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Abstract: This paper provides a detailed analysis of the properties of Singular Spec-

trum Analysis (SSA) under very general conditions concerning the structure of the

observed series. It translates the SSA interpretation of the singular value decompo-

sition of the so called trajectory matrix as a discrete Karhunen-Loève expansion into

conventional principle components analysis, and shows how this motivates a consid-

eration of SSA constructed using standardized or re-scaled trajectories (R-SSA). The

asymptotic properties of R-SSA are derived assuming that the true data generating

process (DGP) satisfies sufficient regularity to ensure that Grenander’s conditions

are satisfied. The spectral structure of different population ensemble models implicit

in the large sample properties so derived is examined and it is shown how the de-

composition of the spectrum into discrete and continuous components leads to an

application of sequential R-SSA series reconstruction. As part of the latter exercise

the paper presents a generalization of Szegö’s theorem to fractionally integrated

precesses. The operation of the theoretical results is demonstrated via simulation

experiments. The latter serve as a vehicle to illustrate the numerical consequences

of the results in the context of different processes, and to assess the practical impact

of the sequential R-SSA processing methodology.

Keywords: embedding; principle components; re-scaled trajectory matrix; singular

value decomposition; spectrum.
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1 Introduction

Singular spectrum analysis (SSA) is a non-parametric modeling technique that is de-

signed to accommodate nonlinear, non–stationary, and intermittent or transient be-

haviour in an observed time series. The basic idea behind SSA is to represent the

observed series as the sum of uncorrelated components, a signal-plus-noise decompo-

sition, where the decomposition is obtained via a singular value decomposition (SVD)

of the so-called (in the terminology of SSA) trajectory matrix. Many of the basic ideas

and methods used in SSA were developed in the physical sciences by Broomhead and

King (1986) and Vautard and Ghil (1989), and they have subsequently been described

in Elsner and Tsonis (1996) and Golyandina et al. (2001), where more detailed ac-

counts of the techniques and their practical application (with several examples) can

be found. An early formulation of some of the key ideas in a socio-demographic set-

ting can be found in the work of Basilevsky and Hum (1979), and several of the basic

building blocks of SSA can be traced back to Prony (1795). In more recent times SSA

has been applied in a diverse range of disciplines, including meteorology (Ghil et al.,

2002), bio-mechanics (Alonso et al., 2005) and hydrology (Marques et al., 2006), as

well as in economics and finance (Hassani and Thomakos, 2010). See also Jolliffe

(2002, Chapters 12.1 and 12.2).

Suppose that x(t) is a time series of interest that is observed on a uniform grid, giving

rise to a realization {x(1), x(2), . . . , x(N)} of length N .1 The aim of SSA is to decom-

pose the observed series into the sum of independent and interpretable components –

akin to the classical decomposition of a time series into the sum of trend, cyclical, sea-

sonal and noise components – and SSA looks for such structure in an observed series

via a SVD of the so called trajectory matrix, an m×n matrix X defined by the mapping

1To avoid a proliferation of notation we adopt the common practice of not distinguishing between a
process and realized values of that process, relying on the context or some explicit statement to make
the meaning clear.
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trajectory , (1)

where m is a preassigned window length, variously referred to as the trajectory matrix

window size or lag length, and n= N −m+ 1.

The SVD of X implies that X can be written as the sum of m rank one orthogonal

components,

X=
m
∑

i=1

Xi =
m
∑

i=1

Æ

`iuiv
>
i (2)

where
p

`1 ≥
p

`2 ≥ . . . ≥
p

`m > 0 denote the the singular values of X arranged

in descending order of magnitude, and u>i and vi = X>ui/
p

`i, i = 1, . . . , m, are the

corresponding left and right orthonormal eigenvectors. Borrowing the nomenclature

of Basilevsky and Hum (1979), the decomposition in (2) will be referred to as a dis-

crete Karhunen-Loève expansion with coefficients u j and empirical eigen functions

v j, j = 1, . . . , m. Let ‖X‖ =
p

trace{XX>} denote the Frobenius norm of X. Since

‖X‖2 =
∑m

i=1 `i and ‖Xi‖2 = `i for i = 1, . . . , m, the ratio `i/
∑m

i=1 `i represents the

proportion of the total variation in X attributable to Xi. Now suppose that a large

proportion of the total variation can be associated with a subset of dominant eigen-

triples {`i,ui,vi}, i = 1, . . . , k. If the designated eigentriples are thought to encompass

variation due to the presence of a signal in the original series, then

X=
k
∑

i=1

Xi +
m
∑

i=k+1

Xi = XS +XN ,

where XS =
∑k

i=1 Xi can be viewed as the component of X due to the signal, with k

being the dimension or rank of the signal, and the remainder XN =
∑m

i=k+1 Xi can then

be interpreted as the component due to noise.

Given the decomposition X= XS +XN , the transformation into a corresponding signal-

plus-noise reconstruction of the original series is achieved by a process of diagonal
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averaging or Hankelisation. The Hankel operator H (·) replaces the r, cth entry of

XS = [src]r=1,...,m,c=1,...,n by the average over all r and c such that r + c − 1 = t where

r = 1, . . . , m, c = 1, . . . , n and t = 1, . . . , N .2 By so doing the operator implicitly defines

a time series and an associated orthosymmetric trajectory matrix, {s(1), s(2), . . . , s(N)}

andH (XS ) = S= [s(r + c − 1)]r=1,...,m,c=1,...,n say, where

s(t) =























1
t

∑∑

r+c=t+1
src , when 1≤ t ≤ m− 1;

1
m

∑∑

r+c=t+1
src , when m≤ t ≤ n;

1
N−t+1

∑∑

r+c=t+1
src , when n+ 1≤ t ≤ N .

(3)

After applying diagonal averaging the resulting Hankel matrices S and E= X−S give

the signal–noise decomposition X = S+ E of the trajectory matrix, and x(t) = s(t) +

ε(t), t = 1, . . . , N , yields the associated signal–noise reconstruction of the original

time series.

The reconstruction obviously depends on the window length, a tuning parameter that

must be assigned by the practitioner, and the signal dimension, a modeling parameter

that the practitioner must select, and we will denote an SSA model with window length

m and signal dimension k by SSA(m, k). In practice the methods outlined in Elsner

and Tsonis (1996) and Golyandina et al. (2001) are commonly employed to determine

the specification of the SSA(m, k) model. This approach employs pattern recognition

techniques and methods similar to those used in conventional principal component

analysis – the use of scree-plots and various correlation methods as described in Jol-

liffe (2002, Chapter 6.) – and supposes that values for m, 2 < m ≤ N/2 ≤ n, and

k < m are allocated that ensure that the signal and noise components are strongly

separated. An alternative approach advanced in Khan and Poskitt (2013, 2015) is to

employ appropriate model selection decision rules derived from more formal statistical

techniques based on hypothesis testing procedures and description length principles.

2Note that diagonal averaging is a minimum norm operation in the sense that for any matrix X the
Hankel matrix H (X) minimizes the Frobenius norm of the approximation error, i.e. ‖X −H (X)‖ ≤
‖X−H‖ for all conformable Hankel matrices H.
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Whatever approach is adopted to determine the model specification, the SVD in (2)

plays a key role in the model selection. In the following section the SSA interpretation

of the representation in (2) as a discrete Karhunen-Loève expansion is translated back

into conventional principle components analysis (as in Jolliffe (2002, Chapters 12.1

and 12.2)) and it is shown how this motivates a consideration of SSA constructed

using standardized or re-scaled trajectories (R-SSA).

In Section 3 the asymptotic properties of R-SSA are derived under the presumption that

the observed series satisfies very general regularity conditions. The assumptions admit

series of a rather general type and imply that Grenander’s conditions (Grenander,

1954) concerning the structure of the observed series apply. The features of different

asymptotic population ensemble models implicit in the large sample properties derived

in Section 3 are examined in Section 4.

The exposition in Section 4 exploits some classical time series analysis spectral tech-

niques to be found, for example, in Grenander and Rosenblatt (1957) and Ander-

son (1971), and presents a generalization of Szegö’s theorem (Grenander and Szego,

1958) to fractionally integrated processes. The results in Section 4 motivate the con-

sideration of a two stage sequential R-SSA methodology in which the first stage series

reconstruction deals with the discrete component of the process spectrum and the

second stage the continuous component.

Section 5 illustrates the workings of the theoretical results in the context of particular

examples, and presents numerical results obtained via some related simulations. This

section serves as a vehicle to illustrate the manifestation of the results in the context

of different processes, and provides a guide to the practical impact of the sequential

R-SSA methodology. Section 6 presents a brief conclusion.

2 Centered and Re-scaled SSA

In order to translate the discrete Karhunen-Loève representation X =
∑m

i=1

p

`iuiv
>
i

of SSA into the terminology of conventional principle component analysis, note that

Poskitt: July 2016 6
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the values seen in the trajectory matrix in (1) can be viewed as n observations on

m variables, the first row of X corresponding to the first variable, the second row to

the second, and so on through to the mth row corresponding to the last variable. We

can think of X (heuristically) as containing data on an m component vector random

variable, in which case the ith Karhunen-Loève coefficient vector ui corresponds to the

ith principle component loading, and the ith empirical eigenfunction vi corresponds

to the ith principle component.

Principle components are neither location nor scale invariant. In classical multivariate

analysis it is common practice to address the lack of location invariance by applying

mean correction. Lack of scale invariance is dealt with by either ensuring that all the

variables are of the same type and are measured in “natural" units, or by standardizing

the variables if their values are recorded using widely different units of measurement.

In the former case the principle components are derived from the sample covariance

matrix, and in the latter the sample correlation matrix, and the components so ob-

tained are not the same, nor is it possible to pass from one solution to the other by

means of a simple transformation. See Jolliffe (2002, Chapter 2.3).

