ZT ≥ −y)} dy = Mo(1)

and ∫ M

−M
y {Py (ZT ≤ −y) + Py (ZT ≥ −y)} dy =

∫ M

−M
y {1 + o(1)} dy = M2o(1).

This implies that

N2 .M
2o(vT εT ) +Mε1+β∧1

T vβ∧1
T + oP (1)

where the o(·) holds as T goes to infinity. Therefore, regrouping all terms, and since ε1+β∧1
T vβ∧1

T =
o(vT εT ) for all β > 0 and εT = o(1), we obtain the representation

NT = 2v2
T

k∑
j=1

∇(2j−1)
b p(γ0)

(2j − 1)!(2j + 1)
ε2j+1
T +M2o(vT εT ) +O(M−κ+2) +O(v−κ+2

T ) +O(ε2+β
T v2

T ) + oP (1) .
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We now study the denominator in a similar manner. This leads to

DT =

∫
Px (|η(z)− η(y)| ≤ εT ) p{b0 + (x+ Z0

T )/vT }dx

=

∫
|x|≤vT εT−M

p{b0 + {x+ Z0
T }/vT }{1 + o(1)}dx+O(1)

= 2p(b0)vT εT {1 + oP (1)}.

Combining DT and NT , we obtain, εT = o(1),

NT
DT

= vT

k∑
j=1

∇(2j−1)
b p(b0)

p(b0)(2j − 1)!(2j + 1)
ε2j
T + oP (1) +O(ε1+β

T vT ) (A14)

Using the definition of NT /DT , dividing (A14) by vT , and rearranging terms yields

EΠε [b− b0] =
Z0
T

vT
+

k∑
j=1

∇(2j−1)
b p(b0)

p(b0)(2j − 1)!(2j + 1)
ε2j
T +O(ε1+β

T ) + oP (1/vT ),

To obtain the posterior mean of θ, we write

θ = b−1[b(θ)] = θ0 +

bβc∑
j=1

{b(θ)− b0}j

j!
∇(j)
b b−1(b0) +R(θ)

where |R(θ)| ≤ L|b(θ)− b0|β provided |b(θ)− b0| ≤ δ. We compute the approximate Bayesian mean
of θ by splitting the range of integration into |b(θ)− b0| ≤ δ and |b(θ)− b0| > δ. A Cauchy-Schwarz
inequality leads to

EΠε

[
|θ − θ0|1l|b(θ)−b0|>δ

]
=

1

2εT vT p(b0)[1 + oP (1)]

∫
|b(θ)−b0|>δ

|θ − θ0|Pθ (|η(z)− η(y)| ≤ εT ) p(θ)dθ

≤ 2κv−κT δ−κ
(∫

Θ

(θ − θ0)2p(θ)dθ

)1/2(∫
Θ

c(θ)2p(θ)dθ

)1/2

{1 + oP (1)}

= oP (1/vT )

provided κ > 1. To control the former term, we use computations similar to earlier ones so that

EΠε

{
(θ − θ0)1l|b(θ)−b0|≤δ

}
=

bβc∑
j=1

∇(j)
b b−1(b0)

j!
EΠε

[
{b(θ)− b0}j

]
+ oP (1/vT ),

where, for j ≥ 2 and κ > j + 1,

EΠε

[
{b(θ)− b0}j

]
=

1

vjT

∫
|x|≤εT vT−M xjp{b0 + (x+ Z0

T )/vT }dx
2εT vT p(b0)

+ oP (1/vT )

=

k∑
l=0

∇(l)
b p(b0)

2εT v
j+l+1
T p(b0)l!

