Heterogeneous Panel Data Models with Cross-Sectional Dependence

Jiti Gao and Kai Xia

October 2017

Working Paper 16/17
Heterogeneous Panel Data Models with Cross-Sectional Dependence

Jiti Gao† and Kai Xia‡ ∗
Monash University, Australia†
and Xiamen University, China‡

October 9, 2017

Abstract

This paper considers a semiparametric panel data model with heterogeneous coefficients and individual-specific trending functions, where the random errors are assumed to be serially correlated and cross-sectionally dependent. We propose mean group estimators for the coefficients and trending functions involved in the model. It can be shown that the proposed estimators can achieve an asymptotic consistency with rates of root$-NT$ and root$-NTh$, respectively as $(N,T) \to (\infty, \infty)$, where N is allowed to increase faster than T. Furthermore, a statistic for testing homogeneous coefficients is constructed based on the difference between the mean group estimator and a pooled estimator. Its asymptotic distributions are established under both the null and a sequence of local alternatives, even if the difference between these estimators vanishes considerably fast (can achieve root$-NT^2$ rate at most under the null) and consistent estimator available for the covariance matrix is not required explicitly. The finite sample performance of the proposed estimators together with the size and local power properties of the test are demonstrated by simulated data examples, and an empirical application with the OECD health care expenditure dataset is also provided.

Key words: Health care expenditure, Nonlinear trending function, Nonstationary time series

JEL Classification Numbers: C14; C22; G17.

†The authors would like to thank the Australian Research Council Discovery Grants Program for its support under Grant numbers: DP150101012 and DP170104421. Corresponding author: Jiti Gao, Department of Econometrics and Business Statistics, Monash University, Caulfield East, Victoria 3145, Australia. Email: jiti.gao@monash.edu.
Introduction

Unobserved heterogeneity is a pervasive feature among microeconomic individual responses as suggested by Heckman (2001), see also Durlauf et al. (2001) for an example of multi-country studies. There has been a rich literature introducing such heterogeneity into panel data models, with different parsimonious structures to achieve more accurate inference. For example, Pesaran (2006) considers panel data models with i.i.d. random coefficients across individuals, where the common population mean is estimated with root-\(N\) consistency. Lin and Ng (2012) and Su et al. (2014) consider group-specific slope coefficients with unknown group structure, where accuracy is improved by pooling within each group. Boneva et al. (2015) impose the heterogeneous covariate functions with a common component structure, where the basis functions can be estimated with a root-\(N^{1/2}\) rate, see also Vogt and Linton (2015) for a nonparametric panel data model with a group structure.

In addition to the individual response, the underlying time-varying feature, such as technology growth or climate change captured by trending functions (see Robinson, 2012; Chen et al., 2012), can also vary across individuals. Zhang et al. (2012) propose a nonparametric test for common trends assumption as in Chen et al. (2012) and find it rejected in both empirical examples. Recently, Bonhomme and Manresa (2015) extend the conventional fixed effects into group-specific time-varying effects. Su et al. (2015) consider a group-specific time-varying coefficient model where the residuals are assumed to be cross-sectionally independent.

In this paper, instead of imposing restrictions on the heterogeneity structure, we utilize the panel data information by using the weighted averaging or mean-group estimators based on individual regressions. In particular, we consider both the slope coefficients and the time-varying trends to be heterogeneous across sections. In detail, we consider the following semiparametric panel data model:

\[
Y_{it} = X_{it}^\top \beta_i + f_{it} + \alpha_i + e_{it}, \quad \text{for } 1 \leq i \leq N, \quad 1 \leq t \leq T \tag{1.1}
\]

for \(i \geq 1\), where \(\beta_i\) is a \(d \times 1\) vector of unknown parameters, \(f_{it} = f_i(\tau_t)\), with \(\tau_t = t/T\) is a trending function, both \(\beta_i\) and \(f_i(\tau)\) are allowed to be heterogeneous across sections to account for unobserved heterogeneity caused by socioeconomic and demographic difference, and both of them are assumed to be nonrandom\(^1\), \(\alpha_i\) is the fixed–effects allowed to be correlated with \(X_{it}\) with possibly unknown structure, \(X_{it}\) is a \(d \times 1\) covariate vector satisfies \(X_{it} = g_{it} + x_i + v_{it}\), in which \(g_{it}\) is a trending function like \(f_{it}\), thus both \(X_{it}\) and \(Y_{it}\) can be non-stationary because of these unobservable trending functions, \(x_i\) is an individual specific effect, and \(X_{it}\) is allowed to be correlated with \(e_{it}\) through \(x_i\), and \(e_{it}\) and \(v_{it}\) are assumed to be serially correlated and cross-sectionally dependent. In addition, \(N\) and \(T\) both can tend to infinity, where \(N\) is allowed

\(^1\) Hsiao (2014) suggests that fixed and different \(\beta_i\) is more appropriate if it is correlated with explanatory variables or comes from heterogeneous population. Besides, we can show that the main results in this paper still holds for some random coefficients structures.
to grow faster than T.

The estimation of interest in model Eqs. (1.1) will be β_i, $f_i(\tau)$ for $i \geq 1$ and $0 \leq \tau \leq 1$, and their weighted averages $\bar{\beta} = \frac{1}{N} \sum_{i=1}^{N} \beta_i$, $\bar{f}(\tau) = \frac{1}{N} \sum_{i=1}^{N} f_i(\tau)$ for $0 \leq \tau \leq 1$. As Heckman (2001) concludes, while the “representative agent” paradigm is shown to lack empirical support, the “average” person becomes as a popular alternative. To estimate such average effects, we calculate mean group estimators based on separated semiparametric profile likelihood estimations. The resulting estimators $\hat{\beta}_{mg}$ achieves a root-NT consistency to β and $\hat{f}_{mg}(\tau)$ achieves a root-$N\ell_h$ consistency to $\bar{f}(\tau)$. In particular, if $\beta_i = (\beta_{i,1}^\top, \beta_{i,2}^\top)^\top$, we have $\hat{\beta}_{1,mg} \to \beta_1$ and $\hat{\beta}_{2,mg} \to \beta_2$ with root-NT rate, which may not holds for the pooled estimators($\hat{\beta}_p$). Similarly, such an approach could also be useful when practitioners are interested in average effects of particular groups or classes divided by gender, geographic location or observed socioeconomic indicators.

A further topic discussed in this paper is to test whether all the β'_i's in Eqs. (1.1) are homogeneous or not where f_{it} can be either homogeneous or heterogeneous. We propose an easily applicable test statistic based on $(\hat{\beta}_{mg} - \hat{\beta}_p)$. The test statistic proposed can be written as

$$l_{NT}^2(\hat{\beta}_{mg} - \hat{\beta}_p)^\top \Sigma^{-1}_\beta (\hat{\beta}_{mg} - \hat{\beta}_p)$$ (1.2)

where Σ_β is the covariance matrix involved in the asymptotic distribution of $l_{NT}(\hat{\beta}_{mg} - \hat{\beta}_p)$, in which $l_{NT} \to \infty$ is a sequence of real numbers.

One difficulty with such approach is that the difference $(\hat{\beta}_{mg} - \hat{\beta}_p)$ can be too small under both the null and the alternative. Under the null, for the homoscedasticity case, the asymptotic variances of $\hat{\beta}_{mg}$ and $\hat{\beta}_p$ are identical, l_{NT} must tend to infinity faster than root-NT rate. Any additional assumption imposed might be too restrictive (to rule out the homoscedasticity case) and can still be criticized for possible poor power performance under some alternatives (Pesaran and Yamagata, 2008). Secondly, there is an indeterminacy in l_{NT} since $(\hat{\beta}_{mg} - \hat{\beta}_p)$ converges with root-NT rate if there is enough heteroskedasticity in X_{it} and converges faster than root-NT rate, otherwise. Finally, the choice of an asymptotic covariance matrix for $\hat{\beta}_p$ has already become a difficult task in the literature (see Kim and Sun, 2013, for a recent study). As a consequence, test statistics may not be feasible since Σ_β involved are too complicated.

To solve the above difficulties, we make some improvements to the conventional approach. On the one hand, there is no restriction imposed on the asymptotic variances of $\hat{\beta}_{mg}$ and $\hat{\beta}_p$ under the null. For example, if $\hat{\beta}_{mg}$ and $\hat{\beta}_p$ share the same asymptotic distribution, the test statistic is constructed using the asymptotic distribution of $\sqrt{NT^2}(\hat{\beta}_{mg} - \hat{\beta}_p)$. On the other hand, we propose using a data-dependent transformed statistic of Eqs. (1.2) of the form:

$$NT(\hat{\beta}_{mg} - \hat{\beta}_p)^\top \widehat{H}_\beta^{-1}(\hat{\beta}_{mg} - \hat{\beta}_p)$$ (1.3)

The transformation has been introduced to avoid estimating covariance matrices involved in both time series data (Kiefer et al., 2000) and cross-sectional data (Lee and Robinson, 2016). Here in Eqs. (1.3), \widehat{H}_β is calculated based on the observed data, no consistent covariance matrix
is involved explicitly (the resulting asymptotic distribution will be non-standard). In addition, \(\hat{H}_\beta \xrightarrow{P} 0 \) if \(\sqrt{NT}(\hat{\beta}_{mg} - \hat{\beta}_p) \xrightarrow{P} 0 \). Further calculation shows in this case there will be no indeterminacy issues.

The structure of this paper is organized as follows. Section 2 proposes our estimation method. Section 3 establishes asymptotic distributions for the proposed estimators. Section 4 introduces a statistic for testing coefficient homogeneity. Section 5 evaluates the finite sample performance by simulated data examples. Section 6 provides a real data example using the health care expenditure dataset from OECD countries. Section 7 makes the conclusion. Appendix A provides some justifications and explanations for Assumptions 1 to 7. Appendix B and C prove the main theorems in this paper. In the supplemental material available from the authors, Appendices D and E prove some propositions and lemmas that have been used in the proofs of the main results. Appendix F of the supplemental material provides more details on the empirical application.

Throughout the paper, \(\iota_T = (1, \cdots, 1)^T \) is a \(T \times 1 \) vector; \(I_d \) is the \(d \times d \) identity matrix; \(A^\top \) is the transpose of matrix or vector \(A \); \(\text{tr}(A) \), \(\lambda_{\max}(A) \) and \(\lambda_{\min}(A) \) denote the trace, the maximum and the minimum eigenvalues of a square matrix \(A \); \(||A|| = \text{tr}(AA^\top) \) denotes the Euclidean norm of a matrix or a vector \(A \); \(A \otimes B \) is the Kronecker product of matrices \(A \) and \(B \); \(\xrightarrow{P} \) and \(\xrightarrow{D} \) stand for converging in probability and in distribution respectively, while \(\Rightarrow \) denotes weak convergence; \([a] \) means the largest integer part of \(a \); \(\int g(w)dw \) represents \(\int_{-\infty}^{\infty} g(w)dw \).

2 Estimation method

In this section, we propose a mean group approach based on a semiparametric profile likelihood estimation method of individual parameter vectors and trending functions. In addition, a pooled estimator is provided by treating parameter vectors as identical to each other across individuals.