In SSA mean correction is often not applied since a constant mean value is deemed to

be inappropriate. Furthermore, the different trajectories are obviously evaluated using

the same unit of measurement and standardization is more often than not, therefore,

also omitted. However, despite being measured using the same units, it is possible that

the values obtained in different trajectories may not be commensurate; for example,

if the series contains strong trends or a high degree of heteroscedasticity. In light of

this possibility we wish to examine the consequences of employing standardization in

SSA.

2.1 Mean Correction: Centered SSA

Basic SSA is implemented via an orthogonal decomposition of the trajectory matrix

X using the eigentriples {`i,ui,vi}, i = 1, . . . , m, of X itself. Centred SSA works in

Poskitt: July 2016 7
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terms of the eigentriples {¯̀i, ūi, v̄i}, i = 1, . . . , m, of the re–centred matrix X= X− x̄1>n

where x̄ = n−1X1n = ( x̄0, . . . , x̄m−1)>, 1n = (1, . . . , 1)>. Let v0 = 1n/
p

n and set `0 =

n‖x̄‖2. Direct calculation shows that u0 = Xv0/
p

`0 = x̄/‖x̄‖ and v>0 X>Xv0 = `0;

the eigentriple {`0,u0,v0} is often referred to as the first average triple of X. Now

Xv0 = Xv0 − x̄1>n v0 = 0 and v>0X
>Xv̄i = ¯̀

iv
>
0 v̄i = 0, implying that v0 is orthogonal to

v̄i for all i such that ¯̀
i 6= 0. Thus v̄i for i = 1,2, . . . , m and v0 form an orthonormal

system and X= X+ x̄1>n =
∑m

i=1

Æ

¯̀
iūiv̄

>
i +

p

`0u0v>0 yields an alternative orthogonal

decomposition of X such that ‖X‖2 = `0 +
∑m

i=1
¯̀

i.

Centered SSA now proceeds as for basic SSA by replacing the eigentriples {`i,ui,vi},

i = 1, . . . , m, in the decomposition X = XS + XN , where XS =
∑k

i=1

p

`iuiv
>
i and

XN =
∑m

i=k+1

p

`iuiv
>
i , with {`0,u0,v0} and {¯̀i, ūi, v̄i}, i = 1, . . . , m. Thus, in the

centered SSA(m,k) model the signal component corresponds to the first average triple

plus the eigentriples {¯̀i, ūi, v̄i}, i = 1, . . . , k, so that XS =
p

`0u0v>0 +
∑k

i=1

Æ

¯̀
iūiv̄

>
i

and XN =
∑m

i=k+1

Æ

¯̀
iūiv̄

>
i . This specification leads to a signal component that is

deemed to be a constant plus a process of dimension k, in parallel with the basic

SSA(m,k) model. For further details see Golyandina et al. (2001, sec. 6.3).

2.2 Standardization: Re-scaled SSA

Standardization in SSA is accomplished by re-scaling each trajectory by reference to

its observed sample second moment. Thus, in the case of basic SSA the raw trajectory

matrix is replaced by Y= D−
1
2 X where

D ≡ diag{XX>}

=





















∑n
t=1 x(t)2 0 · · · · · · 0

0
∑n

t=1 x(t + 1)2 0 · · · 0
... · · · . . . · · ·

...
... · · · · · · . . . 0

0 · · · · · · 0
∑n

t=1 x(t +m− 1)2





















,
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and the analysis proceeds on the basis of the eigentriples {`i,ui,vi}, i = 1, . . . , m,

calculated from YY> = D−
1
2 XX>D−

1
2 .3 The signal-noise decomposition of X is con-

structed from that of Y as XS + XN = D
1
2 (YS + YN ) where YS =

∑k
i=1

p

`iuiv
>
i

and YN =
∑m

i=k+1

p

`iuiv
>
i . Similarly, for centered SSA the normalised eigentriples

{¯̀i, ūi, v̄i}, i = 1, . . . , m, are calculated from YY> = D− 1
2XX>D− 1

2 where, obviously,

Y = D− 1
2X and D = D − diag{nx̄2

0 , . . . , nx̄2
m−1}. The signal-noise decomposition of

Y is then constructed as Y = YS + YN where YS =
∑k

i=1

Æ

¯̀
iūiv̄

>
i and YN =

∑m
i=k+1

Æ

¯̀
iūiv̄

>
i , and the signal-noise decomposition of the raw trajectory matrix is

given by XS =
p

`0u0v>0 +D
1
2YS and XN = D

1
2YN . Henceforth we will denote an SSA

model calculated from re-scaled trajectories using a window length m and a signal

dimension k by R-SSA(m, k).

For both basic and re-centered SSA the effect of re-scaling is that the eigentriples used

in the signal-noise decomposition are derived from correlation matrices, in keeping

with usage established in the principle factor method of factor analysis, as described

in Mardia et al. (1979, Chapter 9.2 & 9.3) and Jolliffe (2002, Chapter 7.3). See also

Watanabe (1965) for a discussion of the relationship between the Karhunen-Loéve

expansion and the factor analysis model. Our purpose here is to examine the conse-

quences of such considerations for SSA.

3 Grenander Processes

In order to examine the statistical properties of SSA we will assume that x(t) is gen-

erated by an affine combination of processes (not necessarily stochastic) that satisfy

the following ergodicity assumption.

Assumption 1 The data generating mechanism underlying the observed process can be

characterized as x(t) = α1z1(t)+ · · ·+αdzd(t) = α>z(t) where 0< ‖α‖=
p
α>α<∞

and the process z(t) = (z1(t), . . . , zd(t))> satisfies the following conditions almost surely:

3Here and in what follows we will not distinguish between the eigentriples calculated from Y and
those calculated from X. It should be clear from the context whether it is the eigentriples calculated
from the re-scaled trajectory matrix or those from the raw trajectory matrix that is meant.
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1. limN→∞ aN
ii (0) =∞ where aN

i j(h) =
∑N−h

t=1 zi(t + h)z j(t);

2. if SN denotes a subset of TN indices t, 1 ≤ t ≤ N, such that limN→∞ TN/N = 0,

then

lim
N→∞

∑

t∈SN
z2

i (t)

aN
ii (0)

= 0

uniformly in TN/N for all TN/N < δ; and

3. for h= 0,1, . . . , TN , limN→∞ rN
i j (h) = ρi j(h), where

rN
i j (h) =

aN
i j(h)

q

aN
ii (0)a

N
j j(0)

.

In addition,

4. if R(h) denotes the d × d matrix with entries ρi j(h), i, j = 1, . . . , d, then R(0) is

nonsingular.

A series that satisfies Assumption 1 will satisfy the conditions introduced by Grenan-

der (1954); and a process that satisfies the conditions of Assumption 1 will there-

fore be referred to as a Grenander process, and the conditions of Assumption 1 will

be called Grenander’s conditions. The first condition ensures that the process does

not ultimately degenerate and is persistently exciting. The second condition im-

plies that for each i = 1, . . . , d we have limN→∞
∑n

t=1 z2
i (t + r)/an

ii(0) = 1 for all

r = 0, . . . , m− 1. A necessary condition that a sequence zi(t) satisfy the second con-

dition is that limN→∞ aN
ii (0)/(log N)p =∞ for p > 0, and zi(t) must increase more

slowly than exponentially. The second and third conditions ensure that

lim
n→∞

∑n
t=1 zi(t + r)z j(t + s)

q
∑n

t=1 z2
i (t + r)

∑n
t=1 z2

j (t + s)
= ρi j(r − s) , r, s = 0, . . . , m− 1 ,

so that the correlation computed from the subsets zi(t + r) and z j(t + s), t = 1, . . . , n,

with r−s = h posses the common limit ρi j(h), provided of course that limN→∞m/N =

0. Condition 4 rules out the possibility that z(t) contains linearly dependent redundant

processes.
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It is well known that polynomial trends and trigonometric series obey Assumption 1,

see Grenander and Rosenblatt (1957, Chapter 7.5 & 7.6) and Anderson (1971, Chap-

ter 10.2.3). Primitive regularity conditions under which statistical ergodic properties

of the type implicit in Assumption 1 are applicable to stochastic processes are also

well documented in the literature, see inter alia Davidson (1994, Part IV). It should,

perhaps, be emphasized that the specification x(t) = α1z1(t) + · · ·+ αdzd(t) is being

used here to characterize the unknown data generating process (DGP), it is akin to a

dynamic factor model (Forni and Lippi, 2001), but it does not represent a statistical

model that is to be fitted to data.

As an example of the application of Grenander’s conditions, suppose that x(t) equates

to the solution of a difference equation with polynomial difference operator d(z) =
∏r

i=1(1 − ζ
−1
i z)mi where ζi denotes a distinct root of d(z) = 0 of multiplicity mi,

i = 1, . . . , r. Solving for x(t) gives

x(t) =
r
∑

i=1

(
mi−1
∑

j=0

αi j t
j)ζ−t

i (4)

for t >
∑r

i=1 mi where the coefficients αi j, j = 0,1, . . . , mi−1, i = 1, . . . , r, are obtained

from the initial conditions. Since

lim
t→∞

t j exp(−t log |ζ|) =







0, |ζ|> 1 ;

∞, |ζ|< 1 ,

for all j = 1, . . . ,max{m1, . . . , mr} − 1 it follows from (4) that Grenander’s conditions

will be violated if mini=1,...,r{|ζi|} > 1, or maxi=1,...,r{|ζi|} < 1, or mini=1,...,r{|ζi|} < 1

and maxi=1,...,r{|ζi|} ≥ 1. If, however, ζi = exp(ıθi) where −π ≤ θi ≤ π, i = 1, . . . , r,

we can write x(t) as a linear combination of

t j cos(θi t)

t j sin(θi t)







j = 0, . . . , mi − 1, i = 1, . . . , r , (5)
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where of course the sine terms do not occur if θi = 0 or θi = ±π. Let z(t) denote the

sequence in which these are arranged such that all those with the same frequency occur

together; so that t j cos(θi t) is followed by t j sin(θi t), j = 0, . . . , mi−1, for i = 1, . . . , r.