∫
|x|≤εT vT−M

xj+ldx+ oP (1/vT ) +O(ε1+β
T )

=

b(j+k)/2c∑
l=dj/2e

ε2l
T∇

(2l−j)
b p(b0)

p(b0)(2l − j)!
+ oP (1/vT ) +O(ε1+β

T )

This implies, in particular, that

EΠε (θ − θ0) =
Z0
T {∇bb−1(b0)}

vT
+

bβc∑
j=1

∇(j)
b b−1(b0)

j!

b(j+k)/2c∑
l=dj/2e

ε2l
T∇

(2l−j)
b p(b0)

p(b0)(2l − j)!
+ oP (1/vT ) +O(ε1+β

T )
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Hence, if ε2
T = o(1/vT ) and β ≥ 1,

EΠε (θ − θ0) = [∇θb(θ0)]−1Z0
T /vT + oP (1/vT )

and EΠε {vT (θ − θ0)} ⇒ N (0, V (θ0)/{∇θb(θ0)}2), while if vT ε2
T → +∞

EΠε (θ − θ0) = ε2
T

[
∇bp(b0)

3p(b0)∇θb(θ0)
−
∇(2)
θ b(θ0)

2{∇θb(θ0)}2

]
+O(ε4

T ) + oP (1/vT ),

assuming β ≥ 3. �

Proof of Theorem 3, Case (ii) vT εT → c, c ≥ 0. Recall that b = b(θ) and define

EΠε (b) =

∫
bPb (|η(y)− η(z)| ≤ εT ) p(b)db∫
Pb (|η(y)− η(z)| ≤ εT ) p(b)db

.

Considering the change of variables b 7→ x = vT (b− b0)− Z0
T and using the above equation we have

EΠε (b) =

∫
{b0 + (x+ Z0

T )/vT }Px (|η(y)− η(z)| ≤ εT ) p{b0 + (x+ Z0
T )/vT }dx∫

Px (|η(y)− η(z)| ≤ εT ) p{b0 + (x+ Z0
T )/vT }dx

,

which can be rewritten as

EΠε {vT (b− b0)} − Z0
T =

∫
xPx (|η(y)− η(z)| ≤ εT ) p[b(θ0) + {x+ Z0

T }/vT ]dx∫
Px (|η(y)− η(z)| ≤ εT ) p{b(θ0) + (x+ Z0

T )/vT }dx

Recalling that vT {η(z)− η(y)} = vT {η(z)− b}+ vT (b− b0)− Z0
T = ZT + x we have

EΠε [vT {b− b0}]− Z0
T =

∫
xPx (|ZT + x| ≤ vT εT ) p{b(θ0) + (x+ Z0

T )/vT }dx∫
Px (|ZT + x| ≤ vT εT ) p{b(θ0) + (x+ Z0

T )/vT }dx
=
NT
DT

.

By injectivity of the map θ 7→ b(θ) (Assumptions [A3]) and Assumption [A4], the result follows when
EΠε {vT (b− b0)} − Z0

T = oP (1).
Consider first the denominator. Define hT = vT εT and V0 = V (θ0) ≡ limT var[vT {η(y)− b(θ0)}].

Using arguments that mirror those in the proof of Theorem 2 part (v), by Assumption [A6′] and the
dominated convergence theorem

DT

p(b0)hT
= h−1

T

∫
Px(|ZT + x| ≤ hT )dx+ oP (1) =

∫
ϕ{x/V 1/2

0 }dx+ oP (1) = 1 + oP (1),

where the second equality follows from Assumption [A6] and the dominated convergence theorem.
The result now follows if NT /hT = oP (1). To this end, define P ∗x (|ZT + x| ≤ hT ) = Px(|ZT + x| ≤
hT )/hT and, if hT = o(1) by [A6] and [A7],

NT
hT

=

∫
xP ∗x (|ZT + x| ≤ hT )p{b0 + (x+ Z0

T )/vT }dx

= p(b0)

∫
xϕ{x/V 1/2

0 }dx+

∫
x
{
P ∗x (|ZT + x| ≤ hT )− ϕ{x/V 1/2

0 }
}

× p{b0 + (x+ Z0
T )/vT }dx+ oP (1).