2.1 Mean group or weighted averaging estimators

The mean group or weighted averaging estimators are calculated by the following steps:

Step(i): For \(i \geq 1 \), denote

\[
Y_i = \frac{1}{T} \sum_{t=1}^{T} Y_{it}, \quad X_i = \frac{1}{T} \sum_{t=1}^{T} X_{it}, \quad f_i = \frac{1}{T} \sum_{t=1}^{T} f_i(\tau_t), \quad e_i = \frac{1}{T} \sum_{t=1}^{T} e_{it} \quad (2.1)
\]

By taking average over time of model Eqs. (1.1), we have

\[
Y_i = X_i^\top \beta_i + f_i(\tau) + \alpha_i + e_i. \quad (2.2)
\]

Then we subtract Eqs. (2.2) from Eqs. (1.1) to eliminate the fixed effects \(\alpha_i \),

\[
Y_{it} - Y_i = (X_{it}^\top - X_i^\top) \beta_i + f_i(\tau_t) - f_i + e_{it} - e_i. \quad (2.3)
\]
Denote
\[
Y_i = \begin{pmatrix} Y_{i1} \\ \vdots \\ Y_{iT} \end{pmatrix}, \quad X_i = \begin{pmatrix} X_{i1}^T \\ \vdots \\ X_{iT}^T \end{pmatrix}, \quad f_i = \begin{pmatrix} f_i(\tau_1) \\ \vdots \\ f_i(\tau_T) \end{pmatrix}, \quad e_i = \begin{pmatrix} e_{i1} \\ \vdots \\ e_{iT} \end{pmatrix}. \tag{2.4}
\]

Eqs. (2.3) can be rewritten as:
\[
Y_i - Y_{i,T} = (X_i - X_i^T \otimes \tau_T)\beta_i + f_i - f_i,T + e_i - e_{i,T}. \tag{2.5}
\]

Step(ii): For \(i \geq 1 \), treat \(\beta_i \) as given, let \(K(\cdot) \) be a kernel function, \(h_i \) be a bandwidth, and denote
\[
Z_i(\tau) = \begin{pmatrix} 1 / h_i \tau \\ \vdots \\ 1 / h_i \tau \end{pmatrix}, \quad W_i(\tau) = \begin{pmatrix} K(\tau/h_i) \\ \vdots \\ K(\tau/h_i) \end{pmatrix},
\]
then by Taylor expansion, at \(\tau \in [0,1] \) we have
\[
f_i - f_i,T \approx Z_i(\tau)(f_i(\tau) - f_i,T, h_i f_i'(\tau))'. \tag{2.6}
\]

By plugging it into Eqs. (2.5), given \(\beta_i \), the local linear estimator of \(f_i(\tau) - f_i \) can be calculated as
\[
\hat{f}_i(\tau, \beta_i) = s_i(\tau)(Y_i - Y_{i,T} - (X_i - X_i^T \otimes \tau_T)\beta_i), \tag{2.7}
\]
where \(s_i(\tau) = (1 \ 0)[Z_i^T(\tau)W_i(\tau)Z_i(\tau)]^{-1}Z_i^T(\tau)W_i(\tau). \)

Step(iii): Letting \(S_i = (s_i^T(\tau_1), \cdots, s_i^T(\tau_T))^T \), then we have
\[
\bar{Y}_i \approx \tilde{X}_i \beta_i + e_i - e_{i,T}, \tag{2.8}
\]
where \(\bar{Y}_i = (I_T - S_i)(Y_i - Y_{i,T}), \quad \tilde{X}_i = (I_T - S_i)(X_i - X_i^T \otimes \tau_T). \) Then \(\beta_i \) can be estimated by
\[
\hat{\beta}_i = (\tilde{X}_i^T \tilde{X}_i)^{-1} \tilde{X}_i^T \bar{Y}_i \tag{2.9}
\]
and \(f_i(\tau) \) is estimated by
\[
\hat{f}_i(\tau) = s_i(\tau)(Y_i - Y_{i,T} - (X_i - X_i^T \otimes \tau_T)\hat{\beta}_i). \tag{2.10}
\]

Step(iv): Finally, the mean group estimators are calculated as
\[
\hat{\beta}_{mg} = \frac{1}{N} \sum_{i=1}^{N} \hat{\beta}_i, \quad \hat{f}_{mg}(\tau) = \frac{1}{N} \sum_{i=1}^{N} \hat{f}_i(\tau). \tag{2.11}
\]

More generally, given constants \(w_1, \cdots, w_N \), we consider the weighted averaging estimators by
\[
\hat{\beta}_w = \sum_{i=1}^{N} w_i \hat{\beta}_i, \quad \text{and} \quad \hat{f}_w = \sum_{i=1}^{N} w_i \hat{f}_i(\tau). \tag{2.12}
\]
2.2 Pooled estimators

Pooled estimators for β are considered here for two purposes. On the one hand, pooled estimators are usually accurate in homogeneous models, and they may be asymptotically unbiased or consistent for some heterogeneous scenarios. On the other hand, they are essentially useful in constructing test statistics for homogeneity hypotheses testing.

Chen et al. (2012) propose a pooled profile likelihood estimation procedure when $\beta_i = \beta$ and $f_{it} = f_t$ hold for all i. However, the pooled estimator of β might be severely biased even if $\beta_i = \beta$ holds for all i. For example, by assuming $\beta_i = \beta$, Eqs. (1.1) can be rearranged as:

$$Y_{it} = X_{it}^T \beta + f_t + \alpha_i + u_{it}, \quad (2.13)$$

where $u_{it} = f_{it} - f_t + e_{it}$. As a consequence, $E(u_{it}) \neq 0$ if $f_{it} \neq f_t$.

Since unobserved trends, such as technology processes are likely to be diversified, we propose another pooled estimator robust to heterogeneous trending functions. The procedure is to smooth out $f_i(\tau)$ from Eqs. (2.2) to Eqs. (2.7), and then letting $\beta_i = \beta$ in Eqs. (2.8) such that

$$\tilde{Y}_i \approx \tilde{X}_i \beta + e_i - e_i \cdot \iota^T. \quad (2.14)$$

Then we pool Eqs. (2.14) and estimate β by the least–square method:

$$\hat{\beta}_p = \left(\sum_{i=1}^{N} \tilde{X}_i^\top \tilde{X}_i \right)^{-1} \sum_{i=1}^{N} \tilde{X}_i^\top \tilde{Y}_i. \quad (2.15)$$

Note that the definitions of \tilde{X}_i and \tilde{Y}_i are different from those in Chen et al. (2012), as we use the individual rather than the pooled information to eliminate f_{it} and g_{it}. Also, in this paper, we assume for all $i \geq 1$, the same h_i is employed in Eqs. (2.8) and Eqs. (2.15), thus the definitions of \tilde{X}_i and \tilde{Y}_i within $\hat{\beta}_{mg}$ and $\hat{\beta}_p$ are identical to each other. Such an assumption may not be necessary, but will facilitate the calculations, especially in the hypotheses testing involving both $\hat{\beta}_{mg}$ and $\hat{\beta}_p$. Mathematically, we may discuss how to deal with the case where h_i can be different according to i, but $h_i = \rho_i h_0$, in which h_0 is a kind of leading order, and ρ_i is to allowed to depend on i. In large sample theory, certain additional conditions are needed on ρ_i, while the choice of ρ_i is quite straightforward. We wish to leave this type of technical extensions for future research.

3 The asymptotic theory of estimators

In this section we introduce some regularity conditions, and then establish asymptotic distributions for $\hat{\beta}_w$, $\hat{\beta}_{mg}$ and \hat{f}_{mg}.
3.1 Assumptions

Denote that \(v_t = (v_{1t}, \cdots, v_{Nt})^\top, e_t = (e_{1t}, \cdots, e_{Nt})^\top, \eta_{it} = \Omega_{v,i}^{-1}v_{it}v_{it}^\top - I_d, \) and \(\xi_{it} = \Omega_{e,i}^{-1}e_{it}e_{it}, \) where \(\Omega_{v,i} = E(v_{it}v_{it}^\top). \) We impose the following assumptions.

Assumption 1 (i) Suppose that \(\{v_t, e_t : t \geq 1\} \) is a vector of strictly stationary \(\alpha \)-mixing time series with zero mean and \(E(\xi_{it}) = 0. \) The mixing coefficient \(\alpha(\cdot) \) satisfies \(\sum_{k=1}^{\infty} k^\phi(\alpha(\cdot))^{\frac{1}{1+\alpha}} < \infty \) for some \(\phi > 1, \) and \(\delta > 0 \) as involved in (iii) below.

(ii) \(\min_{1 \leq i \leq N} \lambda_{\text{min}}(\Omega_{v,i}) > c_v \) for some constant \(c_v > 0. \)

(iii) \(E||v_{it}||^{1+\delta} < \infty, E||e_{it}||^{1+\delta} < \infty \) for the same constant \(\delta > 0 \) as in (i) above.

Assumption 2 As \((N,T) \to (\infty, \infty),\)

(i) \(\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{T} |E(e_{i1}e_{j1+k})| = O(N), \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t_1=1}^{T} \sum_{t_2=1}^{T} ||E(\xi_{it_1}\xi_{jt_2}^\top)|| = O(NT). \)

(ii) \(\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t_1=1}^{T} \sum_{t_2=1}^{T} \sum_{s_1=1}^{T_1} \sum_{s_2=1}^{T_2} ||E(\eta_{it_1}\xi_{is_1}\xi_{js_2}\eta_{jt_2}^\top)|| = O(NT_1T_2). \)

(iii) \(\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t_1=1}^{T} \sum_{t_2=1}^{T} \sum_{s_1=1}^{T_1} \sum_{s_2=1}^{T_2} \sum_{s_3=1}^{T_3} ||E(v_{it_1}v_{jt_2}e_{is_1}e_{js_2}e_{is_3}e_{js_3})|| = O(NT_1T_2). \)

(iv) \(\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t_1=1}^{T} \cdots \sum_{t_{T-1}=1}^{T} ||E(v_{it_1}\xi_{it_2}\xi_{jt_3}\xi_{jt_4})|| = O(NT^2). \)

Assumption 3

(i) Denote \(\gamma_{N,w} = \left(\sum_{i=1}^{N} w_{i}^2 \right)^{-1}, \) and let \(\gamma_{N,w} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t_1=1}^{T} \sum_{t_2=1}^{T} \sum_{s_1=1}^{T_1} \sum_{s_2=1}^{T_2} ||E(\xi_{it_1}\xi_{jt_2}^\top)|| = O(NT). \)

(ii) Assume that \(\sum_{i=1}^{N} \sum_{j=1}^{N} C_K(i,j)\sigma_e(i,j) = O \) for some \(0 < \sigma_e^2 < \infty, \) where \(\sigma_e(i,j) = E(e_{i1}e_{j1}) + 2 \sum_{k=2}^{\infty} E(e_{i1}e_{jk}), \) and \(C_K(i,j) = \int \frac{1}{\rho_{ij}} K \left(\frac{\rho_{ij}}{\rho_i} \right) K \left(\frac{\rho_{ij}}{\rho_j} \right) dv, \) with \(\rho_i = \min_{1 \leq i \leq N} \rho_i \) and \(\rho_i = h_i/h. \)

(iii) \(E\left|\gamma_{N,w} \sum_{i=1}^{N} w_{i} \xi_{it_1}|^{2+\delta} \right. < \infty \) and \(\sum_{i=1}^{N} \cdots \sum_{i=1}^{N} ||E(e_{i1}e_{i2}e_{i3}e_{i4})|| = O(N^2). \)

Assumption 4

(i) \(K(\cdot) \) is a continuous and symmetric probability density function with a compact support.