Then following the arguments in (Grenander and Rosenblatt, 1957, pages 245-248) or

(Anderson, 1971, pages 581-583) we find that R(h) is block diagonal with ith mi×mi

diagonal block Ti where the matrix

Ti =

�p

(2r − 1)(2c − 1)
(r + c − 1)

�

r,c=1,...,mi

if θi = 0 or θi = ±π, and 2mi × 2mi diagonal block Gi ⊗ Ti where

Gi =





cos(θih) − sin(θih)

sin(θih) cos(θih)



 ,

the Givens rotation matrix at frequency −θih, otherwise. This example is relevant to

our subsequent discussion, where some specific examples of processes of this type are

examined in more detail.

The Whitney embedding theorem (Broomhead and King, 1986, Section 2.3) states that

a k-dimensional manifold with k > 0 can be smoothly embedded in a Euclidean space

of dimension 2k+1. In order to see the relevance of this result here, suppose that the

observed process satisfies a difference equation of order k =
∑r

i=1 mi. Then we can

express each of x(t+k), . . . , x(t+m−1) as a linear combination of x(t), . . . , x(t+k−1)

where the coefficients of the polynomial difference operator can be determined from

the (k+ 1)k entries in the sub–matrix X11 = [x(r + c − 1)]r=1,...,k+1,c=1,...,k. The entries

of X11 are uniquely defined by the 2k values x(1), . . . , x(2k), however, and the Hankel

structure of X11 and X means that all the entries of X can be generated recursively

from the 2k + 1 values x(1), . . . , x(2k + 1). The upshot of this is that the smallest

window length consistent with the reproduction of the observed trajectory matrix in

this manner is m= k+ 1.
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If asymptotic properties of SSA are to be derived then it is essential to impose Grenan-

der’s conditions, or some such restrictions, on the properties of the observed DGP. As

we have seen, Assumption 1 admits a broad range of series, and the imposition of

Grenander’s conditions appears not to exclude any cases of importance in SSA. This

implies that any results based upon Assumption 1 are likely to have broad applicabil-

ity.4

Theorem 1 If the process x(t) satisfies Assumption 1 then for any window length m≤ M

where limN→∞M/N = 0 there exists a unique function of bounded variation, F(ω),

−π≤ω≤ π, whose increments are non-negative definite, such that

lim
N→∞

‖D− 1
2 XX>D−

1
2 −

∫ π

−π
em(ω)em(ω)

∗dF(ω)‖= 0

where em(ω)∗ = (1, exp(ıω), exp(ı2ω), . . . , exp(ı(m− 1)ω)). The function is given by

F(ω) = µ>N(ω)µ where

µ=
R(0)

1
2β

Æ

β>R(0)β
, β> =

�

α1

Æ

an
11(0), . . . ,αd

q

an
dd(0)

�

,

R(0)
1
2 is the unique symmetric square root of R(0), and

N(ω) = R(0)−
1
2

�

lim
N→∞

N−1
∑

h=−N+1

R(h)
�

exp(−ıωh)− 1
−ıh

�

�

R(0)−
1
2 .

The function N(ω) introduced in Theorem 1 is a d × d matrix valued function whose

increments, N(ω2)−N(ω1), ω1 ≤ω2, are Hermitian non-negative definite. It is con-

tinuous from the right and null at −π, and by construction N(ω) satisfies

∫ π

−π
dN(ω) = Id . (6)

An immediate corollary of Theorem 1 is that for any choice of window length m≤ M

where M/N → 0 as N →∞ the almost sure limit of the Gramian YY> = D−
1
2 XX>D−

1
2

4In what follows we will derive our results for basic SSA. The adaptations necessary to cater for
re-centered SSA are straightforward.
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from which the re-scaled SSA model will be constructed is given by the Toeplitz matrix

Γm =





















1 %(1) · · · %(m− 2) %(m− 1)

1 · · · · %(m− 2)
. . .

...

− · ·− 1 %(1)

1





















,

where %(h) =
∫ π

−π eıωhdF(ω). Thus we find that the effect of adopting Grenander’s

conditions in conjunction with the use of the re-scaled trajectory matrix is to introduce

a type of asymptotic covariance stationarity.

Theorem 2 Suppose that the observed series x(t) satisfies Assumption 1. Denote the

eigenvalue-eigenvector pairs of D−
1
2 XX>D−

1
2 by {` j,u j}, j = 1, . . . , m, and those of Γm

by {λ j,υ j}, j = 1, . . . , m. Then for each fixed m ≤ M, where M/N → 0 as N →∞,

limN→∞ |` j −λ j|= 0 and limN→∞ ‖ς ju j −υ j‖= 0 where ς j = sign(υ′ju j), j = 1, . . . , m.

A corollary of Theorem 2 is that the spectral decompositions of D−
1
2 XX>D−

1
2 and Γm,

namely D−
1
2 XX>D−

1
2 =

∑m
i=1 `iuiu

>
i and Γm =

∑m
i=1λiυiυ

>
i , will converge. This implies

that for any process that satisfies sufficient regularity the values calculated from an ob-

served realization will yield consistent estimates of the parameters of a corresponding

(asymptotic) population ensemble R-SSA(m, k) model.

4 Population Ensemble Properties

In order to describe the corresponding population ensemble model we begin with a

result due to Grenander and Rosenblatt (1957). Following Grenander and Rosenblatt,

we will designate the set of pointsω such that for any interval (ω1,ω2) containingω,

ω1 < ω < ω2, the difference N(ω2)−N(ω1) is nonnegative definite and not the null

matrix, the spectrum of N(ω).

Theorem 3 The spectrum of N(ω) can be uniquely partitioned into disjoint sets E j, j =
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1, . . . , q ≤ d, that differ only on a set of trace{N(ω)}/d measure zero, such that

P(E j) =

∫

E j

dN(ω)> 0 , j = 1, . . . , q ,

and
q
∑

j=1

P(E j) = Id and P(Ei)P(E j) = 0 , i 6= j .

There is no finer such partition.

The sets E j, j = 1, . . . , q ≤ d are called the elements of the spectrum and the spectral

decomposition of Γm is obviously governed by the elements of the spectrum of N(ω).

Suppose that the spectrum of N(ω) has elements that are q distinct pointsω1, . . . ,ωq,

q ≤ d. Then N(ω) is made up of a denumerable set of saltuses. Theorem 3 indicates

that the elements of the spectrum provide a unique maximal set of mutually annihilat-

ing Hermitian idempotents and we can therefore conclude that N(ω) can be expressed

as

N(ω) = P1 + P2 + · · ·+ P j , ω j ≤ω<ω j+1

where the orthogonal projections P j, j = 1, . . . , q, yield a resolution of the identity. In

this case

Γm =
q
∑

j=1

em(ω j)em(ω j)
∗µ>P jµ

and the eigenvalues of Γm are

λi =
q
∑

j=1

|γ ji|2µ>P jµ

where γ ji = em(ω j)∗υi, for i = 1, . . . ,min{m, q}, plus λ = 0 with multiplicity m − q

when m > q, where υi, i = q + 1, . . . , m, form a maximal orthonormal set orthog-

onal to the manifold generated by em(ω j), j = 1, . . . , q. Since the eigenvectors υi,

i = 1, . . . , m, form an orthonormal basis for Rm we have em(ω j) =
∑m

i=1 γ jiυi where
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the coefficients γ ji are such that |γ ji| ≤
p

m and
∑m

i=1 |γ ji|2 = ‖em(ω j)‖2 = m. Conse-

quently,

m
∑

i=1

λi =
m
∑

i=1

q
∑

j=1

|γ ji|2µ>P jµ

= m
q
∑

j=1

µ>P jµ

= m= trace{Γm} , as it must,

where the last line follows since
∑q

j=1 P j = Id and ‖µ‖= 1.

Now, from Theorem 2 it follows that if the window length m is sufficiently large, i.e.

m > q, then as N →∞ the SVD of Y = D−
1
2 X will contain q non-null singular values

bounded away from zero and m−q arbitrarily small singular values, reflecting that the

elements of the spectrum of N(ω) is made up of q distinct points. The corresponding

signal-noise decomposition of the re-scaled trajectory matrix will give Y = YS + YN

where

YS =
q
∑

i=1

Æ

`iuiv
>
i =

q
∑

i=1

Æ

λiυiν
>
i + o(1) (7)

where νi = Y>υi/
p

λi, i = 1, . . . , q, and

YN =
m
∑

i=q+1

Æ

`iuiv
>
i = o(1) . (8)

In this case the population ensemble model implies that the R-SSA(m, q) model will

reproduce the spectral characteristics of the discrete component of the re-scaled tra-

jectory matrix of the observed series with an ever decreasing error as N →∞.

The process x(t) consisting of an affine combination of t j cos(θi t) and t j sin(θi t), j =

0, . . . , mi − 1, for i = 1, . . . , r, as described following (5) above, provides an example

in which the elements of the spectrum of N(ω) are distinct points of (−π,π]. The

spectrum of M(ω) = R(0)
1
2 N(ω)R(0)

1
2 consists of a set of points determined by θi,

i = 1, . . . , r, with an mi ×mi block diagonal jump of Ti at ω = θi if θi = 0 or θi = π,
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and a 2mi × 2mi block diagonal jump of

1
2





1 ı

−ı 1



⊗ Ti and
1
2





1 −ı

ı 1



⊗ Ti

at ω = ±θi otherwise. See Grenander and Rosenblatt (1957, pages 245-248) or An-

derson (1971, pages 581-583). These points translate directly into the elements of

the spectrum of N(ω) in an obvious way.