If hT → c > 0, then

NT
hT

= p(b0)

∫
xP{|N (0, 1) + x/V

1/2
0 | ≤ c/V 1/2

0 }dx

+

∫
x
[
P ∗x (|ZT + x| ≤ hT )− P{|N (0, 1) + x/V

1/2
0 | ≤ c/V 1/2

0 }
]
p{b0(x+ Z0

T )/vT }dx+ oP (1).

(A15)
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The result now follows if
∫
x
[
P ∗x (|ZT + x| ≤ hT )− ϕ{x/V 1/2

0 }
]
p{b0 + (x+ Z0

T )/vT }dx = oP (1),

respectively, P ∗x (|ZT + x| ≤ hT )− P{|N (0, 1) + x/V
1/2
0 | ≤ c/V 1/2

0 } = o(1), for which a sufficient
condition is that∫

|x|
∣∣∣P ∗x (|ZT + x| ≤ hT )− ϕ{x/V 1/2

0 }
∣∣∣ p{b0 + (x+ Z0

T )/vT }dx = oP (1), (A16)

or the equivalent in the case hT → c > 0.
To show that the integral in (A16) is oP (1) we break the region of integration into three areas: (i)

|x| ≤M ; (ii) M ≤ |x| ≤ δvT ; (iii) |x| ≥ δvT .

Area (i): Over |x| ≤M , the following equivalences are satisfied:

sup
x:|x|≤M

|p{b0 + (x+ Z0
T )/vT } − p(b0)| = oP (1)

sup
x:|x|≤M

|P ∗(|ZT + x| ≤ hT )− ϕ{x/V 1/2
0 }| = oP (1).

The first equation is satisfied by [A7] and the fact that by [A4] Z0
T /vT = oP (1). The second term follows

from [A7] and the dominated convergence theorem. We can now conclude that equation (A16) is oP (1)
over |x| ≤M .

The same holds for the first term in equation (A15), without requiring [A7].

Area (ii): Over M ≤ |x| ≤ δvT the integral of the second term is finite and can be made arbitrarily
small for M large enough. Therefore, it suffices to show that∫

M≤|x|≤δvT
|x|P ∗x (|ZT + x| ≤ hT )p{b0 + (x+ Z0

T )/vT }dx

is finite.
When |x| > M , |ZT + x| ≤ hT implies that |ZT | > |x|/2 since hT = O(1). Hence, using Assumption

[A1′],

|x|P ∗x (|ZT + x| ≤ hT ) ≤ |x|P ∗x (|ZT | > |x|/2) ≤ c0
|x|
|x|κ

which in turns implies that∫
M≤|x|≤δvT

P ∗(|ZT + x| ≤ hT )p{b0 + (x+ Z0
T )/vT }dx ≤ C

∫
M≤|x|≤δvT

1

|x|κ−1
dx ≤M−κ+2

The same computation can be conducted in the case (A15).

Area (iii): Over |x| ≥ δvT the second term is again negligible for δvT large. Our focus then becomes

N3 =
1

hT

∫
|x|≥δvT

|x|P ∗x (|ZT + x| ≤ hT )p{b0 + (x+ Z0
T )/vT }dx.

For some κ > 2 we can bound N3 as follows:

N3 =
1

hT

∫
|x|≥δvT

|x|Px(|x+ ZT | ≤ hT )p{b0 + (x+ Z0
T )/vT }dx

≤ 1

hT

∫
|x|≥δvT

|x|c(b0 + (x+ Z0
T )/vT )

(1 + |x| − hT )κ
p{b0 + (x+ Z0

T )/vT }dx

.
v2
T

hT

∫
|b−η(y)|≥δ

c(b)|b− η(y)|
[1 + vT |b− η(y)| − hT ]κ

p(b)db

Since η(y) = b0 +OP (1/vT ) we have, for T large,
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N3 .
v2
T

hT

∫
|b−b0|≥δ/2

c(b)|b|p(b)
(1 + vT δ − hT )κ

db .
v2
T

hT

[∫
c(b)|b|p(b)db

]
O(v−kT ) . O(v1−κ

T εT ) = o(1),

where [A1′] and [A7] ensure
∫
c(b)|b|p(b)db <∞. The same computation can be conducted in the case