(ii) \(f_i(\cdot) \) and \(g_i(\cdot) \) have continuous derivatives of up to the second order, and the identification condition \(\int_0^1 f_i(\tau)d\tau = 0 \) holds for \(i \geq 1. \)

(iii) As \((N,T) \to (\infty, \infty), \) \((a) N\Theta^\delta \to 0; (b) N\Theta^4 \to 0; (c) N^{\frac{N}{T^1+\delta^2/\delta}} \to 0; (d) \frac{N}{T^{1+\delta^2/\delta}} \to 0; (e) \frac{N}{T^{1+\delta^2/\delta}} \to 0, \) where \(0 < \delta^* < \delta, \) and \(r > 0. \)

Justifications for Assumptions 1 to 4 are given by the Appendix A below.

3.2 Asymptotic distributions of the given estimators

The following two theorems give the asymptotic distributions of \(\hat{\beta}_i \) and \(\hat{f}_i(\tau) \) for any fixed \(i \geq 1. \)

Theorem 3.1: Under Assumptions 1 and 4, for any fixed \(i \geq 1, \) as \(T \to \infty \)

\[
\sqrt{T}(\hat{\beta}_i - \beta_i) \overset{D}{\to} N \left(0_d, \Omega_{v,i}^{-1}\Omega_{v,e}(i,i)\Omega_{e,i}^{-1} \right).
\]

Denote \(\mu_j = \int v^j K(v)dv, \) and \(\nu_j = \int v^j K^2(v)dv, \) we have
Theorem 3.2: Under Assumptions 1 and 4, for any fixed $i \geq 1$, and $0 < \tau < 1$, as $T \to \infty$
\[
\sqrt{T} h_i \left(\hat{f}_i(\tau) - f_i(\tau) - b_i(\tau) h_i^2 + o(h_i^2) \right) \overset{D}{\to} N \left(0, \nu_0 \sigma_e(i, i) \right),
\]
where $b_i(\tau) = \frac{1}{2} \mu_2 f_i''(\tau)$.

Theorems 3.1 and 3.2 are standard results in semiparametric profile likelihood estimation. The next theorem gives the asymptotic distribution of the weighted average estimator $\hat{\beta}_w = \sum w_i \hat{\beta}_i$.

Theorem 3.3: Under Assumptions 1 to 4, as $(N, T) \to (\infty, \infty)$, we have
\[
\sqrt{\gamma_{N,w} T} \left(\hat{\beta}_w - \beta \right) \overset{D}{\to} N \left(0_d, \Sigma_{ve,w} \right),
\]
where $\beta = \beta$ if $\beta_i = \beta$ for all i, $\hat{\beta}_{wg}$ is also root-NT consistency to β under the homogeneity setting.

Corollary 3.1: Under Assumptions 1 to 4, as $(N, T) \to (\infty, \infty)$, we have
\[
\sqrt{NT} \left(\hat{\beta}_{mg} - \beta \right) \overset{D}{\to} N \left(0_d, \Sigma_{ve} \right).
\]

Remark 1. (i) In Corollary 3.1, $\hat{\beta}_{mg}$ achieves an asymptotic normality with root NT rate. In addition, since $\beta = \beta$ if $\beta_i = \beta$ for all i, $\hat{\beta}_{mg}$ is also root-NT consistency to β under the homogeneity setting.

(ii) Consider that only some entries of the parameter vector β_i are heterogeneous, such as $\beta_i = (\beta_i^T, \beta_j^T)^T$. If we divide $\hat{\beta}_{mg}$ into $\hat{\beta}_{mg} = (\hat{\beta}_{mg,1}, \hat{\beta}_{mg,2})^T$ accordingly, $\hat{\beta}_{mg,2}$ will be root-NT consistency to the true parameter β_2. However, if we divide the pooled estimator $\hat{\beta}_p$ into $\hat{\beta}_p = (\hat{\beta}_{p,1}, \hat{\beta}_{p,2})^T$, by our calculations (i.e., the proof of Theorem 4.2 below), $\hat{\beta}_{p,2}$ will be a biased estimator of β_2 unless $\Omega_{v,i}$ satisfies some block-diagonal restrictions.

For the trending functions, we only establish the asymptotic distribution of $\hat{f}_{mg}(\tau)$, since the asymptotic distribution of $\hat{f}_w(\tau)$ will involve more specific assumptions on the weighting coefficients and the individual bandwidth.

Theorem 3.4: Under Assumptions 1 to 4, as $(N, T) \to (\infty, \infty)$, for $0 < \tau < 1$, we have
\[
\sqrt{NT} h \left(\hat{f}_{mg}(\tau) - f(\tau) - b_f(\tau) h^2 + o(h^2) \right) \overset{D}{\to} N \left(0, \sigma^2_e(\tau) \right),
\]
where $b_f(\tau) = \frac{1}{2N} \sum_{i=1}^N \mu_2 f_i''(\tau)$.

Note that for the given group-division of individuals, our estimators within groups will be consistent to the corresponding group averages, with rates depending on the group sizes and T. This will be useful when the practitioner is interested in group effects, where the grouping division are given, and the individual coefficient is heterogeneous within given groups. In Section 6, we illustrate such applications by dividing OECD countries into 6 groups according to their geographic locations.
4 Homogeneity test

In this section, we propose a hypotheses testing procedure towards checking coefficient homogeneity when the residual e_{it} is both serially correlated and cross-sectionally dependent. It will establish a criterion to understand whether the coefficients are heterogeneous or not, and help the practitioner to decide which estimator to use.

4.1 Hypotheses structure

We aim to construct a test statistic for the following null hypothesis:

$$H_0 : \beta_i = \beta_0 \quad \text{for } 1 \leq i \leq N. \quad (4.1)$$

A natural idea is to construct a test statistic based on the difference between $\hat{\beta}_{mg}$ and $\hat{\beta}_p$. The ideal situation is that $\hat{\beta}_p - \hat{\beta}_{mg}$ results in an asymptotic normality under H_0 with a root NT rate, and deviates from this distribution significantly under an alternative hypothesis.

However, under H_0, both $\hat{\beta}_{mg}$ and $\hat{\beta}_p$ result in an asymptotic normality with the root NT rate. In certain cases, their asymptotic covariance matrices may be close or even identical such that

$$\sqrt{NT} (\hat{\beta}_{mg} - \hat{\beta}_p) \overset{d}{\to} 0. \quad (4.2)$$

This brings some difficulties to construct a test statistic and establish its asymptotic distribution under H_0. Furthermore, the pooled estimator, $\hat{\beta}_p$ may be unbiased under the alternative (see an example in Pesaran and Yamagata, 2008). Thus the two estimators may still be close to each other under certain alternatives. In this case, there may be some issues related to the power of this type of test statistics.

In this section, we will propose a test statistic that avoids dealing with such issues. This statistic will allow $\hat{\beta}_p$ and $\hat{\beta}_{mg}$ to have exactly the same asymptotic distribution with a root NT rate under H_0. Furthermore, its power can be satisfactory even when $\hat{\beta}_p$ is unbiased or consistent to β under a suitable alternative.

In constructing the statistic, we focus on the asymptotic distribution of $\sqrt{\gamma_{NT} NT} (\hat{\beta}_{mg} - \hat{\beta}_p)$ rather than $\sqrt{NT} (\hat{\beta}_{mg} - \hat{\beta}_p)$, where γ_{NT} is defined as

$$\gamma_{NT} = \left(\max \left(\frac{1}{T}, \gamma_N \right) \right)^{-1}, \quad \gamma_N = \frac{1}{N} \sum_{i=1}^{N} \left\| \tilde{\Omega}_{v,i} \right\|^2, \quad \tilde{\Omega}_{v,i} = \Omega_{v,i} - \overline{\Omega}_N, \quad (4.3)$$

with $\overline{\Omega}_N = \frac{1}{N} \sum_{i=1}^{N} \Omega_{v,i}$. Note γ_{NT} is a slower rate between T and γ_N^{-1} (if $\gamma_N \neq 0$). Thus if Eqs. (4.2) is true, we automatically have $\gamma_{NT} \to \infty$ such that $\hat{\beta}_{mg} - \hat{\beta}_p$ achieves asymptotic normality with a super $\sqrt{\gamma_{NT} NT}$ rate. On the other hand, under H_1, the difference between $\hat{\beta}_{mg}$ and $\hat{\beta}_p$ will be amplified by this $\sqrt{\gamma_{NT} NT}$ rate. Thus, the test statistic has good power performance even if $\hat{\beta}_p$ is consistent to β.

To establish such asymptotic results, some extra conditions are required.

Assumption 5. Denote $\zeta_{N,t} = \frac{\sqrt{NT}}{\sqrt{N_T}} \sum_{i=1}^{N} \left(\tilde{\Omega}_{v,i} + \Omega_{v,i} \Delta_{T,i} \right) \xi_{it}$, where $\Delta_{T,i} = \frac{1}{T} \sum_{t=1}^{T} \eta_{it}$.

(i) $\bar{\Omega}_N \to \Omega_v$ for some $d \times d$ positive definite Ω_v.

(ii) $\text{Var} \left(\sum_{t=1}^{T} \zeta_{N,t} \right) \to \Sigma_{ve,1}$ for some $d \times d$ positive definite matrix $\Sigma_{ve,1}$ and $E \left\| \sqrt{T} \zeta_{N,t} \right\|^{2+\delta} < \infty$.

(iii) $\sum_{t=1}^{T} \sum_{t=2 \leq r \leq 1} E \left(\zeta_{N,t} \xi_{N,t_2}^T \right) = O(1)$ for any $0 \leq r_1 \leq r_2 \leq 1$, and $E \left\| \sum_{t=1}^{T} \zeta_{N,t} \right\|^{2+\delta} < \infty$.

(iv) $\frac{N \log(2T)}{T^2} \to 0$.

If $\gamma_{NT} = T$, the following extra conditions are required.

Assumption 6.

(i) $E \left\| v_{it} \right\|^{8+\delta} < \infty$, and $E \left\| \xi_{it} \right\|^{4+\delta} < \infty$.

(ii) $\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=1}^{T_1} \sum_{t=1}^{T_2} \sum_{t=1}^{T_3} \sum_{t=1}^{T_4} \left\| E \left(\eta_{it_3} v_{it_4} e_{it_5} e_{jt_6} v_{jt_7} \xi_{jt_8} \right) \right\| = O \left(N T^2 T_1 \right)$.

(iii) $\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=1}^{T_1} \sum_{t=1}^{T_2} \sum_{t=1}^{T_3} \sum_{t=1}^{T_4} \left\| E \left(\xi_{it_3} v_{it_4} e_{jt_5} e_{jt_6} \xi_{jt_7} \right) \right\| = O \left(N T^2 T_1 \right)$.

(iv) $\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=1}^{T_1} \sum_{t=1}^{T_2} \sum_{t=1}^{T_3} \sum_{t=1}^{T_4} \left\| E \left(\eta_{it_3} \eta_{jt_4} \xi_{jt_5} \xi_{jt_6} \eta_{jt_7} \right) \right\| = O \left(N T^2 \right)$.

(v) $\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=1}^{T_1} \sum_{t=1}^{T_2} \sum_{t=1}^{T_3} \left\| E \left(\eta_{it_3} \eta_{jt_4} v_{jt_5} v_{jt_6} \right) \right\| = O \left(N T \right)$.

(vi) $\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=1}^{T_1} \sum_{t=1}^{T_2} \left\| E \right(\eta_{it_3} \eta_{jt_4} \right\| = O \left(NT \right)$.

Assumptions 5 and 6 are analogous versions of Assumptions 3 and 4. Especially, the role γ_{NT} here is similar to the $\gamma_{N,\omega}$, and both are used to control the scale of the asymptotic variance. The key difference is that $\Omega_{v,i}$ is allowed to equal zero for all i simultaneously, which is the reason why another random components are included in $\zeta_{N,t}$ and the extra assumption are imposed in Assumption 6. More specific discussions are included in Appendix A.