Now suppose that the spectrum of N(ω) has a single element consisting of the set

(−π,π] itself. The increments N(ω2)−N(ω1), ω1 < ω2, are Hermitian positive def-

inite, and via an appeal to Lebesgue’s decomposition N(ω) = Nd(ω) +Nc(ω) where

Nd(ω) is an increasing step function and Nc(ω) is an increasing continuous function.

Suppose that the saltuses in Nd(ω) occur at the values ω j, j = 1,2, . . ., and that the

jump at ω j is N j > 0. Thus,

Nd(ω) =
∑

ω j<ω

N j

where ω j, j = 1, 2, . . ., designates the discrete spectrum, and {(−π,π] \ {ω1,ω2, . . .}}

is the continuous spectrum with (trivially)

Nc(ω) = N(ω)−
∑

ω j<ω

N j .

We now have F(ω) = F d(ω) + F c(ω) = µ>Nd(ω)µ+µ>Nc(ω)µ and

Γm =
∞
∑

j=1

em(ω j)em(ω j)
∗F j +

∫ π

−π
em(ω)em(ω)

∗dF c(ω) ,

where, obviously, F j = µ>N jµ. Either of F d(ω) or F c(ω) can be null.

When F c(ω) is null and the spectrum of N(ω) is purely discrete and consists of a finite

set of q distinct points ω1, . . . ,ωq, q ≤ d, we have already seen that as N →∞ a R-

SSA(m, q)model will reproduce the spectral characteristics of the discrete component
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with an ever decreasing error.5 Let us now suppose that the spectrum is continuous,

so that F d(ω) is null and only F c(ω) remains.

As preparation for the following result set

F c
m(ω) =

∫ ω

−π

1
2π

m−1
∑

r=−(m−1)

�

1−
|r|
m

�

%c(r)exp(−ıθ r)dθ

=
(π+ω)

2π
+

m−1
∑

r=−(m−1)
r 6=0

�

1−
|r|
m

�

%c(r)
�

exp(−ıπr)− exp(−ıωr)
ı2πr

�

where

%c(r) =

∫ π

−π
exp(ıωr)dF c(ω) . (9)

By construction F c
m(−π) = 0 and F c

m(π) = 1, and because the integrand

f c
m(ω) =

1
2π

m−1
∑

r=−(m−1)

�

1−
|r|
m

�

%c(r)exp(−ıωr)

=
1

2πm

m
∑

s=1

m
∑

t=1

%c(t − s)exp(−ıω(t − s))

=
1

2πm

∫ π

−π
|

m
∑

r=1

exp(−ı(ω− θ )r)|2dF c(θ )

> 0

is positive for all ω, since the increments in F c(ω) = µ>Nc(ω)µ are positive definite,

the distribution function F c
m(ω) is increasing for each value of m. Furthermore, it is

readily verified that

∫ π

−π
exp(ıωr)dF c

m(ω) =







�

1− |r|m

�

%c(r) , |r| ≤ m− 1 ,

0 , |r| ≥ m ,
(10)

where %c(r) is defined in (9). Treating the Fourier transforms in (9) and (10) as

characteristic functions of distribution functions supported on the interval [−π,π], it

5This feature provides an SSA counterpart to the stochastic process concept of a deterministic series,
a time series that is ultimately perfectly predictable. See Anderson (1971, Chapter 7.6) for example.
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follows from Helly’s theorem and the uniqueness and continuity properties of charac-

teristic functions that F c
m(·) converges to F c(·) at each point of continuity.

Theorem 4 Let

Γ c
m =

∫ π

−π
em(ω)em(ω)

∗dF c(ω)

and assume that the Fourier coefficients in (9) decay hyperbolically: |%c(r)| ≤ C |r|2d−1

as |r| →∞ for some parameter d, |d| < 1/2, and constant C <∞. Then the terms in

the spectral decomposition Γ c
m =

∑m
i=1λiυiυ

>
i satisfy

m−1|λi − 2π f c
m(2π ji/m)|= h(m)

and

m−1‖ς jυi − em(2π ji/m)‖= h(m)

for all m sufficiently large, where for i = 1, . . . , m; 2π ji/m, ji ∈ {0, 1, . . . , m− 1} denote

points of the spectrum such that f c
m(2π j1/m) ≥ f c

m(2π j2/m) ≥ · · · ≥ f c
m(2π jm/m), ςi =

sign(υ′iem(2π ji/m)), and

h(m)∼















C
�

2(7+12d)
(4d+1)(4d+2)

� 1
2

m2d−1, 0< d < 1/2 ;

C(2 log(m))
1
2 m−1, d = 0 ;

C(2ζ(1− 4d))
1
2 m−1, −1/2< d < 0 .

,

where ζ(·) denotes Riemann’s zeta function.

An immediate corollary of Theorem 4 is that

lim
m→∞

|
1
m

m
∑

i=1

λ
p
i −

1
2π

∫ π

−π
{2π f c

m(ω)}
pdω|= 0 , p = 0, 1,2, . . . .
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This follows as a consequence of the inequality

�

�

�

�

�

1
m

m
∑

i=1

λ
p
i −

1
2π

∫ π

−π
{2π f c

m(ω)}
pdω

�

�

�

�

�

≤
1
m

m
∑

i=1

|λp
i − {2π f c

m(2π ji/m)}p|+

�

�

�

�

�

1
m

m−1
∑

j=0

{2π f c
m(2π j/m)}p −

1
2π

∫ π

−π
{2π f c

m(ω)}
pdω

�

�

�

�

�

,

where the existence of the limit of m−1
∑m−1

j=0 {2π f c
m(2π j/m)}p as a Riemann integral

is guaranteed by the continuity of f c
m(·).

A great deal is known about the properties of Toeplitz matrices, of course, a classic ref-

erence being Grenander and Szego (1958), and arguably the most well known result

describing the behavior of the eigenvalues of sequences of m × m Toeplitz matrices

as m →∞ is Szegö’s theorem. Theorem 4 and its corollary provide an adaption of

Szegö’s theorem that allows for the possibility that the Fourier coefficients are not ab-

solutely summable. Prototypical examples are fractional Gaussian noise, obtained as

the increments of self-similar processes, and fractional autoregressive moving average

processes (Beran, 1994).

When applied in conjunction with Theorem 2, Theorem 4 indicates that if the series

has a purely continuous spectrum, then for any R-SSA(m, k) model with k < m the

signal-noise decomposition constructed from D
1
2 (YS + YN ) with YS =

∑k
i=1

p

`iuiv
>
i

and YN =
∑m

i=k+1

p

`iuiv
>
i will converge to a population ensemble model that al-

locates those points of the spectrum that have the greatest power to the signal and

relegates the points remaining to the noise.

As an example of a process with a continuous spectrum, consider the series x(t) =

z1(t) = ε(t)+θε(t−1) where ε(t) is a zero mean white noise with variance σ2. Then

it is straightforward to show that in this case Γm equals the tri-diagonal Toeplitz matrix
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

























1 %

% 1 %

. . . . . . . . .
. . . . . . . . .

% 1 %

% 1



























(11)

where % = θ/(1+ θ 2). The normalized spectral density of this process is (2π)−1(1+

2% cos(ω)) and the eigenvalues of the matrix in (11) are λi = (1+2% cos(ω ji)), where

ω ji = 2π ji/(m+ 1), ji ∈ {1, . . . , m}, i = 1, . . . , m. The corresponding eigenvectors are

υi =
q

2
(m+1)(sin(ω ji), . . . , sin(mω ji))

>, i = 1, . . . , m. From this it is clear that if an R-

SSA(m, k)model with k < m is employed to represent the series the loss incurred will

depend critically on the power forgone by assigning the m− k eigenvalue-eigenvector

pairs that do not correspond to dominant parts of the power-spectrum to the noise

component.

Now assume that the spectrum is mixed, that is, both discrete and continuous compo-

nents are present, and suppose that in the decomposition x(t) = α1z1(t)+· · ·+αdzd(t)

the variables zi(t), i = 1, . . . , q have a discrete spectrum and zi(t), i = q + 1, . . . , d,

have a continuous spectrum – polynomial trends or trigonometric series and regular

stationary processes, respectively, for example. Assume also that zi(t), i = 1, . . . , q

predominate in the sense that there exists a function a(n) that is regularly varying at

infinity with a positive index such that; for i = 1, . . . , q, an
ii(0)/a(n) is regularly varying

with a non-negative index, whereas for i = q+ 1, . . . , d, an
ii(0)/a(n) is regularly vary-

ing with a negative index, implying that for i = q + 1, . . . , d, limn→∞ an
ii(0)/a(n) = 0.

Then µ = R(0)
1
2β d/

Æ

β d>R(0)β d where β d = β/
p

a(n), and as n increases β d will

collapse on to (α1

Æ

an
11(0)/a(n), . . . ,αq

q

an
qq(0)/a(n), 0, . . . , 0)>. This indicates that

in this case the trajectories of X will ultimately be driven by zi(t), i = 1, . . . , q, and

as n → ∞ the SVD of Y = D−
1
2 X will contain q non-null singular values bounded

away from zero and m− q arbitrarily small singular values, reflecting the dominance

of the discrete spectrum. The corresponding signal-noise decomposition will give
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Y = YS + YN where YS and YN are as in (7) and (8), and the population ensem-

ble R-SSA(m, q) model will reproduce the dominant discrete component with an ever

decreasing error as n→∞.

This suggests applying R-SSA sequentially;

• First step, remove the component generated by the q dominating discrete com-

ponents using a R-SSA(m, q) model to construct an approximation sd(t), to use

an obvious notation, to α1z1(t)+ · · ·+αqzq(t). Filter out the discrete component

to give the residuals x(t)− sd(t), t = 1, . . . , N .