(A15).
Combining the results for the three areas we can conclude that NT /DT = oP (1) and the result fol-

lows. �

A·4. Proof of Theorem 4

The proof follows the same lines as the proof of Theorem 3, with some extra technicalities due to
the multivariate nature of θ. DefineG0 = ∇θb(θ0) and let x(θ) = vT (θ − θ0)− (Gᵀ

0G0)−1Gᵀ
0Z

0
T , where

Z0
T = vT {η(y)− b(θ0)}. We show that EΠε {x(θ)} = op(1). We write

EΠε {x(θ)} =

∫
Θ
x(θ)Pθ (‖η(z)− η(y)‖ ≤ εT ) p(θ)dθ∫
Θ
Pθ (‖η(z)− η(y)‖ ≤ εT ) p(θ)dθ

=
NT
DT

,

and study the numerator and denominator separately. Since for all ε > 0 there exists Mε > 0 such that,
for all M > Mε, Pθ0(‖Z0

T ‖ > M/2) < ε, we can restrict ourselves to the event ‖Z0
T ‖ ≤M/2 for some

M large.
We first study the numerator NT and we split Θ into {‖G0x(θ)‖ ≤ vT εT −M}, {vT εT −M ≤

‖G0x(θ)‖ ≤ vT εT +M} and {‖G0x(θ)‖ > vT εT +M}. The first integral is equal to

I1 = p(θ0)

∫
‖G0x(θ)‖≤vT εT−M

{x(θ) +O(vT ε
2
T )}Pθ (‖η(z)− η(y)‖ ≤ εT ) dθ

= p(θ0)

∫
‖G0x(θ)‖≤vT εT−M

{x(θ) +O(vT ε
2
T )}dθ

− p(θ0)

∫
‖G0x(θ)‖≤vT εT−M

{x(θ) +O(vT ε
2
T )}Pθ (‖η(z)− η(y)‖ > εT ) dθ

The first term in I1 can be made arbitrarily small for M large enough. For the second term in I1, we note

vT εT < ‖vT {η(z)− η(y)}‖ = ‖ZT − Z0
T + vTG0(θ − θ0)‖+O(‖θ − θ0‖2)

= ‖ZT − P⊥G0
Z0
T +G0x(θ)‖+O(‖θ − θ0‖2)

≤ ‖ZT ‖+ ‖P⊥G0
Z0
T ‖+ ‖G0x(θ)‖+O(‖θ − θ0‖2)

≤ ‖ZT ‖+M/2 + ‖G0x(θ)‖+O(‖θ − θ0‖2)

where P⊥G0
is the orthogonal projection onto the vector space that is orthogonal to G0 and ZT = {η(z)−

b(θ)}. Therefore, if ‖G0x(θ)‖ ≤ vT εT −M , then

M/2 ≤ vT εT −M/2− ‖G0x(θ)‖ ≤ ‖ZT ‖.

Hence, the second term of the right hand side of I1 is bounded by a constant times∫
‖G0x(θ)‖≤vT εT−M

2‖G0x(θ)‖Pθ (‖ZT ‖ > εT vT −M/2− ‖G0x(θ)‖) dθ

.
∫
‖G0x(θ)‖≤vT εT−M

‖G0x(θ)‖
(vT εT −M/2− ‖G0x(θ)‖)κ

dθ

. v−kθT

∫ vT εT−M

0

rkθ

(vT εT −M/2− r)κ
dr . εkθT M

−κ

The integral over {‖G0x(θ)‖ > vT εT +M}, I3, is treated similarly. This leads to ‖I1 + I3‖ ≤M−κεkθT .
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Likewise, using similar arguments we can show

DT &
∫
‖G0x(θ)‖≤vT εT−M

Pθ (‖η(z)− η(y)‖ ≤ εT ) dθ & εkθT .