The following lemma describes the asymptotic distribution of $\hat{\beta}_p - \hat{\beta}_{mg}$.

Lemma 4.1. Under H_0 and by Assumptions 1 to 6 , as $(N,T) \to (\infty, \infty)$, we have

$$
(\gamma_{NT} NT)^{1/2} \left(\hat{\beta}_p - \hat{\beta}_{mg} \right) \overset{D}{\to} N(0_d, \Sigma_{ve,2}),
$$

where $\Sigma_{ve,2} = \Omega_v^{-1} \Sigma_{ve,1} \Omega_v^{-1}$.

Remark 2. To illustrate the result in Lemma 4.1, we provide two examples as follows.

- Consider $d = 1$, $\Omega_{v,i} = 1$ for $i = 1, \ldots, \lfloor N/2 \rfloor$, and $\Omega_{v,i} = 2$ otherwise, then $\gamma_N = \frac{1}{4}$ is a constant. Lemma 4.1 indicates $\sqrt{NT} \left(\hat{\beta}_{mg} - \hat{\beta}_p \right)$ converges to a non-degenerate random variable, and $\hat{\beta}_{mg}$ and $\hat{\beta}_p$ have different asymptotic distributions under H_0.

- Consider $\Omega_{v,i} = \Omega_v$ for all i, thus $\gamma_N = 0$ and $\gamma_{NT} = T$. In this case, $\hat{\beta}_p$ and $\hat{\beta}_{mg}$ will have the same asymptotic distribution, thus $\sqrt{NT} \left(\hat{\beta}_p - \hat{\beta}_{mg} \right) \overset{D}{\to} 0$. Nevertheless, Eqs. (4.4) reveals that in this case $\hat{\beta}_{mg} - \hat{\beta}_p$ converges to zero with a $\sqrt{NT^2}$ rate.

If both γ_{NT} and consistent estimate of $\Sigma_{ve,2}$ were available, the standard practice to construct statistic based on Lemma 4.1 would be:

$$
\gamma_{NT} NT \left(\hat{\beta}_{mg} - \hat{\beta}_p \right)^T \Sigma_{ve,2}^{-1} \left(\hat{\beta}_{mg} - \hat{\beta}_p \right) \overset{D}{\to} \chi^2_d.
$$

(4.5)
However, Eqs. (4.5) is generally infeasible, since \(\gamma_{NT} \) is unknown, and it is difficult to provide any consistent estimator for \(\Sigma_{ve,2} \) with weak dependence in both cross-sectional and serial dimensions. To overcome such difficulties, our statistic is constructed in the following way:

\[
\hat{J}_{NT} = NT \left(\hat{\beta}_p - \hat{\beta}_{mg} \right) \top \hat{H}_{NT}^{-1} \left(\hat{\beta}_p - \hat{\beta}_{mg} \right),
\]

(4.6)

where \(\hat{H}_{NT} = \frac{1}{T} \sum_{m=1}^{T} \hat{L}_{NT,m} \hat{L}_{NT,m} \top \), in which \(\hat{L}_{NT,m} = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{m} \left(\hat{\Omega}_{x,Ti}^{-1} - \hat{\Omega}_{x,NT}^{-1} \right) \hat{X}_i \hat{e}_it \),

(4.7)

and \(\hat{\Omega}_{x,Ti} = \frac{1}{T} \hat{X}_i \top \hat{X}_i \), \(\hat{\Omega}_{x,NT} = \frac{1}{N} \sum_{i=1}^{N} \hat{\Omega}_{x,Ti} \), with \(\hat{Y}_it \) and \(\hat{X}_i \) being the \(t \)-th elements of \(\hat{Y}_i \) and \(\hat{X}_i \), respectively, and \(\hat{e}_i = \hat{Y}_it - \hat{X}_i \top \hat{\beta}_i \).

\(\hat{J}_{NT} \) becomes a feasible version of Eqs. (4.5) for two reasons. Firstly, \(\hat{L}_{NT,m} \) has a similar structure with \(\hat{\beta}_p - \hat{\beta}_{mg} \). Thus the \(\sqrt{\gamma_{NT}} \) from \(\left(\hat{\beta}_p - \hat{\beta}_{mg} \right) \) and \(\hat{L}_{NT,m} \) will be canceled out with each other within \(\hat{J}_{NT} \). Secondly, \(\Sigma_{ve,2} \) can be replaced by a stochastic transformation \(\hat{H}_{NT} \), which can be calculated from the observed data. Note that such transformed version \(\hat{H}_{NT} \) will not converge to the population covariance matrix (see Kiefer et al., 2000; Vogelsang, 2012; Lee and Robinson, 2016). For example, \(\gamma_{NT} \hat{H}_{NT} \) will converge in distribution to another random variable constructed by the integration of a Brownian bridge.

Theorem 4.1: Under \(H_0 \) and Assumptions 1 to 6, as \((N, T) \to (\infty, \infty) \), we have

\[
\hat{J}_{NT} \overset{D}{\to} W_d \top (1) \Phi_d^{-1} W_d (1),
\]

(4.8)

where \(\Phi_d = \int_0^1 (W_d(r) - rW_d(1)) (W_d(r) - rW_d(1)) \top dr \) and \(W_d(\cdot) \) is a \(d \times 1 \) vector of independent Brownian motion processes.

To evaluate the asymptotic power properties of \(\hat{J}_{NT} \), we consider the following alternative hypothesis:

\[
H_1 : \beta_i = \beta_0 + \delta_{NT} \epsilon_i \quad \text{for} \ 1 \leq i \leq N,
\]

(4.9)

with \(\delta_{NT} \) and a \(d \times 1 \) vector of real numbers \(\epsilon_i \) satisfying the following assumption.

Assumption 7. Denote \(\tilde{\epsilon}_i = \epsilon_i - \frac{1}{N} \sum_{i=1}^{N} \epsilon_i \). (i) \(\delta_{NT} \sqrt{\gamma_{NT}} \to \infty \); (ii) \(\delta_{NT} \sqrt{\gamma_{NT}} \to 0 \); (iii) \(\frac{1}{N} \sum_{i=1}^{N} \Omega_{ei} \tilde{\epsilon}_i \to \psi \), where \(\psi \) is a \(d \times 1 \) vector of constant with \(||\psi|| > 0 \).

Assumption 7(i) specifies the minimum scale required on the departures from \(\beta_0 \), Assumption 7(ii) is imposed to simplify the calculations, and \(\frac{1}{N} \sum_{i=1}^{N} \Omega_{ei} \tilde{\epsilon}_i \) determines the bias introduced by using \(\hat{\beta}_p \) under \(H_1 \). Some other versions of (ii) and (iii) are discussed in Appendix A.

The following theorem states the asymptotic distribution of \(\hat{J}_{NT} \) under \(H_1 \).

Theorem 4.2: Under \(H_1 \) and Assumptions 1 to 7, as \((N, T) \to (\infty, \infty) \), we have

\[
\left(\delta_{NT}^2 \gamma_{NT} NT \right)^{-1} \hat{J}_{NT} \overset{D}{\to} \psi \top \Omega_{\psi}^{-1} \Phi_d^{-1} \Omega_d^{-1} \psi.
\]

(4.10)
Theorems 4.1 and 4.2 imply the size and the power of the proposed test statistics, which can be concluded as the following corollary.

Corollary 4.1: Under Assumptions 1 to 7, we have as \((N,T) \to (\infty,\infty) \),

\[
P\left(\hat{J}_{NT} > c_{\alpha}|H_0 \right) \to \alpha, \tag{4.11}
\]
\[
P\left(\hat{J}_{NT} > c_{\alpha}|H_1 \right) \to 1, \tag{4.12}
\]

where \(c_{\alpha} \) is the critical value at the significance level \(\alpha \) of the distribution of the random variable \(W_d^\top(1)\Phi_d^{-1}W_d(1) \).

4.2 Bootstrap based critical value

In implementation, the test statistic \(\hat{J}_{NT} \) can be calculated based on the observed data, and the critical values of the asymptotic distribution in Eqs. (4.8) are available in a table by (Kiefer et al., 2000). One disadvantage arises since the weak convergence of \(L_{NT,m} \) to the Brownian bridge requires large enough \(T \). Then \(\hat{J}_{NT} \) may converge to its asymptotic distribution very slowly since the contribution by increasing \(N \) seems small. Thus the size calculated by using the critique values from the table may not be satisfactory unless \(T \) is large enough. To improve the finite sample performance for the case where \(T \) is relatively small, we propose to use a bootstrap based critical value for \(\hat{J}_{NT} \) in each case. The bootstrap procedure includes the following steps.

S.1 Estimate the heterogeneous model in Eqs. (1.1), and obtain the estimated residual \(\hat{e}_{it} = \tilde{Y}_{it} - \tilde{X}_{it}^\top \hat{\beta}_i \), the mean group estimator \(\hat{\beta}_{mg} \), together with \(\hat{\Omega}_{x,Ti} \) and \(\hat{\Omega}_{x,NT} \). And estimate the pooled estimator \(\hat{\beta}_p \) in Eqs. (2.15) and then calculate the test statistic \(\hat{J}_{NT} \) based on \(\{\hat{e}_{it}, \hat{\beta}_{mg}, \hat{\beta}_p, \hat{\Omega}_{x,Ti}, \hat{\Omega}_{x,NT}\} \).

S.2 Obtain the corresponding residual in the pooled estimation \(\hat{u}_{it} = \tilde{Y}_{it} - \tilde{X}_{it}^\top \hat{\beta}_p \). Then use it to calculate the bootstrap error \(u_{it}^* = \hat{u}_{it} \zeta_{it} \), where \(\{\zeta_{it}, 1 \leq i \leq N, 1 \leq t \leq T\} \) is i.i.d. random variables drawn from

\[
P\left(\zeta_{it} = -\frac{\sqrt{5} - 1}{2} \right) = \frac{\sqrt{5} + 1}{2\sqrt{5}}, \quad P\left(\zeta_{it} = \frac{\sqrt{5} + 1}{2} \right) = \frac{\sqrt{5} - 1}{2\sqrt{5}} \tag{4.13}\]

and then obtain \(Y_{it}^* = X_{it}^\top \hat{\beta}_p + u_{it}^* \).

S.3 Use the bootstrap sample \(\{Y_{it}^*, X_{it}\} \) to re-estimate \(\hat{\beta}_{mg}^*, \hat{\beta}_p^* \) and \(\hat{e}_{it}^* \). And calculate the \(\hat{J}_{NT}^* \) based on \(\{\hat{e}_{it}^*, \hat{\beta}_{mg}^*, \hat{\beta}_p^*, \hat{\Omega}_{x,Ti}, \hat{\Omega}_{x,NT}\} \).

S.4 Repeat steps S.2 to S.3 by \(B = 250 \) times and produce the sequence \(\{\hat{J}_{NT,b}^*\} \) for \(b = 1, \cdots, B \). Then calculate the \(\alpha \) quantile \(c_{\alpha}^* \) of the empirical distribution based on \(\{\hat{J}_{NT,b}^*\} \), and use \(c_{\alpha}^* \) as the bootstrap critical value for size and power calculation.
5 Simulated studies

In this section, we carry out simulation studies to compare the finite sample performance of the proposed estimators, together with the asymptotic size and local power of the homogeneity test.