• Second step, analyze the resulting residuals and construct an appropriate R-

SSA(m, k)model for x(t)− sd(t) so as to yield an approximation to the continu-

ous component αq+1zq+1(t) + · · ·+αdzd(t). Denote the approximation by sc(t),

t = 1, . . . , N .

At the second step the residuals should be analyzed by examining the SVD of the re-

scaled trajectory D−
1
2 (X−Sd) where now D= diag{(X−Sd)(X−Sd)>}, and in both the

first step and the second step the model can be chosen so as to ensure that the variance

ratio
∑k

i=1 `i/
∑m

i=k+1 `i is sufficiently large, or by using the description length principle

outlined in Khan and Poskitt (2015).

• Third step, amalgamate the two components to give a final R-SSA signal–noise

reconstruction x(t) = sd(t) + sc(t) + ε(t), t = 1, . . . , N , for the observed time

series.

5 Illustrations

Our purpose in this section is to demonstrate the practical impact of the results pre-

sented above. This we will do by examining the details of three hypothetical series

that satisfy the regularity conditions of Section 3.
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5.1 Polynomial Series

If zi(t) = t i−1, i = 1, . . . , d, then

ρrc(h) =

p

(2r − 1)(2c − 1)
r + c − 1

, r, c = 1, . . . , d,

for all h= 0,±1,±2, . . ., with corresponding spectral distribution function

M(ω) =







0, ω< 0;

R(0), ω≥ 0.

The spectrum of N(ω) consists of a single element at ω= 0 with a jump of Id , and

F(ω) = µ>N(ω)µ=







0, ω< 0 ;

1, ω≥ 0 ,

the Heaviside (unit) step function. This yields a limiting value of Γm = 1m1>m for the

Gramian YY> = D−
1
2 XX>D−

1
2 where 1m = (1, . . . , 1)>. The eigenvalues of 1m1>m are

λ1 = m with eigenvector υ1 = 1m/
p

m, and λm = 0 with multiplicity m − 1 and

eigenvectors

υ>2 = (−1,1,0>m−2)/
p

2

υ>3 = (1, 1,−2,0>m−3)/
p

6

υ>4 = (−1,−1,−1,3,0>m−4)/
p

12
...

υ>m = (−1)m−1(1, 1, . . . , 1,−(m− 1))/
Æ

m(m− 1) .

The upshot of this is that any R-SSA(m, k) model applied to the polynomial series

x(t) = α1z1(t) + · · · + αdzd(t), with 2 ≤ m ≤ M where limN→∞M/N = 0 as N →

∞ and 1 ≤ k < m, will ultimately lead to a R-SSA(m, 1) (asymptotic) population

ensemble model in which YS = 1m1>mY + o(1) and YN = o(1), irrespective of the
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value of d.

Tables 1 and 2 present entries in the Gramian matrix YY> = D−
1
2 XX>D−

1
2 and val-

ues of the eigenvalues ` j, j = 1, . . . , m, when calculated from realizations of the

process x(t) = α1z1(t) + · · · + α4z4(t) where z j(t) = t j−1, j = 1, 3, and z4(t) is a

generalized autoregressive conditionally heteroscedastic GARCH(2, 1) process with

parameters (0.2, 0.1) and 0.4, and an unconditional variance of unity. For the lin-

Table 1: Entries in upper triangle of YY> = D−
1
2 XX>D−

1
2 and ` j, j = 1, . . . , m, calculated

from N = 200 observations on linear trend series with m= 15.

YY> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.96 0.96 0.97 0.97 0.97
2 · 1 0.97 0.96 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
3 · · 1 0.97 0.96 0.97 0.96 0.97 0.97 0.96 0.97 0.96 0.97 0.97 0.97
4 · · · 1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
5 · · · · 1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
6 · · · · · 1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
7 · · · · · · 1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
8 · · · · · · · 1 0.97 0.97 0.97 0.97 0.97 0.97 0.97
9 · · · · · · · · 1 0.97 0.97 0.97 0.97 0.97 0.97
10 · · · · · · · · · 1 0.97 0.97 0.97 0.97 0.97
11 · · · · · · · · · · 1 0.98 0.97 0.97 0.97
12 · · · · · · · · · · · 1 0.98 0.97 0.97
13 · · · · · · · · · · · · 1 0.98 0.97
14 · · · · · · · · · · · · · 1 0.98
15 · · · · · · · · · · · · · · 1
` j 14.57 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.01

ear trend series (α1, . . . ,α4)> = (1,0.1, 0,2.51) and for the quadratic trend series

(α1, . . . ,α4)> = (1,2,−0.01, 14.91), where the coefficient values are chosen so that

the signal-noise ratio of both series is 15.0 dB.6 The calculations are based on N = 200

observations with a window length of m = b
p

Nc+ 1 = 15. Figure 1 graphs the indi-

vidual realizations that gave rise to the values presented in Tables 1 and 2.

Visual inspection of Figure 1 clearly indicates that over the time frame considered the

two series generate a range of values that differ by an order of magnitude, and that

they exhibit very different trend behaviour. Nevertheless, from Tables 1 and 2 we find

that both series yield values of YY> = D−
1
2 XX>D−

1
2 that closely approximate an m×m

6Designating the deterministic component as the signal, s(t) = α1z1(t) + α2z2(t) + α3z3(t), and
the random component as noise, n(t) = α4z4(t), the signal-noise ratio

∑T
t=1 s(t)

2/
∑T

t=1 n(t)
2 ∼

(αp+1/α4)2N2p/(p+ 1), with p = 1 for the linear trend series and p = 2 for quadratic trend series.
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Table 2: Entries in upper triangle of YY> = D−
1
2 XX>D−

1
2 and ` j, j = 1, . . . , m, calculated

from N = 200 observations on quadratic trend series with m= 15.

YY> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.96 0.96 0.96 0.96 0.95
2 · 1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.96 0.96 0.96 0.96
3 · · 1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.96
4 · · · 1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.96
5 · · · · 1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.96
6 · · · · · 1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
7 · · · · · · 1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
8 · · · · · · · 1 0.97 0.97 0.97 0.97 0.97 0.97 0.97
9 · · · · · · · · 1 0.97 0.97 0.97 0.97 0.97 0.97
10 · · · · · · · · · 1 0.97 0.97 0.97 0.97 0.97
11 · · · · · · · · · · 1 0.98 0.97 0.97 0.97
12 · · · · · · · · · · · 1 0.98 0.97 0.97
13 · · · · · · · · · · · · 1 0.98 0.97
14 · · · · · · · · · · · · · 1 0.98
15 · · · · · · · · · · · · · · 1
` j 14.56 0.08 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.01
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Figure 1: Realizations of linear and quadratic trend series with N = 200.

equi-correlation matrix of the form



























1 % % · · · · · · %

% 1 % · · · · · · %

· · · · . . . · · · · · · ·

· · · · · · · . . . · · · ·

% · · · · · · % 1 %

% · · · · · · % % 1



























, (12)
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with eigenvalues 1 + (m − 1)% and 1 − % with multiplicity m − 1, where % ≈ 0.97.

Thus we find that at this signal-noise ratio a sample of size N = 200 is sufficient for

the finite sample value of YY> = D−
1
2 XX>D−

1
2 to be in close accord with the limiting

value of Γm = 1m1>m, and the R-SSA(15,1) signal-noise reconstructions for both series

will therefore be close to those based upon the corresponding population ensemble

model.

In Figure 2 we graph for each series the true signal s(t) = α1z1(t) +α2z2(t) +α3z3(t)

and noise process n(t) = α4z4(t) together with the reconstructions sd(t) and sc(t)

derived from R-SSA(15, 1) and R-SSA(15, 13) models respectively. Both models

were chosen by assigning the signal dimension to the smallest value of k such that

100(
∑k

i=1 `i/m) ≥ 95%. To ascertain the precision of the reconstructions we have

calculated the correlation coefficients between the true signal and its reconstruction,

rs,sd , the true noise and its reconstruction, rn,sc , and the original series and its recon-

struction, rx ,sd+sc . These provide simple scale invariant measures that can be used to

directly compare the performance of different SSA models when applied to different

series.

For the linear trend series we have rs,sd = 0.9957 and for the quadratic trend se-

ries rs,sd = 0.9906, indicating that the level of accuracy achieved by the R-SSA(15, 1)

model for each of the two series is on a par. Hence we find that, despite the val-

ues of YY> = D−
1
2 XX>D−

1
2 for each series being very close to each other and close to

their common theoretical limiting value, the discrete reconstructions accurately re-

produce the different trend components of each series. Consequently, apart from the

change in scale necessary to achieve the common signal-noise ratio, the noise recon-

structions are almost identical and precisely capture the evolution of the noise com-

ponent. For the linear trend series rn,sc = 0.9526, and for the quadratic trend series

rn,sc = 0.9417. The overall effect is to produce R-SSA series reconstructions with cor-

relations of rx ,sd+sc = 0.9990 and rx ,sd+sc = 0.9986 for the linear and quadratic trend

series respectively.
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Figure 2: Realized signal and noise components of linear and quadratic trend series over-
laid with R-SSA first stage signal reconstruction sd(t) and second stage noise
reconstruction sc(t).

In summary, the comparison of the values given by the linear and quadratic trend se-

ries in Tables 1 and 2, when combined with an examination of Figures 1 and 2 and the

associated reconstruction correlations, provides clear evidence of how detailed struc-

ture embedded within a series that is lost in the characterization of YY> = D−
1
2 XX>D−

1
2

via N(ω) is recovered in SSA by projecting back into the time domain through the em-

pirical eigenfunctions.
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5.2 Random Walk Process

Now consider an observed process x(t) such that

x(t) = α1z1(t) +α2z2(t) =
t−1
∑

τ=0

η(t −τ) + ν(t) (13)

where η(t) is a zero mean i.i.d. Gaussian white noise processes with a unit variance,

and ν(t) is an independent zero mean stationary and ergodic process.7 For reasons

that will become apparent below, we will label the first component as the signal, s(t) =

α1z1(t) =
∑t−1
τ=0η(t − τ), and the second component as noise, n(t) = α2z2(t) = ν(t).