All that remains is to prove that the second integral I2, the integral over {vT εT −M ≤ ‖G0x(θ)‖ ≤
vT εT +M}, is op(εkθT ).

I2 =

∫
vT εT−M≤‖G0x(θ)‖≤vT εT+M

{x(θ) +O(vT ε
2
T )}Pθ (‖η(z)− η(y)‖ ≤ εT ) dθ.

Since

v2
T ‖η(z)− η(y)‖2 = ‖ZT − P⊥G0

ZT −G0x(θ)‖2 = ‖ZT − P⊥G0
Z0
T ‖2 + ‖G0x(θ)‖2 − 2〈ZT , G0x(θ)〉,

where 〈·, ·〉 is the inner product, setting u = (Gᵀ
0G0)1/2x(θ)‖G0x(θ)‖−1, r = ‖G0x(θ)‖, Γ0 =

(Gᵀ
0G0)−1/2Gᵀ

0 , then, for S = {u ∈ Rkθ ; ‖u‖ = 1},

I2 = v−kθT (Gᵀ
0G0)−1/2

∫ vT εT+M

vT εT−M
rkθ
∫
u∈S

uPθ
(
‖ZT − P⊥G0

Z0
T ‖2 + r2 − 2r〈Γ0ZT , u〉 ≤ v2

T ε
2
T

)
dλ(u)dr

+O
(
vT ε

2+kθ
T

)
= v−kθT (Gᵀ

0G0)−1/2

∫ M

−M
(vT εT + r)kθ×∫

u∈S
uPθ

(
‖ZT − P⊥G0

Z0
T ‖2 − 2r〈Γ0ZT , u〉 − 2εT vT 〈Γ0ZT , u〉 ≤ −r2 − 2rvT εT

)
dλ(u)dr

+O
(
vT ε

2+kθ
T

)
,

where λ(.) is the Lebesgue measure on S. Moreover, we have

Pθ
(
‖ZT − P⊥G0

Z0
T ‖2 − 2r〈Γ0ZT , u〉 − 2εT vT 〈Γ0ZT , u〉 ≤ −r2 − 2rvT εT

)
= Pθ

(
〈Γ0ZT , u〉 ≥

rεT vT
r + εT vT

+
‖ZT − P⊥G0

Z0
T ‖2 + r2

2(vT εT + r)

)
and for any aT > M with aT = o(vT εT ),

Pθ
(
‖ZT − P⊥G0

Z0
T ‖2 ≥ aT

)
. c0a

−κ/2
T ,

|Pθ {〈Γ0ZT , u〉 ≥ r} − Pθ {〈Γ0ZT , u〉 ≥ r − 2aT /(vT εT )}| = o(1),

with for all r and u, Pθ {〈Γ0ZT , u〉 ≥ r} = [1− Φ{r/‖Γ0A(θ0)1/2‖}] + o(1). Since for all r ∈
[−M,M ], (vT εT + r)kθ = (vT εT )kθ +O(M(vT εT )kθ−1), the dominated convergence theorem implies

I2 = εkθT (Gᵀ
0G0)−1/2

∫ M

−M

∫
u∈S

u[1− Φ{r/‖Γ0A(θ0)1/2‖}]dλ(u)dr + o(εkθT ) = o(εkθT )

which completes the proof.