5.1 Estimation biases and standard deviations

Consider the following data generating processes (DGPs) based on Eqs. (1.1):

\[Y_{it} = X_{it}^\top \beta_i + f_i(\tau_i) + \alpha_i + \epsilon_{it}, \]

where \(f_i(u) = \frac{1}{N} \sqrt{u - \frac{2}{3} \frac{i}{N}}, \) \(\alpha_i = \max\{\frac{1}{T} \sum_{t=1}^{T} X_{it,1}, \frac{1}{T} \sum_{t=1}^{T} X_{it,2}\} \). \(X_{it} \) follows \(X_{it} = g_i(\tau_i) + x_i + v_{it} \), with \(g_i(u) = (\frac{1}{\sqrt{N}})^{1/2} u, \) \(2 \frac{1}{\sqrt{N}} \cos(\pi u)^{\top} \) and \(x_i = \frac{1}{T} \sum_{t=1}^{T} \epsilon_{it} \).

For the cross-sectional and serial dependent structure, we consider the case where \(\epsilon_{it} \) follows \(\epsilon_{it} = 0.3 \epsilon_{i,t-1} + \epsilon_{it} \). For \(t \geq 1, \) \(\epsilon_i = (\epsilon_{it}, \cdots, \epsilon_{iT})^\top \) is drawn from \(N(0_N, \Omega_\epsilon) \), with the \((i,j)\)-th element of \(\Omega_\epsilon \) being \(\Omega_{\epsilon,ij} = \frac{1}{1+(i-j)^2} \). Similarly, \(v_{it} = 0.3 v_{i,t-1} + \eta_{it} \). Denote \(\eta_i = (\eta_{it}, \cdots, \eta_{IT})^\top \), and for \(t \geq 1, \) vec(\(\eta_i \)) is drawn independently from \(N(0_{Nd}, \Omega_{\eta,\eta}) \) with \(\Omega_{\eta,\eta} = I_d \otimes \Omega_v \), where \(\Omega_{\eta,\eta} = \frac{1}{1+(i-j)^2} \) for \(i \neq j \), and \(\Omega_{\eta,\eta} = \sigma^2_{\eta,\eta} \).

Furthermore, the specifications on the coefficient heterogeneity (\(\beta_i \)) and heteroskedasticity (\(\sigma^2_{\epsilon,i} \)) are different across DGPs as follows:

- **DGP 1**: \(\beta_i = (\frac{2^{i-1}}{2N} - \frac{1}{2}, 4 \cos(\pi \frac{i}{N}) + \frac{4}{N})^\top \); \(\sigma^2_{\epsilon,i} = 1 \) for all \(i \).
- **DGP 2**: \(\beta_i = (\frac{2^{i-1}}{2N} - \frac{1}{2}, 4 \cos(\pi \frac{i}{N}) + \frac{4}{N})^\top \); \(\sigma^2_{\epsilon,i} = 1 \) for \(i = 1, \cdots, [N/2] \), and \(\sigma^2_{\epsilon,i} = 2 \), otherwise.

Data simulated by DGP1 and DGP2 will be used to evaluate the finite sample performance of the mean group estimators (MGEs) in comparison to the pooled estimators, which include the pooled estimator (PE1) in Chen et al. (2012) and the pooled estimator (PE2) in Eqs. (2.15).

In our implementation, Epanechnikov kernel is used throughout this section, the bandwidth \(h_i \) is chosen by a leave-one-out cross-validation method:

\[
 h_{i,CV} = \arg \min_h \sum_{i=1}^{T} \left(Y_{it} - X_{it}^\top \hat{\beta}_{i,\cdot-t}(h) - \hat{\eta}_{i,\cdot-t}(\tau_i, h) \right)^2 ,
\]

(5.1)

where \(\hat{\beta}_{i,\cdot-t}(h) \) and \(\hat{\eta}_{i,\cdot-t}(\tau_i, h) \) are the individual estimators with the sample point \((X_{it}, Y_{it})\) being removed. For each simulation indexed as \(m = 1, \cdots, M \), we calculate \(\frac{1}{\sqrt{M}} ||\hat{\beta}_m - \beta|| \) for all the estimators. The procedure is repeated by \(M = 500 \) times, eventually for each estimator, we obtain an absolute error sequence \(\{\frac{1}{\sqrt{M}} ||\hat{\beta}_m - \beta||\}_{m=1}^{M} \).
Table 1: Means and SDs of the absolute errors for estimating β in DGP1 and DGP2

<table>
<thead>
<tr>
<th></th>
<th>DGP1</th>
<th>DGP2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N \ T</td>
<td>10</td>
</tr>
<tr>
<td>MGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.149</td>
<td>0.094</td>
</tr>
<tr>
<td></td>
<td>(0.078)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>20</td>
<td>0.108</td>
<td>0.066</td>
</tr>
<tr>
<td></td>
<td>(0.057)</td>
<td>(0.037)</td>
</tr>
<tr>
<td>50</td>
<td>0.069</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>100</td>
<td>0.048</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>PE1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.281</td>
<td>0.242</td>
</tr>
<tr>
<td></td>
<td>(0.125)</td>
<td>(0.097)</td>
</tr>
<tr>
<td>20</td>
<td>0.313</td>
<td>0.290</td>
</tr>
<tr>
<td></td>
<td>(0.104)</td>
<td>(0.076)</td>
</tr>
<tr>
<td>50</td>
<td>0.398</td>
<td>0.374</td>
</tr>
<tr>
<td></td>
<td>(0.073)</td>
<td>(0.050)</td>
</tr>
<tr>
<td>100</td>
<td>0.466</td>
<td>0.446</td>
</tr>
<tr>
<td></td>
<td>(0.055)</td>
<td>(0.040)</td>
</tr>
<tr>
<td>PE2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.172</td>
<td>0.120</td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
<td>(0.065)</td>
</tr>
<tr>
<td>20</td>
<td>0.127</td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td>(0.066)</td>
<td>(0.044)</td>
</tr>
<tr>
<td>50</td>
<td>0.081</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>100</td>
<td>0.056</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.021)</td>
</tr>
</tbody>
</table>

In Table 1, we report the mean and standard error (SD, in parentheses) results in each case for the three estimators. First of all, it shows that MGE is more accurate and more efficient in estimating β than PE1 and PE2 in both DGP1 and DGP2. And an increase in either N or T will result in a substantial decrease in MGE. Secondly, the bias of PE1 is increasing as N becomes large, and this bias seems to expand as N and T increase by the same rate. Finally, the pooled estimator PE2 is consistent to β under homoscedasticity (DGP1), and the reason is that the bias under H_1 will be zero if $\Omega_{v,i} = \Omega_v$ for all i. But PE2 is still less accurate and less efficient than MGE since it induces other random errors. Under homoscedasticity (DGP2), the bias term is nonzero, and PE2 becomes a biased estimator for β even for large N or T or both.

Similarly, Table 2 reports the means and SDs of $\{MSE_m(f)\}_{m=1}^M$ for MEG and PE1, where $MSE_m(f) = \frac{1}{T} \sum_{t=1}^T (\hat{f}_m(\tau_t) - f(\tau_t))^2$. It shows that MGE is more accurate and efficient than PE1. While the bias of MGE decreases as either N or T increases, the bias of PE1 increases significantly as N increases.

\footnote{PE2 is not included in this comparison since it does not estimate the trending functions.}
Table 2: Means and SDs of the absolute errors for estimating \overline{f} in DGP1 and DGP2

<table>
<thead>
<tr>
<th>N\T</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DGP1</td>
<td>10</td>
<td>0.219</td>
<td>0.086</td>
<td>0.032</td>
<td>0.016</td>
<td>0.198</td>
<td>0.082</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>(0.297)</td>
<td>(0.094)</td>
<td>(0.034)</td>
<td>(0.015)</td>
<td>(0.241)</td>
<td>(0.096)</td>
<td>(0.031)</td>
<td>(0.013)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.142</td>
<td>0.055</td>
<td>0.022</td>
<td>0.010</td>
<td>0.130</td>
<td>0.053</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>(0.180)</td>
<td>(0.055)</td>
<td>(0.023)</td>
<td>(0.010)</td>
<td>(0.156)</td>
<td>(0.059)</td>
<td>(0.022)</td>
<td>(0.010)</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.097</td>
<td>0.033</td>
<td>0.013</td>
<td>0.007</td>
<td>0.088</td>
<td>0.032</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>(0.119)</td>
<td>(0.034)</td>
<td>(0.014)</td>
<td>(0.007)</td>
<td>(0.117)</td>
<td>(0.039)</td>
<td>(0.013)</td>
<td>(0.006)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.078</td>
<td>0.030</td>
<td>0.010</td>
<td>0.005</td>
<td>0.069</td>
<td>0.023</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>(0.101)</td>
<td>(0.036)</td>
<td>(0.012)</td>
<td>(0.006)</td>
<td>(0.083)</td>
<td>(0.032)</td>
<td>(0.010)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>PE1</td>
<td>10</td>
<td>0.383</td>
<td>0.205</td>
<td>0.092</td>
<td>0.050</td>
<td>0.394</td>
<td>0.241</td>
<td>0.168</td>
</tr>
<tr>
<td></td>
<td>(0.402)</td>
<td>(0.205)</td>
<td>(0.085)</td>
<td>(0.050)</td>
<td>(0.415)</td>
<td>(0.200)</td>
<td>(0.117)</td>
<td>(0.070)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.418</td>
<td>0.245</td>
<td>0.151</td>
<td>0.118</td>
<td>0.288</td>
<td>0.179</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>(0.412)</td>
<td>(0.227)</td>
<td>(0.126)</td>
<td>(0.090)</td>
<td>(0.278)</td>
<td>(0.162)</td>
<td>(0.080)</td>
<td>(0.048)</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.231</td>
<td>0.920</td>
<td>0.810</td>
<td>0.761</td>
<td>0.443</td>
<td>0.303</td>
<td>0.248</td>
</tr>
<tr>
<td></td>
<td>(0.810)</td>
<td>(0.524)</td>
<td>(0.331)</td>
<td>(0.226)</td>
<td>(0.355)</td>
<td>(0.232)</td>
<td>(0.149)</td>
<td>(0.114)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>3.433</td>
<td>2.971</td>
<td>2.804</td>
<td>2.811</td>
<td>1.649</td>
<td>1.520</td>
<td>1.405</td>
</tr>
<tr>
<td></td>
<td>(1.330)</td>
<td>(0.950)</td>
<td>(0.559)</td>
<td>(0.382)</td>
<td>(0.867)</td>
<td>(0.610)</td>
<td>(0.379)</td>
<td>(0.253)</td>
</tr>
</tbody>
</table>

Table 3: Empirical rejection ratios of homogeneity test statistic

<table>
<thead>
<tr>
<th>N\T</th>
<th>acv</th>
<th>becv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DGP3 (H0): $\beta_i = \beta_0$, homoscedasticity</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.204</td>
<td>0.110</td>
</tr>
<tr>
<td>20</td>
<td>0.190</td>
<td>0.102</td>
</tr>
<tr>
<td>50</td>
<td>0.188</td>
<td>0.106</td>
</tr>
<tr>
<td>100</td>
<td>0.019</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>DGP4 (H0): $\beta_i = \beta_0$, heteroscedasticity</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.196</td>
<td>0.126</td>
</tr>
<tr>
<td>20</td>
<td>0.218</td>
<td>0.099</td>
</tr>
<tr>
<td>50</td>
<td>0.182</td>
<td>0.100</td>
</tr>
<tr>
<td>100</td>
<td>0.224</td>
<td>0.104</td>
</tr>
<tr>
<td></td>
<td>DGP5 (H1): $\beta_i = \beta_0 + \frac{\log(N) \log(T)}{T^{3/4}} \epsilon_i$, homoscedasticity</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.372</td>
<td>0.366</td>
</tr>
<tr>
<td>20</td>
<td>0.450</td>
<td>0.454</td>
</tr>
<tr>
<td>50</td>
<td>0.492</td>
<td>0.608</td>
</tr>
<tr>
<td>100</td>
<td>0.566</td>
<td>0.662</td>
</tr>
<tr>
<td></td>
<td>DGP6 (H1): $\beta_i = \beta_0 + \frac{\log(N) \log(T)}{\sqrt{N}} \epsilon_i$, heteroscedasticity</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.292</td>
<td>0.298</td>
</tr>
<tr>
<td>20</td>
<td>0.354</td>
<td>0.342</td>
</tr>
<tr>
<td>50</td>
<td>0.352</td>
<td>0.508</td>
</tr>
<tr>
<td>100</td>
<td>0.374</td>
<td>0.596</td>
</tr>
</tbody>
</table>
5.2 Homogeneity test results