See Thomakos (2008a,b) for a number of results concerning the application of SSA to

random walk processes.

To derive the re-scaled SSA population ensemble model, let us express XX> as
∑n

t=1 x(t)x(t)> where

x(t) = z1(t − 1)1m +





















η(t)

η(t) +η(t + 1)

η(t) +η(t + 1) +η(t + 2)
...

η(t) + · · · · · · · · ·+η(t +m− 1)





















+





















ν(t)

ν(t + 1)

ν(t + 2)
...

ν(t +m− 1)





















. (14)

From the strong Markov property of the random walk process it follows that the three

components on the right hand side of (14) are mutually orthogonal. Since E[z1(t −

1)2] = t−1 andE[
∑r
τ=0η(t+τ)

∑s
τ=0η(t+τ)] =min(r+1, s+1), we obtainE(xtx

>
t ) =

(t−1)1m1>m+Ψ+Υ where Υ = [E(ν(t+r−c)ν(t))]r,c=1,...,m andΨ = [min(r, c)]r,c=1,...,m .

For the raw trajectory matrix X we therefore have

1
n
E[XX>] =

1
n

n
∑

t=1

E[xtx
>
t ] =

n− 1
2

1m1>m +Ψ + Υ .

7The first component is a random walk, of course, a non–stationary process of orthogonal incre-
ments. In the structural times series literature the process in (13) is referred to as the local level model
when ν(t) is white noise. The assumption of Gaussianity is adopted for convenience, it can be replaced
by appropriate martingale or mixing conditions but such a level of generality is not required here.
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Moreover, applying Donsker’s theorem and the fact that n−3/2
∑n

t=1 z1(t−1)η(t+ s) =

O(
p

log log n), s = 0, . . . , m− 1, (Poskitt, 2000, Lemma A.1.(ii)) we can also deduce

that ‖n−1XX′ −Σm‖= O(
p

log log n/n) where Σm = nβ2
n 1m1>m +Ψ + Υ and

β2
n =

1
n2

n
∑

t=1

x(t)2 +O(
Æ

log log n/n)
D
→
∫ 1

0

B2(ω)dω,

where B(ω) denotes standard Brownian motion. We are therefore lead to the conclu-

sion that YY> = D−
1
2 XX>D−

1
2 converges to ∆−

1
2

m Σm∆
− 1

2
m where ∆m = diag{nβ2

n + 1 +

σ2, nβ2
n +2+σ2, . . . , nβ2

n +m+σ2}, σ2 = E(ν(t)2), and hence that Γm = 1m1>m+o(1).

This reflects that the random walk component eventually dominates the behaviour of

the entries in YY> and asymptotically the contribution of the stationary component is

smothered.8

Figure 3 graphs a realization of a random walk process as specified in (13). Here
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Figure 3: Realizations of random walk process and quadratic trend series with N = 200.

the noise component is a generalized autoregressive conditionally heteroscedastic

GARCH(2, 1) process with parameters (0.2, 0.1) and 0.4, and an unconditional vari-

ance set so that the signal-noise ratio
∑N

t=1 s(t)
2/
∑N

t=1 n(t)
2 is 15.0 dB, the same as

8The limiting value of Γm obtained for this process is the same as that produced in the polynomial
series case, and likewise, this will ultimately be manifest in a R-SSA model in which the signal com-
ponent YS = 1m1>mY+ o(1). An explicit algebraic representation of the series given by H (1m1>mY) is
presented in Thomakos (2008a, Section 3.1.)
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that for the polynomial trend series examined previously. To provide a basis for com-

parison, the plot of the random walk process is superimposed upon the quadratic trend

series.

Casual perusal of Figure 3 might lead an unwary practitioner who has no prior knowl-

edge of the true DGPs to suggest that Figure 3 provides a counterpart to Figure 1, save

that the quadratic trend series is matched with a series containing a downward slop-

ing rather than an upward sloping linear trend: an erroneous conclusion that could be

reinforced by noting that the Gramian YY> = D−
1
2 XX>D−

1
2 (given in Table 3) loosely

Table 3: Entries in upper triangle of YY> = D−
1
2 XX>D−

1
2 and ` j, j = 1, . . . , m, calculated

from N = 200 observations on random walk process with m= 15.

YY> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0.95 0.94 0.93 0.92 0.91 0.91 0.90 0.88 0.87 0.85 0.84 0.83 0.81 0.80
2 · 1 0.96 0.94 0.92 0.92 0.91 0.90 0.90 0.87 0.87 0.85 0.84 0.83 0.80
3 · · 1 0.96 0.94 0.93 0.92 0.91 0.91 0.89 0.87 0.87 0.86 0.84 0.82
4 · · · 1 0.96 0.94 0.93 0.92 0.92 0.90 0.89 0.88 0.87 0.85 0.83
5 · · · · 1 0.96 0.94 0.93 0.92 0.92 0.90 0.89 0.88 0.87 0.85
6 · · · · · 1 0.96 0.94 0.93 0.92 0.91 0.90 0.89 0.87 0.86
7 · · · · · · 1 0.96 0.94 0.93 0.91 0.91 0.90 0.88 0.86
8 · · · · · · · 1 0.96 0.94 0.93 0.92 0.91 0.90 0.88
9 · · · · · · · · 1 0.96 0.94 0.93 0.92 0.91 0.89
10 · · · · · · · · · 1 0.96 0.94 0.93 0.92 0.91
11 · · · · · · · · · · 1 0.96 0.94 0.93 0.92
12 · · · · · · · · · · · 1 0.96 0.94 0.93
13 · · · · · · · · · · · · 1 0.96 0.94
14 · · · · · · · · · · · · · 1 0.96
15 · · · · · · · · · · · · · · 1
` j 13.68 0.56 0.16 0.10 0.08 0.07 0.07 0.05 0.05 0.04 0.03 0.03 0.03 0.02 0.01

approximates to an m×m equi-correlation matrix as in (12) with % ≈ 0.91, as might

be observed with a polynomial series.

In Figure 6 we graph for each series the true signal and noise components together

with the first step R-SSA(15,1) signal reconstruction and second step R-SSA(15, 13)

noise reconstruction. Both models were chosen by assigning the signal dimension

to the smallest value of k such that 100(
∑k

i=1 `i/m) ≥ 95%. The ability of the re-

scaled SSA signal reconstruction to track the underlying true signal component of

each series is apparent, the fact that one signal is continuously differentiable whilst the

other approximates a process that is nowhere differentiable, except possibly on a set of

probability measure zero, notwithstanding. The R-SSA(15, 1) signal reconstructions

clearly show that neither set of observations are derived from a linear trend series. And
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Figure 4: Realized signal and noise components of quadratic trend series and random
walk process overlaid with R-SSA first stage signal reconstruction sd(t) and
second stage noise reconstruction sc(t).

once again, apart from the change in scale necessary to achieve the common signal-

noise ratio, the noise reconstructions behave similarly and capture the evolution of the

true noise component reasonably accurately. Given the relatively erratic behaviour of

random walks, however, it is perhaps not too surprising to find that for the random

walk process we have rs,sd = 0.9524 and rn,sc = 0.5952, compared to rs,sd = 0.9906

and rn,sc = 0.9417 for the quadratic trend series. Interestingly enough, the lack of

precision in the second stage noise reconstruction implicit in the decline in rn,sc for

the random walk process is recovered in the overall series reconstruction, and both

perform similarity with correlations of rx ,sd+sc = 0.9986 and rx ,sd+sc = 0.9987 for the

quadratic trend series and random walk process respectively.
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The outcomes reported above clearly illustrate that different DGPs that are not equiv-

alent can give rise to the same asymptotic structure for YY> = D−
1
2 XX>D−

1
2 , and hence

the same spectral distribution function and spectrum. Nevertheless, although the de-

scription of the DGP through N(ω) is poor, as all fine detail is lost, and SSA will ul-

timately handle such series identically due to their common "frequency domain" fea-

tures as a consequence, by projecting back into the time domain through the empirical

eigenfunctions SSA is able to retrieve the individual structure embedded within each

series.

5.3 A Random Walk with Drift and Autocorrelated Increments

To illustrate a situation involving a more complex mixed spectral structure, suppose

that x(t) = α>z(t) where z(t) − z(t − 1) = δ + u(t) and u(t) is a stationary pro-

cess with Wold representation
∑∞

s=0Φsη(t − s); where the process ηt = (η1t , . . . ,ηd t)′

constitutes an i.i.d. sequence of zero mean Gaussian variables with covariance matrix

˚> 0, and the d× d coefficient matrices of the transfer function satisfy the conditions
∑

s≥0 j||Φs|| <∞ and
∑∞

s=0Φs = Φ 6= 0. Re-expressing u(t) using a Beveridge-Nelson

decomposition (Phillips and Solo, 1992) gives
∑∞

s=0Φsη(t−s) = Φη(t)+ν(t)−ν(t−1)

where ν(t) =
∑∞

s=0Ψsη(t − s), Ψs = −(Φs+1+Φs+2+ · · · ), and from this it follows that

z(t) = z(0) +δt +
t
∑

τ=1

u(τ)

= z(0) +δt +Φ
t
∑

τ=1

η(τ) + ν(t)− ν(0) ,

where the initial values z(0) and ν(0) may be taken to be equal to fixed constants.