A·5. Proof of Corollary 1

Consider first the case where εT = o(v−1
T ). Using the same types of computations as in the proof of

Theorem 5 in this Supplementary Material, we have, for ZT = ΣT (θ0){η(z)− b(θ)},

αT =

∫
Θ

Pθ
(
‖ZT − Z0

T − vT {b(θ)− b(θ0)}‖ ≤ εT vT
)
p(θ)dθ

� (εT vT )kη
∫

Θ

ϕ{Z0
T + vT∇θb(θ0)(θ − θ0)}dθ � εkηT v

kη−kθ
T . v−kθT .
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In the case where εT & v−1
T , then the proof of Theorem 5 implies that

αT = pr [‖η(z)− η(y)‖ ≤ εT ] �
∫

Θ

ϕ{Z0
T + vT b

′(θ0)(θ − θ0)}dθ � εkθT .

A·6. Proof of Corollary 2

Proof. The proof is a direct consequence of Corollary 1 and a central limit theorem based on the
independent draws from Algorithm 1, which allows us to deduce that α̂T = αT + op(αT ). The result
then follows from algebra. �

B. ILLUSTRATIVE EXAMPLE

In this section we demonstrate the implications of Theorems 1–3 using a particular model, namely, the
moving average model of order two introduced in Example 1 and discussed in Remarks 2, 6 and 13. We
first remind the reader of this model before using it to illustrate the results of each theorem in the three
subsequent sections.

We have T observations from the data generating process

yt = et + θ1et−1 + θ2et−2, (B1)

where, for simplicity, we consider independent et ∼ N (0, 1). Our prior belief for θ = (θ1, θ2)ᵀ is uniform
over the invertibility region

{(θ1, θ2)ᵀ : −2 ≤ θ1 ≤ 2, θ1 + θ2 ≥ −1, θ1 − θ2 ≤ 1} . (B2)

Following Marin et al. (2011), we choose as summary statistics for Algorithm 1 the sample autocovari-
ances ηj(y) = 1

T

∑T
t=1+j ytyt−j , for j = 0, 1, 2 so that η(y) = [η0(y), η1(y), η2(y)]ᵀ. From the defini-

tion of η(z) and the process in (B1) the j-th component of b(θ), j = 0, 1, 2, is bj(θ) = Eθ(ztzt−j) and
b(θ) has the simple analytical form:

θ 7→ b(θ) =

1 + θ2
1 + θ2

2

θ1 + θ1θ2

θ2

 .

The following subsections demonstrate the implications of the limit results in the main text within the
confines of the above example, using ‘observed’ data y simulated from (B1). By simultaneously shifting
the sample size T and the T -dependent tolerance parameter εT , we are able to demonstrate graphically
Theorems 1–3 in a coherent manner that illustrates the importance of these results to practitioners, and
which stands as a warning in regards to the choice of the tolerance in approximate Bayesian computation
applications.

For each of the three demonstrations, which correspond to Theorems 1-3 in the text, we consider
minor variants of the following general simulation design: the true parameter vector generating the
simulated ‘observed’ data is fixed at θ0 = (θ1,0, θ2,0)ᵀ = (0.6, 0.2)ᵀ; for a given sample length T ∈
{500, 1000, 50000}, y = (y1, y2, ..., yT )ᵀ, is generated from the process in equation (B1); for each given
sample of size T , the posterior is then estimated via Algorithm 1 (with the tolerance chosen to be a par-
ticular order of T ) using N = 50, 000 Monte Carlo draws taken from uniform priors satisfying (B2). For
every demonstration, we take d1{θ, θ0} = ‖θ − θ0‖ and d2{η(z), η(y)} = ‖η(z)− η(y)‖.

As all three theorems illustrate, the choice of εT is critical in determining the large sample behavior of
the approximate Bayesian computation posterior distribution and the approximate Bayesian computation
posterior mean. To highlight this fact, we illustrate the results in a range of numerical experiments using
different choices for the tolerances. In particular, and with reference to the illustration of Theorem 2, the
choices εT ∈ {1/T 0.4, 1/T 0.5, 1/T 0.55} (where vT = T 0.5 for this example) correspond to the distinct
Cases (i), (ii) and (iii), and the use of all three tolerances serves to highlight the distinction between what
condition on εT is required for posterior concentration, and what is required to yield asymptotic normality
of the posterior. With regard to Theorem 3, the choice, εT = 1/T 0.4, is used to highlight Case (i), whereby
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Figure 2. Posterior concentration demonstration. Estimated
posterior results according to sample size: T=500 (- - -);

T=1000 (– · –); T=5000 (—).
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asymptotic normality of the posterior mean can be achieved despite a lack of Gaussianity for the posterior
itself, whilst εT ∈ {1/T 0.5, 1/T 0.55} correspond to Case (ii).