In this part, we consider four new DGPs with $\beta_i = \beta_0 + \delta_{NT}\epsilon_i$, where $\beta_0 = (1, 2)^\top$, and

- DGP 3: $\epsilon_i = 0_d; \sigma_{v,i}^2 = 1$ for all i.
- DGP 4: $\epsilon_i = 0_d; \sigma_{v,i}^2 = 1$ for $i = 1, \ldots, [N/2]$, and $\sigma_{v,i}^2 = 2$ otherwise.
- DGP 5: $\delta_{NT} = \frac{\log(N)\log(T)}{T^{3/4}}; \epsilon_i \sim N(0, I_d)$ for all $i; \sigma_{v,i}^2 = 1$ for all i.
- DGP 6: $\delta_{NT} = \frac{\log(N)\log(T)}{2\sqrt{NT}}; \epsilon_i = (1, -1)^\top, \sigma_{v,i}^2 = 1$ for $i = 1, \ldots, [N/2]$; otherwise $\epsilon_i = (-1, 1)^\top$ and $\sigma_{v,i}^2 = 2$.

Data simulated by DGP3 to DGP6 will be used to test the null hypothesis:

$$H_0 : \beta_i = \beta_0,$$

for all $i \geq 1$. Note H_0 is true under DGP3 (homoscedasticity) and DGP4 (heteroscedasticity). In comparison, DGP5 considers a random departure sequence from β_0 with the scale $\delta_{NT} = \frac{\log(N)\log(T)}{T^{3/4}}$, and DGP6 introduces departure sequence with $\delta_{NT} = \frac{\log(N)\log(T)}{2\sqrt{NT}}$. To decide whether to accept or reject the null hypothesis, we first use the 5% critical value of the non-standard asymptotic distribution in Eqs. (4.8) from Kiefer et al. (2000). Since the test statistic may converge relatively slow to its asymptotic distribution under H_0, we also employ the bootstrap procedure proposed in last section. All simulations are repeated by 1000 times, and the bootstrap steps are repeated by $B = 250$ times in each simulation.

The upper panels of Table 3 compare the rejection ratios by using an asymptotic critical value (acv) and the bootstrap critical value (bcv) for DGP3 and DGP4. It shows the rejections using the given critical values approach to the right size as T increases, but the contribution by increasing N seems small. Thus there exists an oversize problem by this approach when T is small. In comparison, the size by using the bootstrap critical value in each case is much more accurate when T is small. For example, the rejection ratio is close to 0.05 for the sample size of $N = T = 10$. Eventually, the rejections based on both the acv and bcv are around 0.05 when $T = 100$.

On the other hand, the rejection ratios increase substantially as either N or T increases under DGP5 and DGP6, which indicates the test statistic has good local power performance. In DGP5, $\hat{\beta}_{mg}$ and $\hat{\beta}_p$ have identical asymptotic distributions, and the variance of β_i converges to 0 as T increases. In DGP6, the departure of β_i to β_0 is of the order $O\left(\frac{\log(N)\log(T)}{2\sqrt{NT}}\right)$. The fact that the rejection ratios approach 1 in such cases indicates that the power of the test statistic does not require a large departure under H_1.

6 Empirical application

In the related literature, the heterogeneous features of health care expenditure across OECD countries have been commonly attributed to factors like income, population structure, physician
supply, public finance and technology growth (see Baltagi and Moscone, 2010, for a review). While income growth plays an important role in explaining health care spending diversities, its coefficients, the income elasticity of health care spending, are unlikely to be identical across countries due to different economic or demographic conditions. Similarly, the underlying technology progresses or efficiencies of health care system are impossible to be identical across all OECD countries. Such unobserved heterogeneities are considered in this application to illustrate the proposed model.

6.1 The dataset and econometric model

In this empirical example, we study the determinants of health care expenditure in OECD countries where those elasticities and underlying progresses are allowed to be heterogeneous. We collect the annual data on 32 OECD countries\(^3\) from 1990 to 2012 for five variables from OECD Health Statistic 2015 database including health care expenditure (HE), GDP, the dependent population (under 15 or above 65) over working population (dependency rate, DR), physicians per 1000 persons (PH), and the share of government health care expenditure in total health care spending (GHE). Both HE and GDP are per capita data translated into US Dollars by purchasing power parity and expressed in natural logarithm. All the variables have been extracted by the time average to eliminate the fixed effects. Data plots for these variables are presented in Figure 2 and Figure 1.

The model we use can be rewritten as follows:

\[
HE_{it} = \beta_1,i \cdot G_{it} + \beta_2,i \cdot PO_{it} + \beta_3,i \cdot PH_{it} + \beta_4,i \cdot GHE_{it} + f_{it} + \alpha_i + e_{it},
\]

(6.1)

where the covariates are assumed to follow

\[
X_{it} = g_{it} + x_i + v_{it}.
\]

Thus they can be deterministically nonstationary because \(g_{it}\) is driven by \(e_{it}\) through \(x_i\). Both \(f_{it}\) and \(\beta_i\) may vary across \(i\) to account for the heterogeneous technology process and covariates effects.

6.2 The estimated coefficients

Similar to the simulated data examples, we provide the results of MGE, PE1 and PE2 for comparison.

Figure 3 plots the estimation results for the individual \(\hat{\beta}_i\) (scatter points) in comparison to their averages \(\hat{\beta}_{mg}\) (blue dash line). First of all, the income elasticities of health care spending in Figure 3 for most countries are distributed between 0 and 1, indicating that health care is a necessity good and governmental intervention is necessary at least for the majority of the OECD countries. Secondly, the estimates of DR and GHE in OECD countries are distributed closely around zero, indicating they are relatively trivial in determining health care expenditure. Thirdly, the estimates of PH are quite diversified: the supply effects seem to be quite large in

\(^3\)Chile and Slovak Republic are not include due to inadequate data
Figure 1: Plots of explanatory variables in OECD countries
some Asian countries, while they are close to zero for the others. And overall, the MGE shows the average effect of PH in OECD countries is close to zero\(^4\).

In Table 4, we provide the MGE, PE1, and PE2 estimates for the average effects, where the standard errors (in parentheses) are calculated using a wild bootstrap procedure, and “*” indicating a significance under the 5% level (two-tailed) by the bootstrap procedure. On the one hand, the MGE estimates of income and public financed ratio are significantly positive (0.324 and 0.006 respectively), while the estimated effects for dependent ratio and physicians supply are small and insignificant, which are consistent with the findings obtained in the related literature (see Baltagi and Moscone, 2010). On the other hand, the PE1 estimate of the income elasticity is about two times of the MGE estimate. Based on our earlier analysis in Section 4, the results of PE1 are not reliable due to the unobservable heterogeneity in \(f_{it} \). The estimates of MGE and PE2 are more convincible especially when they appear to be similar.

Theorem 3.4 also indicates that we can use the group version of MGE to analyse the average effects for the given groups, which will be more accurate in comparison to the individual estimates. Thus, we divide the 32 OECD countries into six groups by their geographic locations as follows:

- Asia and Australasia (G1): Korea, Japan, Israel, Turkey, Australia, New Zealand;

- Former Eastern Europe (G2): Czech Republic, Estonia, Hungary, Poland, Slovenia, Aus-

\(^4\)More detail of individual coefficients estimation is provided in the supplementary file, together with their bootstrap version standard errors.
Figure 3: Plots of $\hat{\beta}_i$ for OECD countries

Table 4: Mean group and pooled estimators

<table>
<thead>
<tr>
<th></th>
<th>MGE</th>
<th>PE1</th>
<th>PE2</th>
<th>MGE</th>
<th>PE1</th>
<th>PE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>0.324*</td>
<td>0.663*</td>
<td>0.369*</td>
<td>PH</td>
<td>0.000</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.062)</td>
<td>(0.041)</td>
<td></td>
<td>(0.023)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>DR</td>
<td>-0.004</td>
<td>-0.008*</td>
<td>-0.004</td>
<td>GHE</td>
<td>0.006*</td>
<td>0.010*</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.004)</td>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
</tbody>
</table>
• Former Western Europe (G3): Belgium, France, Germany, Luxembourg, Netherlands, Switzerland;

• Former Southern Europe (G4): Greece, Italy, Portugal, Spain;

• Former Northern Europe (G5): Denmark, Finland, Iceland, Norway, Sweden;

• North America, Ireland and United Kingdom (G6): Canada, Ireland, Mexico, United Kingdom, United States.

Table 5: Mean group estimators in each group

<table>
<thead>
<tr>
<th></th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>G6</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>0.544*</td>
<td>0.352*</td>
<td>0.209*</td>
<td>0.762*</td>
<td>0.256*</td>
<td>−0.091</td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
<td>(0.101)</td>
<td>(0.049)</td>
<td>(0.098)</td>
<td>(0.058)</td>
<td>(0.068)</td>
</tr>
<tr>
<td>DR</td>
<td>0.009</td>
<td>0.004</td>
<td>−0.006</td>
<td>0.001</td>
<td>−0.023*</td>
<td>−0.010*</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.010)</td>
<td>(0.007)</td>
<td>(0.012)</td>
<td>(0.005)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>PH</td>
<td>0.164</td>
<td>0.088*</td>
<td>−0.146*</td>
<td>−0.046</td>
<td>0.002</td>
<td>−0.044</td>
</tr>
<tr>
<td></td>
<td>(0.088)</td>
<td>(0.038)</td>
<td>(0.023)</td>
<td>(0.040)</td>
<td>(0.059)</td>
<td>(0.051)</td>
</tr>
<tr>
<td>GHE</td>
<td>−0.001</td>
<td>0.002</td>
<td>0.013*</td>
<td>0.004</td>
<td>0.012*</td>
<td>0.005*</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.003)</td>
<td>(0.001)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.002)</td>
</tr>
</tbody>
</table>

The MGE results in each group together with their standard errors are reported in Table 5, where "*" indicating a significance of the 5% level similar to Table 4. First of all, the income elasticities are positive and significant in all groups but G6. One percent of income increase will bring about 0.76 and 0.54 percent of health care spending increase in the Former Southern Europe and Asia, respectively, which are much higher than other groups. Secondly, both the population structure and the public finance are significant factors in some groups (the Former Northern Europe and the Group of North America, Ireland and United Kingdom), but the effects are quite small. Finally, health care supply factor plays a positive role in Asia and the Former Eastern Europe, and significantly negative in the Former Western Europe, which may be related to the characteristics of the local health care systems.