The upshot of all this is that

x(t) = α>(z(0)− ν(0)) +α>δt +α>Φ
t
∑

τ=1

η(τ) +α>ν(t) ,
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which we can rewrite (for notational convenience) as

x(t) = x dP (t) + x dRW (t) + x c(t)

where x dP (t) = α>(z(0)− ν(0) + δt), x dRW (t) = α>Φ
∑t
τ=1η(τ) and x c(t) = α>ν(t).

This decomposition of x(t) into the sum of a polynomial series (the drift term), a ran-

dom walk process and a stationary process obviously governs the limiting properties

of the trajectory matrix, and in order that N(ω) have a mixed spectrum we require

that at least one of α>δ and α>Φ be non-zero, to ensure the existence of a discrete

component, and that α>ν(t) is not identically zero, to guarantee the existence of the

continuous component.

Taken together, the previously stated conditions allow appeal to be made to established

results on linear processes and the asymptotic convergence properties of associated

partial sum processes, see Phillips and Solo (1992) and Davidson (1994, Part VI) for

example. In particular we have that for all m= 1, . . . , M where M/N → 0 as N →∞;

1. n−3
∑n

t=1 x dP (t + r)2 ∼ (α>δ)2/3,

2. n−2
∑n

t=1 x dRW (t + r)2 ∼ α>ΦΣ 1
2

∫ 1

0
B(ω)B(ω)>dωΣ

1
2Φ
>
α

3. n−1
∑n

t=1 x c(t + r)2 ∼
∑∞

s=0α
>ΦsΣΦ

>
s α

4. n−5/2
∑n

t=1 x dP (t + r)x dRW (t + r)∼ α>δ
∫ 1

0
ωB(ω)>dωΣ

1
2Φ
>
α

5. n−3/2
∑n

t=1 x dP (t + r)x c(t + r)∼ α>δ
∫ 1

0
ωdB(ω)>dωΣ

1
2Φ
>
α

6. n−3/2
∑n

t=1 x dRW (t + r)x c(t + r)∼

α>
�

ΦΣ
1
2

∫ 1

0

B(ω)dB(ω)>dωΣ
1
2Φ
>
+
∞
∑

τ=1

∞
∑

s=0

ΦsΣΦ
>
s+τ

�

α ,

uniformly in r = 0, . . . , m−1, where B(ω) denotes d dimensional standard Brownian

motion

From the orders of magnitude implicit in relationships 1 through 6 it follows that
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∑n
t=1 x(t + r)2 will be dominated by

∑n
t=1 s(t + r)2 where s(t) = x dP (t) + x dRW (t),

and the size of
∑n

t=1 s(t + r)2 will in turn be determined by the relative magnitudes

of x dP (t) and x dRW (t) over the time interval t = 1, . . . , N . Whichever term dominates

s(t), be it x dP (t) or x dRW (t), as N →∞ the Gramian YY> = D−
1
2 XX>D−

1
2 will converge

to Γm = 1m1>m + o(1).

Figure 5 graphs two realizations of a random walk process with drift and autocorre-

lated errors where the Beveridge-Nelson decomposition gives rise to the characteri-

zation x dP (t) = 1 + 0.1t, x dRW (t) = 2(1 + θ )
∑t−1
τ=0η(t − τ) and x dC (t) = −2θη(t),

|θ | < 1. For the first realization θ = −0.9 and for the second θ = 0.9, and for

this process
∑N

t=1 x dP (t)2 ∼ 0.003N 3,
∑N

t=1 x dRW (t)2 ∼ 4(1+ θ )2N 2
∫ 1

0
B2(ω)dω and

∑N
t=1 x dP (t)x dRW (t) ∼ 0.2(1 + θ )N 5/2

∫ 1

0
ωB(ω)dω, and the contribution of the two

discrete components x dP (t) and x dRW (t) to the signal-noise ratio gives 17.83 dB when

θ = −0.9 and 22.46 dB when θ = 0.9. Both processes exhibit a clearly perceptible

drift, with the first behaving very much like the linear trend series observed previously.

For both specifications we find that the Gramian YY> = D−
1
2 XX>D−

1
2 approximates to
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Figure 5: Realizations of random walk process with drift and autocorrelated increments.

an m × m equi-correlation matrix as in (12) with % ≈ 0.9817 when θ = −0.9 and

% ≈ 0.9676 when θ = 0.9, and the first eigenvalue accounts for 98.29% and 96.97%

of m= traceYY> = ‖D− 1
2 X‖2, respectively.
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In Figure 6 we graph for each series the true signal together with the first stage R-

SSA(15,1) signal reconstruction sd(t), and the true noise together with the second

stage noise reconstruction sc(t), the latter derived from models chosen by assigning

the signal dimension to the smallest value of k such that 100(
∑k

i=1 `i/m) ≥ 95%, R-

SSA(15,14) and R-SSA(15, 7) respectively. The difference in the specifications for the

second stage models is consistent with the properties outlined in Theorem 4. The

different specifications arise because the spectral distribution function of the noise

n(t) is F c(ω) = 4θ 2(ω+π)/2π and, as is shown below, when θ = −0.9 sd(t) ≈ s(t)

so the first stage residuals x(t)− sd(t) = s(t)− sd(t) + n(t) closely approximate n(t),

when θ = 0.9, on the other hand, sd(t) is much smoother than s(t) so that s(t)−sd(t)

introduces additional power into the first stage residuals that is not evenly spread over

the interval [−π,π) and the first stage residuals therefore have a power spectrum

distribution that is no longer uniform. The upshot is that we have rs,sd = 0.9985 and

rn,sc = 0.9712 for the first specification, compared to rs,sd = 0.9777 and rn,sc = −0.0486

for the second.

These seemingly anomalous results arise because when θ = −0.9 the magnitude of

x dRW (t) is damped down (and approaches zero as θ → −1) so that s(t) = x dP (t) +

x dRW (t) closely approximates a linear trend; whereas when θ = 0.9 the fluctuations in

x dRW (t) amplify the variation in the signal around the linear trend so as to increase the

signal-noise ratio. But these additional fluctuations in s(t) are precisely the feature

that the R-SSA(15,1)model evaluated in the first step finds difficulty in tracking. Thus,

although the first stage residuals of both specifications are not too dissimilar, more

extreme deviations are seen with the second specification because when θ = 0.9 the

first stage R-SSA(15,1) model smooths out the sharp turning points in s(t) induced

by the presence of a significant random walk component. This manifests itself in

the fact that although the contemporaneous correlation of the reconstructed noise

with the true noise is very small θ = 0.9, the cross-autocorrelation function, rn,sc(τ),

τ = 0,±1,±2, . . . ,±14, (plotted in Figure 7) exhibits significant correlations at non-

zero lags. The cross-autocorrelation function obtained when θ = −0.9 behaves like

that of two strongly correlated white noise processes.
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Figure 6: Realized signal and noise components of random walk process with drift and
autocorrelated increments overlaid with R-SSA first stage signal reconstruction
reconstruction sd(t) and second stage noise reconstruction sc(t).

These cross-autocorrelation values reflect that when θ = −0.9 the first stage residual

x(t)− sd(t) ≈ n(t) because sd(t) ≈ s(t), but when θ = 0.9 the incorporation of the

non-trivial difference s(t)−sd(t) into the first stage residuals produces both an increase

in amplitude and a quasi-periodic phase shift effect that arises as a result of the over-

smoothing that occurs with the first stage R-SSA(15,1) reconstruction. Nevertheless,

properties of the signal that escape characterization in the first step are recaptured at

in second step, and the overall series reconstructions sd(t) + sc(t) perform similarly

with correlations of rx ,sd+sc = 0.9998 and rx ,sd+sc = 0.9993 respectively. The ability of

the two stage reconstruction to closely track the true signal-plus-noise decomposition

is apparent even in this more complicated case.
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Figure 7: Cross-autocorrelations between true noise n(t) and second stage noise recon-
struction sc(t) with approximate 95% white noise error bands: random walk
process with drift and autocorrelated increments.

6 Conclusions

In this paper we have demonstrated that if the observed series is a realization of a

DGP characterized by an affine combination of Grenander processes then R-SSA –

that is, SSA based upon the re-scaled trajectory matrix – will converge to a population

ensemble model almost surely as the sample size increases. Provided that window

lengths that are commensurate with the Whitney embedding theorem are employed,

the R-SSA modelling will characterise the discrete and continuous components of the

spectrum of the process. Numerical results have demonstrated that different DGPs

that are not equivalent can give rise to the same asymptotic structure and hence the

same spectral distribution function and spectrum; nevertheless, by projecting back

into the time domain through the empirical eigenfunctions R-SSA is able to retrieve

the individual structure embedded within such series. The numerical results obtained

using simulated data series suggest that the theoretical properties outlined in the pa-

per will be manifest in practice, and that the application of sequential R-SSA series

reconstruction provides a viable alternative methodology to current practice.
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A Proofs

In what follows we will make use of the following result.

Lemma A.1 Let Am and Bm denote m × m Hermitian matrices with eigenvalue-

eigenvector pairs of {µ j,ψ j}, j = 1, . . . , m, and {λ j,υ j}, j = 1, . . . , m, respectively.

If ‖Am − Bm‖ = h(m) where h(m) → 0 as m → ∞, then |µ j − λ j| ≤ h(m) and

‖ς jψ j −υ j‖= o(h(m)) where ς j = sign(υ′jψ j), j = 1, . . . , m.

Proof: By the Hoffman-Wielandt Theorem (Gentle, 2007, Page 271) we have

m
∑

j=1

(µ j −λ j)
2 ≤ ‖Am −Bm‖2 ,
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from which it follows that (µ j−λ j)2 ≤ ‖Am−Bm‖2 for any j ∈ {1, . . . , m}. This implies

that |µ j −λ j| ≤ h(m), j = 1, . . . , m.