B·1. Theorem 1

Theorem 1 implies that under regularity, as T → +∞, the posterior measure Πε(·|η0), with η0 = η(y),
concentrates on sets containing θ0; i.e., Πε(‖θ − θ0‖ ≤ δ|η0) = 1 + oP (1) for all δ > 0. For this to be
satisfied, it must be that limT εT = 0. We adopt εT = 1/T 0.4 for this demonstration, running Algorithm
1 with this choice of tolerance, and taking N = 50, 000 draws from the prior. The results are presented
in Figure 2. Note that in order to fix a level of Monte Carlo error, for each sample size we retain 100
simulated values of θ that lead to realizations of ‖η(y)− η(z)‖ less than this tolerance. In this way, we
are using the nearest-neighbor interpretation of Algorithm 1.

From Figure 2 it is clear that the posterior measure Πε(·|η0) is concentrating on θ0 = (0.6, 0.2)ᵀ.
However, the corresponding p-value associated with the KS-test for the scaled and centered posterior
distributions of θ1 and θ2 would lead to rejection (at the 5% level) of the null hypothesis that these
posteriors are standard normal for each of the considered sample sizes. The results in Figure 2 reflect the
fact that a tolerance proportional to εT = 1/T 0.4 is small enough to yield posterior concentration but not
small enough to yield a posterior with asymptotically Gaussian shape. We elaborate on this point in the
next subsection.

B·2. Theorem 2

Theorem 2 states that the shape of the (standardized) posterior measure is determined in large part
by the speed at which εT goes to 0. If this convergence is too slow, then the posterior will have a non-
standard asymptotic shape, in the sense that it will not be approximately Gaussian in large samples. The
illustration in the previous section highlights the lack of asymptotic Gaussianity for the posterior measure
under Case (i) of Theorem 2, whereby limT vT εT = +∞. Now, consider the two alternative values for
the tolerance, εT ∈ {1/T 0.5, 1/T 0.55}, which respectively fit with Case (ii) (limT vT εT = c > 0) and
Case (iii) (limT vT εT = 0), with only the latter case yielding asymptotic Gaussianity of the posterior (the
Bernstein-von Mises result). These results are displayed in Figures 3 and 4 for T = 500 and T = 1000
(respectively).

Figure 3 demonstrate that at T = 500, and for εT = 1/T 0.5, neither posterior for θ1 or θ2 has a shape
that is particularly Gaussian. The p-value associated with the KS-test for the scaled and centered posterior
distributions in each panel would lead to a rejection (at the 5% level) of the null hypothesis that these
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Figure 3. Comparison of different tolerance rules for εT :
εT = 1/T 0.5 (– · –); εT = 1/T 0.55 (—); The sample size

is T = 500.
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Figure 4. Same information as Figure 3 but for T = 1000.
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posteriors are standard normal. However, for θ2 and the tolerance εT = 1/T 0.55, the p-value associated
with the corresponding KS-test of Gaussianity would not lead us to a rejection of the null hypothesis.

At T = 1000, and for both θ1 and θ2, Figure 4 demonstrates that the posteriors based on the toler-
ance εT = 1/T 0.55 (which satisfies the conditions for the Bernstein-von Mises result) are approximately
Gaussian. Indeed, the p-value associated with the KS-test for the scaled and centered posterior distribu-
tions in each of the two panels would not lead to a rejection (at the 5% level) of the null hypothesis that
these posteriors are standard normal. However, the corresponding KS-test would lead to a rejection for
the posteriors calculated from the tolerance εT = 1/T 0.5.