6.3 Coefficient homogeneity test on OECD data set

Although Figure 3 gives a rough picture on \(\hat{\beta}_i \) across different OECD countries, a more explicit criterion is necessary to decide whether the underlying coefficients are heterogeneous or not. Similarly, in Table 4 we have no clue about which one of MGE and PE2 is more preferable. And as we discussed in Section 3, even only one parameter in \(\beta_i \) is heterogeneous, PE2 is likely to be biased in other homogeneous parameters.
We therefore consider testing whether the coefficients are identical across OECD countries:

\[H_0 : \beta_i = \beta_0, \quad \text{for all } i \geq 1. \quad (6.2) \]

Furthermore, we would like to investigate whether the coefficients are homogeneous within each geographic group, that is, for any \(k = 1, \cdots, 6, \)

\[H_0^{(k)} : \beta_i = \beta_0, \quad \text{for } i \in G_k. \quad (6.3) \]

The test statistics for \(H_0 \) and \(H_0^{(1)} \) to \(H_0^{(6)} \) are calculated based on Eqs. (4.6). According to the simulated data examples, using an asymptotic critical value is likely to cause a size distortion problem when \(T \) is relatively small. Thus we utilize the procedure proposed in Section 4 to calculate the bootstrap critical value and the p-value in each case. These results are reported in Table 6, together with the asymptotic critical value from Kiefer et al. (2000) in the last line, where “*” indicates a rejection of the null hypothesis at the 5% significance level.

From Table 6, \(H_0 \) in Eqs. (6.2) has been rejected based on the bcv, with a \(p \)-value being 0.01. Further testing results on Eqs. (6.3) help us understand the heterogeneity within each groups. On the one hand, although the null has been rejected at the OECD level, the coefficients are not necessarily heterogeneous within every group. For example, the null hypothesis in Eqs. (6.3) has been accepted in the Asian group and the Former Northern Europe group, with \(p \)-values being 0.57 and 0.99, respectively. On the other hand, using the acv in the last row, the conclusions are not changed by using either the bcv or the acv in each case. In addition, more details and discussions are provided in Appendix F of the supplementary material.

<table>
<thead>
<tr>
<th>Test statistic</th>
<th>OECD</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>G6</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcv</td>
<td>313.20</td>
<td>328.73</td>
<td>291.73</td>
<td>425.96</td>
<td>481.74</td>
<td>389.95</td>
<td>479.83</td>
</tr>
<tr>
<td>Bootstrap p-value</td>
<td>0.01</td>
<td>0.57</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.99</td>
<td>0.03</td>
</tr>
<tr>
<td>acv</td>
<td>261.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.4 The estimated trending functions

The estimated trending functions for each country are presented in Figure 4 by groups. Also, the estimated trends together with their bootstrap standard errors are provided in Appendix F of the supplementary material. In Figure 4, first of all, we find a common rising tendency among all the estimated trends, this indicates that technology advances will commonly generate growth in cost and expanded longevity (Chandra and Skinner, 2012) in all countries. Secondly, it is also natural to see a substantial diversity among these trends since there is no unique pattern for technology progress among OECD countries. Thirdly, the estimated trends are almost identical
Figure 4: The estimated trends in OECD countries by groups
in the Former Western European countries except in the Netherlands and Luxembourg. This indicates the similarities among the countries in some groups are much stronger than the average level.

Finally, in Figure 5, we compare the MGE estimated trends in the six groups in comparison to the OECD average. It is obvious that the estimated trends in G5 and G6 are steeper than the OECD average, which may support that technology and R&D sector should be more advanced in U.S. and the Former Western European countries. Besides, although several groups experienced a slowdown around 2008, the Former Southern Europe group is the only one with a substantial dropping ever since the Subprime Crisis.

7 Conclusions and discussions

In this paper, we have introduced a heterogeneous panel data model with cross-sectional dependence. The mean group estimators, the weighted averaging estimators together with a pooled estimator have all been proposed and then studied. Asymptotic results have been derived and we have shown that each of these estimators achieve the possible optimal rate of convergence as \((N,T) \to (\infty, \infty)\), while \(N\) is allowed to increase faster than \(T\). A new statistic has been proposed to test the homogeneity hypotheses. In our test, there is no need to discriminate the pooled estimator from the mean group estimator under \(H_0\), and the pooled estimator is allowed to be consistent under \(H_1\). In addition, there is also no need to require any consistent estimator for the covariance matrix involved in the test statistic.
Simulated examples have been given to demonstrate that the mean group estimators are more accurate and efficient than the pooled estimators in the finite sample performance. Additional simulated examples are used to illustrate the size and power of the proposed test. In particular, the bootstrap critical value is helpful in achieving a desirable size especially when the sample size is small. In addition, a real data example using an OECD health case expenditure dataset is studied to show the applicability of the proposed model.

One main limitation in this paper is X_{it} can be correlated with e_{it} only through x_i. A more general setting up is to further introduce endogeneity by allowing v_{it} to be correlated with e_{it}.

Appendix A Related discussion of the main results

Justification of Assumption 1: Assumption 1(i) requires v_t and e_t to be a joint α-mixing sequence where the mixing coefficient satisfies a moderate rate such as $o\left(k^{-\frac{(4+\delta)(1+\phi)}{\delta}}\right)$. Assumption 1(ii) ensures $\Omega_{v,i}$ to be nonsingular such that $\Omega_{v,i}^{-1}$ exists. And Assumption 1(iii) includes some regular moment conditions on v_{it} and e_{it}.

Justification of Assumption 2: Assumption 2 imposes some mild conditions on e_{it} and v_{it}. Take Assumption 2(i) for example, it is satisfied if either of the following cases holds,

- If e_{it} is cross-sectionally independent, and be serially independent or weakly dependent (such as α-mixing), then Assumption 2(i) holds.

- Consider a spatial autoregressive (SAR) process such as $e_t = \lambda W_N e_t + \varepsilon_t = S_N^{-1} \varepsilon_t$. If we assume S_N^{-1} is uniformly bounded in both row and column sums in absolute value as in Lee and Yu (2015), and ε_t is i.i.d. or α-mixing sequence over time, it is easy to check such a SAR process satisfies Assumption 2(i).

- For e_{it} to be the random errors with a linear structure, Assumption 2(i) is satisfied by imposing appropriate restrictions on the linear coefficients (see Kim and Sun, 2013; Chudik and Pesaran, 2015; Lee and Robinson, 2016).

- In addition, see Dong et al. (2015a,b) for an illustration that weak factor models are included by Assumption 2(i).

Assumption 2(ii)(iii)(iv) is included to handle the errors introduced by the semiparametric estimation procedure. It is clear that if v_{it} and e_{js} are independent for all i, j, t, s, then these conditions are ensured by Assumption 2(i). In addition, the superscript T_1 and T_2 in (ii) and (iii) will be used for some uniform convergence results for establishing the asymptotic distribution of the proposed homogeneity test statistic.

Justification of Assumption 3: Assumption 3 imposes some conditions necessary for establishing the central limit theorems (CLTs) in Theorems 3.3 and 3.4. In particular, (i) and (ii) require the positive definiteness of the asymptotic covariance matrices. (iii) will be used in the Lindeberg condition for
proving the CLTs. There are \(\rho_i \) and \(\rho_j \) contained in \(\sigma^2_{K} \) because different bandwidths can be allowed across different individuals. If the same bandwidth is chosen, \(\sigma^2_{eK} = \nu_0 \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sigma_e(i, j) \), which is the same as the pooled estimators.

Justification of Assumption 4: Assumption 4(i) specifies the condition on the kernel function used in estimation, which is quite common in the literature. Assumption 4(ii) gives a regular smooth condition in the local linear fitting. Condition \(f_0^1 f_i(\tau) = 0 \) helps in identifying \(f_i(\tau) \) from \(\alpha_i \). Assumption 4(iii) includes some restrictions on \(h \) and expansion rate between \(N \) and \(T \). If we assume \(h \propto (NT)^{-1/5} \) and \(N = [T^c] \), Assumption 4 will require \(c < 1 + \delta^*/(2 + \delta^*/2) \) for \(\delta^* < \delta \).

Justification of Assumption 5: Assumption 5 is imposed to derive the asymptotic distribution of \(\beta_{mg} - \beta_p \). It actually includes two different scenarios. For the homoscedasticity (\(\Omega_{v,i} = \Omega_{v} \) for all \(i \)), \(\beta_p \) and \(\beta_{mg} \) has the same \(\sqrt{NT} \) asymptotic distribution, thus the leading term of \(\beta_p - \beta_{mg} \) will be \(\frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \Omega_{v,i} \Delta T_{i,t} \xi_{it} \), which is of order \(O_P \left(\frac{1}{\sqrt{NT}} \right) \). In this case, \(\gamma_{NT} = \gamma^{-1} \), \(\zeta_{NT} = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \Omega_{v,i} \xi_{it} \), which is similar to the situation in Assumption 3.

The condition (ii) will be used to establish the CLT results for \(\beta_p - \beta_{mg} \). Conditions (iii) and (iv) are imposed for the establishment of the asymptotic distribution of the test statistic. In particular, the two relationships in (iii) will be used to verify the finite distribution and tightness conditions in the proof of the functional central limit theorem for \(L_{NT}(r) \).

Justification of Assumption 6: The major part of Assumption 6 is roughly an analogous version of Assumption 2 under \(\gamma_{NT} = T \). In standard practice, such as in Theorem 3.3, we normally ignore small items of order \(o\left(\frac{1}{\sqrt{NT}}\right) \). However, if \(\gamma_{NT} = T \), the asymptotic distribution in Lemma 4.1 will be established with a rate of \(\sqrt{NT^2} \). Thus some technical calculations and assumptions are then required to verify those items that are normally ignored.

Justification of Assumption 7: Assumption 7(i) specifies the rate of \(\delta_{NT} \) such that the departure under \(H_1 \) can not be too small (no slower than \(\frac{1}{\sqrt{\gamma_{NT} NT}} \)). Assumption 7(ii) requires an upper bound for \(\delta_{NT} \) to simplify the discussion. Assumption 7(iii), together with Assumption 7(i), ensures that \(\beta_p \) has certain bias under \(H_1 \), thus the test has a good power performance.

If we drop condition (ii), thus \(\delta_{NT} \) is required to expand at a rate faster than \(\gamma_{NT}^{-1/2} \). In this case, the leading terms of \(\beta_p - \beta_{mg} \) under \(H_1 \) will include an extra random error dominated by \(\frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \eta_i \Omega_{v,i} \xi_{it} \). Based on our calculation, the power of the test should not be a problem since large \(\delta_{NT} \) implies a more significant deviation from the null. But if we want to derive the asymptotic distribution as in Theorem 4.2, some detailed assumptions will be needed to ensure the joint asymptotic distribution of \(\frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \eta_i \Omega_{v,i} \xi_{it} \) with \(H_{NT} \).

In addition, if \(\xi_{it} \) is random, for example, if \(\xi_{it} \sim i.i.d(0, \sigma^2) \), and is exogenous with \(v_{it} \) and \(e_{it} \), it is clear that \(\frac{1}{\sqrt{N}} \left(\frac{1}{N} \sum_{i=1}^{N} \Omega_{v,i} \sigma^2 \Omega_{v,i} \right)^{-1/2} \sum_{i=1}^{N} \Omega_{v,i} \xi_{it} \sim N(0, I_d) \). Then it is straightforward that \(\hat{J}_{NT} \) will have a similar asymptotic distribution under \(H_1 \) as long as \(\delta_{NT} \) grows to zero at an order faster than \(\frac{1}{\gamma_{NT}} \).
Some corresponding examples for Assumption 7 have been given in the simulated data studies.

Appendix B Summaries of the main proofs

Throughout the rest of this paper, let C be a generic positive constant whose value may vary from place to place but not dependent on both i and t. Since Theorems 3.1 and 3.2 are relatively standard results in semiparametric time series regression, we omit their proofs.