Since the eigenvectors are orthonormal and span Rm we may set ψk =
∑m

j=1 c jυ j

where the coefficients c j = υ′jψk are such that |c j| ≤ 1 and
∑m

j=1 c2
j = 1. It follows that

(Am −Bm +Bm)
m
∑

j=1

c jυ j = (µk −λk +λk)
m
∑

j=1

c jυ j ,

which can be re-expressed as

Bm

m
∑

j=1

c jυ j = λk

m
∑

j=1

c jυ j + o(h(m))

because ‖Am − Bm‖ = h(m) and |µk −λk| ≤ h(m). It follows that
∑m

j=1 c2
j (λ j −λk)2 =

o(h(m)2). Thus we can conclude that c j = o(h(m)) whenever λ j 6= λk and hence that

|ck|= 1+ o(h(m)). Multiplying ψk by sgn(ck) we obtain

sgn(ck)ψk = sgn(ck)
m
∑

j=1

c jυ j = |ck|υk + sgn(ck)
m
∑

j=1
j 6=k

c jυ j ,

and subtracting υk from either side and substituting c j = h(m) j = 1, . . . , m, j 6= k,

and |ck|= 1+ o(h(m)) into the resulting equation we have

sgn(ck)ψk −υk = (|ck| − 1)υk + sgn(ck)
m
∑

j=1
j 6=k

c jυ j = o(h(m)) .

Thus we find that the orthonormal eigenvectors of Am differ from the orthonormal

eigenvectors of Bm by a term of order o(h(m)), modulo a change in sign, since for the

kth eigenvector we have that ‖ςkψk −υk‖= o(h(m)) where ςk = sgn(ck).
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Proof of Theorem 1: To begin, note that the rth diagonal entry of D−
1
2 is the recip-

rocal of {
∑n

t=1 x2(t + r − 1)} 1
2 , r = 1, . . . , m, and

n
∑

t=1

x2(t + r − 1) =
n
∑

t=1

d
∑

i=1

d
∑

j=1

αiα jzi(t + r − 1)z j(t + r − 1)

=
d
∑

i=1

d
∑

j=1

αiα j

n
∑

t=1

zi(t + r − 1)z j(t + r − 1) .

From the definition of rn
i j(0) we have

�

�

�

�

�

∑n
t=1 zi(t + r − 1)z j(t + r − 1)

q

an
ii(0)a

n
j j(0)

− rn
i j(0)

�

�

�

�

�

≤ T1 + T2

where, via the Cauchy-Schwartz inequality, T1 and T2 are bounded by

√

√

√

√

∑r−1
t=1 z2

i (t)
∑r−1

t=1 z2
j (t)

an
ii(0)a

n
j j(0)

and

√

√

√

√

∑n+r−1
t=n+1 z2

i (t)
∑n+r−1

t=n+1 z2
j (t)

an
ii(0)a

n
j j(0)

,

respectively. Let β> = (α1

Æ

an
11(0), . . . ,αm

Æ

an
mm(0)). Then by parts 2 and 3 of As-

sumption 1 it follows that for each r = 1, . . . , m the absolute relative difference

�

�

�

�

�

∑n
t=1 x2(t + r − 1)

β>R(0)β
− 1

�

�

�

�

�

,

will converge to zero as n= (N −m+ 1)≥ (N −M + 1)→∞ as N →∞.

The rcth entry in D−
1
2 XX>D−

1
2 , r, c = 1, . . . , m, is

n
∑

t=1

x(t + r − 1)x(t + c − 1) =
d
∑

i=1

d
∑

j=1

αiα j

n
∑

t=1

zi(t + r − 1)z j(t + c − 1)

divided by
q

∑n
t=1 x2(t + r − 1)

∑n
t=1 x2(t + c − 1), and

n
∑

t=1

zi(t + r − 1)z j(t + c − 1) =
n
∑

τ=1

zi(τ+ r − c)z j(τ)− S1 + S2
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where

S1 =
c−1
∑

τ=1

zi(τ+ r − c)z j(τ) and S2 =
n+c−1
∑

τ=n+1

zi(τ+ r − c)z j(τ) .

Bounding the truncation effects S1 and S2 using the Cauchy-Schwartz inequality gives

|S1|2 ≤
c−1
∑

τ=1

z2
i (τ+ r − c)

c−1
∑

τ=1

z2
j (τ) and |S2|2 =

n+c−1
∑

τ=n+1

z2
i (τ+ r − c)

n+c−1
∑

τ=n+1

z2
j (τ) ,

from which we can conclude via parts 2 and 3 of Assumption 1 that

lim
n→∞

�

�

�

�

�

∑n
t=1 zi(t + r − 1)z j(t + c − 1)

q

an
ii(0)a

n
j j(0)

− rn
i j(h)

�

�

�

�

�

= 0

for all r and c such that r − c = h, where r, c = 1, . . . , m and h = 0, 1, . . . , m − 1. It

therefore follows that

lim
n→∞

|
n
∑

t=1

x(t + r − 1)x(t + c − 1)−β>R(h)β |= 0

where h= r − c.

Collecting the previous properties together we find that for all r, c = 1, . . . , m, the

rcth entry in D−
1
2 XX>D−

1
2 converges to β>R(r − c)β/β>R(0)β . Now, by an extension

of Herglotz’s lemma due to Cramér, R(h) =
∫ π

−π e−ıωhdM(ω) where the d × d matrix

valued function

M(ω) = lim
N→∞

N−1
∑

h=−N+1

R(h)
�

exp(−ıωh)− 1
−ıh

�

, −π≤ω≤ π ,

has entries of bounded variation, and M(ω2) − M(ω1) = (M(ω2) − M(ω1))∗ ≥ 0,

ω1 ≤ω2. Recalling from part 4 of Assumption 1 that R(0) is nonsingular, and therefore

possesses a unique symmetric square root R(0)
1
2 , the result in the theorem now follows

directly.

Proof of Theorem 2: From Theorem 1 it follows that limN→∞ ‖D−
1
2 XX>D−

1
2 −Γm‖=

0. Applying Lemma A.1 with Am = D−
1
2 XX>D−

1
2 , Bm = Γm and h(m) = o(1), we can
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therefore conclude that limN→∞ |` j − λ j| = 0 and limN→∞ ‖ς ju j − υ j‖ = 0 where

ςk = sgn(u>j υ j), for j = 1, . . . , m.

Proof of Theorem 3: See Grenander and Rosenblatt (1957, Chapter 7.4).

Proof of Theorem 4: Set Tm equal to the m×m Toeplitz matrix with first row (1, (1−

1/m)%c(1), . . . , (1/m)%c(m− 1)). Then

1
m1+2d

‖Γ c
m − Tm‖2 =

1
m2d

m−1
∑

r=1−m

�

1−
|r|
m

�

�

�

�

�

%c(r)
|r|
m

�

�

�

�

2

≤ 2C2
m−1
∑

r=1

�

1−
r
m

� r4d

m2(1+d)

∼















2C2m2d−1/(4d + 1)(4d + 2) , −1/4< d < 1/2 ;

2C2 log(m)m−3/2 , d = −1/4 ;

2C2ζ(−4d)m−2(1+d) , −1/2< d < −1/4.

.

Now let Cm be the m × m Toeplitz matrix whose first row is given by the vector

(cm(0), cm(1), . . . , cm(m− 1)) where

cm(r) =
2π
m

m−1
∑

j=0

f c
m(2π j/m)exp(ı2π jr/m) .

From the relationship

cm(r) =
1
m

m−1
∑

j=0

(

m−1
∑

s=−(m−1)

�

1−
|s|
m

�

%c(s)exp(−ı2π js/m)

)

exp(ı2π jr/m)

=
m−1
∑

s=−(m−1)

�

1−
|s|
m

�

%c(s)

¨

1
m

m−1
∑

j=0

exp(ı2π j(r − s)/m)

«

(A.1)
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we find that

cm(0) = %c(0) = 1 and

cm(r) =
�

1−
|r|
m

�

%c(r) +
�

1−
|m− r|

m

�

%c(m− r) , (A.2)

for r = ±1, . . . ,±(m−1), where in (A.1) we have used the orthogonality of the complex

exponentials:

1
m

m−1
∑

j=0

exp(ı2π jk/m) =







1, k = 0mod m ;

0, otherwise.
.

From (A.2) it follows that Cm is also a circulant matrix. The eigenvectors of Cm are

therefore em(2π j/m), j = 0, 1, . . . , (m− 1), and the eigenvalues equal

m−1
∑

r=0

cm(r)exp(−ı2πkr/m) =
m−1
∑

r=0

¨

2π
m

m−1
∑

j=0

f c
m(2π j/m)exp(ı2π jr/m)

«

exp(−ı2πkr/m)

= 2π
m−1
∑

j=0

f c
m(2π j/m)

¨

1
m

m−1
∑

r=0

exp(ı2π( j − k)r/m)

«

= 2π f c
m(2πk/m) , k = 0, 1, . . . , (m− 1) .

Substituting (A.2) for the entries in Cm we find that

1
m1+2d

‖Tm −Cm‖2 =
1

m2d

m−1
∑

r=1−m

�

1−
|r|
m

�

�

�

�

�

�

1−
|m− r|

m

�

%c(m− r)

�

�

�

�

2

≤ 2C2
m−1
∑

r=1

�

1−
r
m

� r2

m2(1+d)(m− r)2−4d

= 2C2
m−1
∑

s=1

s4d−1 (m− s)2

m3+2d

∼















2C2m2d−1(7+ 12d)/(4d + 1)(4d + 2), 0< d < 1/2 ;

2C2 log(m)m−1, d = 0 ;

2C2ζ(1− 4d)m−(1+2d), −1/2< d < 0 .

The result stated in the theorem now follows from an application of the triangle in-

equality ‖Γ c
m −Cm‖ ≤ ‖Γ c

m − Tm‖+ ‖Tm −Cm‖ and Lemma A.1.
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