A key practical insight from Theorem 2 is that for the posterior Πε(·|η0) to be asymptotically Gaussian,
and thus for credible regions built from Πε(·|η0) to have asymptotically correct frequentist coverage,
it must be that εT = o(1/vT ), where vT is such that ‖η(z)− b(θ)‖ = OP (1/vT ) and vT =

√
T in this

example. To demonstrate this point we generate 1000 ‘observed’ artificial data sets (of sample sizes T=500
and T=1000) and for each data set we run Algorithm 1 for each of the three alternative values of εT . For
a given sample, and a given tolerance, we produce the approximate Bayesian computation posterior in
the manner described above and compute the 95% credible intervals for θ1 and θ2. The average length
(Width) and the Monte Carlo coverage rate (Cov.), across the 1000 replications, is then recorded in Table
2 for each scenario. It is clear that the average length of the credible regions is larger, and the Monte Carlo
coverage further from the nominal value of 95%, the further is the tolerance from the value required to
produce asymptotic Gaussianity, namely εT = 1/T 0.55, providing numerical support for the theoretical
results.
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Table 2. The tolerances are ε1 = 1/T 0.4, ε2 = 1/T 0.5 and ε3 = 1/T 0.55.
Width Cov .

T=500 ε1 ε2 ε3 ε1 ε2 ε3

θ1 0.2602 0.2294 0.2198 96.30 95.60 95.60
θ2 0.3212 0.3108 0.3086 98.30 97.00 96.00

T=1000
θ1 0.1823 0.1573 0.1484 96.80 96.20 95.50
θ2 0.2366 0.2244 0.2219 96.60 94.30 94.00

B·3. Theorem 3

The key result of Theorem 3 is that even if Πε(·|η0) is not asymptotically Gaussian, the posterior
mean associated with Algorithm 1, θ̂ = EΠε(θ), can still be asymptotically Gaussian, and asymptotically
unbiased so long as limT vT ε

2
T = 0. However, as proven in Theorem 2, the corresponding confidence

regions and uncertainty measures built from Πε(·|η0) will only be an adequate reflection on the actual
uncertainty associated with θ̂ if εT = o(1/vT ).

In this section we once again generate 1000 ‘observed’ data sets of a given sample size (T = 500
and T = 1000) according to equation (B1) and θ0 = (0.6, 0.2)ᵀ, and produce 1000 posteriors based on
εT ∈ {1/T 0.4, 1/T 0.5, 1/T 0.55} in the manner described above. For each of the three values of εT , and
for a sample size of T = 500, we record the posterior mean across the 1000 replications and plot the
relevant empirical densities in Figure 5. (Figure 6 contains the results for T = 1000).

From Figure 5, we see that the (standardised) Monte Carlo sampling distribution of θ̂ = EΠε [θ], over
the 1000 replications, and for each of the three values of εT , is approximately Gaussian for both parame-
ters and centered at zero. This accords with the theoretical results, which only require that limT εT = 0,
for asymptotic Gaussianity, and limT vT ε

2
T = 0, for zero asymptotic bias, a condition that is satisfied for

each of the three tolerance values. This result is also in evidence for T = 1000, as can be seen in Figure
6. Lastly, for both T = 500 and T = 1000, the p-value associated with the KS-test of the null hypothesis
that the scaled and centered sampling distribution of the posterior means is standard normal are larger
than 5% for both θ1 and θ2 and across the three tolerance levels.

Figure 5. Comparison of different tolerance rules for εT :
εT = 1/T 0.4 (- - -); εT = 1/T 0.5 (– · –); εT = 1/T 0.55

(—); The sample size is T = 500.
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Figure 6. Same information as Figure 5 but for T = 1000.
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