Proof of Theorem 3.3.
Recall ν_T is a $T \times 1$ vector of ones, and by definition of $s_i(\tau)$ we have $s_i(\tau)\nu_T = 1$ for $1 \leq i \leq N$, $0 \leq \tau \leq 1$. Note that $S_i = (s_i^T(1/T), \cdots, s_i^T(t/T))^T$, then $(I_T - S_i)\nu_T = 0$. Thus we have
\begin{align*}
\tilde{Y}_i &= (I_T - S_i)(Y_i - \nu_T Y_i) = (I_T - S_i)Y_i, \quad \text{(B.1)} \\
\tilde{X}_i &= (I_T - S_i)\left(X_i - X_i^i \otimes \nu_T\right) = (I_T - S_i)X_i. \quad \text{(B.2)}
\end{align*}
Recall $\hat{\beta}_w = \sum_{i=1}^N w_i \left(\tilde{X}_i^T \tilde{X}_i\right)^{-1} \tilde{X}_i \tilde{Y}_i$, and $\tilde{\Omega}_{x, Ti} = \frac{1}{T} \tilde{X}_i^T \tilde{X}_i$. Then together with Eqs. (B.1) and Eqs. (B.2), we have
\begin{align*}
\hat{\beta}_w - \beta_w &= \frac{1}{T} \sum_{i=1}^N w_i \tilde{\Omega}_{x, Ti}^{-1} \tilde{X}_i^T (I_T - S_i)Y_i - \sum_{i=1}^N w_i \beta_i \\
&= \frac{1}{T} \sum_{i=1}^N w_i \tilde{\Omega}_{x, Ti}^{-1} \tilde{X}_i^T (I_T - S_i)(X_i\beta_i + \alpha_i\nu_T + f_i + e_i) - \sum_{i=1}^N w_i \beta_i \\
&= \frac{1}{T} \sum_{i=1}^N w_i \left(\tilde{\Omega}_{x, Ti}^{-1} \left(\frac{1}{T} \tilde{X}_i^T \tilde{X}_i\right) \beta_i - \beta_i\right) + \frac{1}{T} \sum_{i=1}^N w_i \tilde{\Omega}_{x, Ti}^{-1} \tilde{X}_i^T (I_T - S_i)\nu_T \alpha_i \\
&\quad + \frac{1}{T} \sum_{i=1}^N w_i \tilde{\Omega}_{x, Ti}^{-1} \tilde{X}_i^T \left(\tilde{e}_i + \tilde{f}_i\right) \\
&\equiv A_{NT, 1} + A_{NT, 2} + A_{NT, 3}, \quad \text{(B.3)}
\end{align*}
where $\tilde{f}_i = (I_T - S_i)f_i$, $\tilde{e}_i = (I_T - S_i)e_i$. Note that $\tilde{\Omega}_{x, Ti} = \frac{1}{T} \tilde{X}_i^T \tilde{X}_i$ and $(I_T - S_i)\nu_T = 0$, we have
\begin{align*}
A_{NT, 1} &= 0, \quad \text{(B.4)} \\
A_{NT, 2} &= 0. \quad \text{(B.5)}
\end{align*}
For $A_{NT, 3}$, denote
\begin{align*}
Q_{Ti} &= \left(\tilde{\Omega}_{x, Ti}^{-1} - \Omega_{v,i}^{-1}\right) \Omega_{v,i}, \quad \Delta_{Ti} = \Omega_{v,i}^{-1} \left(\tilde{\Omega}_{x, Ti} - \Omega_{v,i}\right), \quad \text{(B.6)} \\
\tilde{Q}_{Ti} &= Q_{Ti}1(||Q_{Ti}|| \leq \mathcal{M}), \quad \tilde{\Omega}_{Ti}^{-1} = Q_{Ti} - \tilde{Q}_{Ti}, \quad \text{(B.7)}
\end{align*}
where \mathcal{M} is a bounded constant such that $\mathcal{M} > \sqrt{d} + c_v^{-1}d^{3/2}\max_i ||\Omega_{v,i}||$, where c_v is defined in Assumption 1(ii). Then we can decompose $\tilde{\Omega}_{x, Ti}$ as follows: calculations.
\begin{align*}
\tilde{\Omega}_{x, Ti}^{-1} &= \Omega_{v,i}^{-1} + \left(\tilde{\Omega}_{x, Ti}^{-1} - \Omega_{v,i}^{-1}\right) = \Omega_{v,i}^{-1} - \tilde{\Omega}_{x, Ti}^{-1} \left(\tilde{\Omega}_{x, Ti} - \Omega_{v,i}\right) \Omega_{v,i}^{-1} \\
&= \Omega_{v,i}^{-1} - \tilde{\Omega}_{x, Ti}^{-1} \Omega_{v,i} \Delta_{Ti} \Omega_{v,i}^{-1} = \Omega_{v,i}^{-1} - \left(I_d + \tilde{Q}_{Ti} + \tilde{Q}_{Ti}^\epsilon\right) \Delta_{Ti} \Omega_{v,i}^{-1} \\
&= \left(I_d - \left(I_d + \tilde{Q}_{Ti}\right)\Delta_{Ti} - \tilde{Q}_{Ti}^\epsilon\Delta_{Ti}\right) \Omega_{v,i}^{-1} \quad \text{(B.8)}
\end{align*}
In addition, let \(\xi_{it} \) and \(\tilde{f}_{it} \) be the \(t \)-th entry of \(\xi_i \) and \(\tilde{f}_t \), and denote,

\[
\tilde{\xi}_{it} = \Omega_{v,i}^{-1} \tilde{X}_{it} \left(\xi_{it} + \tilde{f}_{it} \right), \quad \xi_{it} = \Omega_{v,i}^{-1} v_{it} \varepsilon_{it}, \quad \xi_{it}^c = \tilde{\xi}_{it} - \xi_{it}.
\] (B.9)

Then we can rewrite \(A_{NT,3} \) as:

\[
A_{NT,3} = \frac{1}{T} \sum_{t=1}^{N} \frac{1}{w_t} \left(I_d - \left(I_d + \tilde{Q}_t \right) \Delta_{T_t} - \tilde{Q}_t \Delta_{T_t} \right) \sum_{i=1}^{T} \xi_{it}
\]
\[
= \frac{1}{T} \sum_{i=1}^{N} \sum_{t=1}^{T} w_i \xi_{it} + \frac{1}{T} \sum_{i=1}^{N} \sum_{t=1}^{T} w_i \xi_{it}^c - \frac{1}{T} \sum_{i=1}^{N} \sum_{t=1}^{T} w_i \left(I_d + \tilde{Q}_t \right) \Delta_{T_t} \tilde{\xi}_{it}
\]
\[
- \frac{1}{T} \sum_{i=1}^{N} \sum_{t=1}^{T} w_i \tilde{Q}_t \Delta_{T_t} \tilde{\xi}_{it} \equiv A_{NT,3,1} + \ldots + A_{NT,3,4}.
\] (B.10)

In Propositions (ii) and (iii) in Appendix C below, we have shown that

\[
E \| A_{NT,3,2} \|^2 \leq \frac{CV}{\gamma_{N,w} T + \epsilon}, \quad E \| A_{NT,3,3} \| \leq C \frac{N^{1/2}}{\gamma_{N,w} T^{1 + \epsilon}}.
\] (B.11)

By \(\frac{N}{T^{1/2}} \to 0 \) and \(\frac{N^{1/2}}{T} \to 0 \) in Assumption 4, we have

\[
A_{NT,3,2} = o_p \left(\frac{1}{\sqrt{\gamma_{N,w} T}} \right), \quad A_{NT,3,3} = o_p \left(\frac{1}{\sqrt{\gamma_{N,w} T}} \right).
\] (B.12)

For \(A_{NT,3,4} \), by the definition of \(\tilde{Q}_t \) in Eqs. (B.7), we can rewrite it as \(Q_t I \left(\| \tilde{Q}_t \| \leq \mathcal{M} \right) \). Then \(A_{NT,3,4} \) is zero unless \(\| Q_{T_i} \| > \mathcal{M} \) holds for at least one \(i \geq 1 \). Thus for any \(\epsilon > 0 \), we have

\[
P \left(\| A_{NT,3,4} \| > \epsilon \right) \leq P \left(\| A_{NT,3,4} \| \neq 0 \right)
\]
\[
\leq P \left(\max_{1 \leq i \leq N} \| Q_{T_i} \| > \mathcal{M} \right) \leq \sum_{i=1}^{N} P \left(\| Q_{T_i} \| > \mathcal{M} \right) = o(1),
\] (B.13)

where the last step is proved in Proposition C.1(i). Then we have

\[
A_{NT,3,4} = o_p \left(\frac{1}{\sqrt{\gamma_{N,w} T}} \right).
\] (B.14)

Denote \(V_{N,t} = \gamma_{N,w}^{-1/2} \sum_{i=1}^{N} w_i \xi_{it} \). To finish the proof of Theorem 3.3, we only need to show

\[
\frac{1}{\sqrt{T}} \sum_{t=1}^{T} V_{N,t} \xrightarrow{d} N(0, \Sigma_{ve,w}).
\] (B.15)

By Assumption 1, \(\{ V_{N,t}, t \geq 1 \} \) is an \(\alpha \)-mixing sequence with \(E(V_{N,t}) = 0 \) with zero mean. By \(E \| V_{N,t} \|^{2 + \delta} \leq \infty \) and \(\text{Var} \left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} V_{N,t} \right) \to \Sigma_{ve,w} \) in Assumption 3, Eqs. (B.15) can be verified by a central limit theorem for \(\alpha \)-mixing, such as Theorem 2.21 in Fan and Yao (2003).

Proof of Theorem 3.4.

By similar calculations to Eqs. (B.3), we have

\[
\hat{f}_{mg}(\tau) - \overline{f}(\tau) = \frac{1}{N} \sum_{i=1}^{N} s_i(\tau) \left(Y_i - Y_{i,T} - \left(X_i - X_i^{\top} \otimes t_T \right) \hat{\beta}_i \right) - \overline{f}(\tau)
\]
\[
\frac{1}{N} \sum_{i=1}^{N} \left(s_i(\tau) \left(Y_i - X_i \hat{\beta}_i \right) - \left(Y_i - X_i^\top \hat{\beta}_i \right) \right) - \bar{f}(\tau) \\
= \frac{1}{N} \sum_{i=1}^{N} (s_i(\tau) f_i(\tau) - f_i(\tau)) - \frac{1}{N} \sum_{i=1}^{N} e_i - \frac{1}{N} \sum_{i=1}^{N} f_i \\
+ \frac{1}{N} \sum_{i=1}^{N} (s_i(\tau) (X_i - X_i^\top)) \left(\beta_i - \hat{\beta}_i \right) + \frac{1}{N} \sum_{i=1}^{N} s_i(\tau) e_i \\
= A_{NT,4} + \cdots + A_{NT,8}.
\] (B.16)

By standard results of local linear fitting, we have

\[
A_{NT,4} = b f(\tau) h^2 + o(h^2).
\] (B.17)

By the moment condition in Assumption 2(i), \(E \left(\sum_{i=1}^{N} \sum_{t=1}^{T} e_{it} \right)^2 = O(NT)\), then we have

\[
A_{NT,5} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} e_{it} = O_p \left(\frac{1}{\sqrt{NT}} \right) = o_p \left(\frac{1}{\sqrt{NT} h} \right).
\] (B.18)

By the definition of Riemann integral and \(\int_{0}^{1} f_i(\tau) d\tau = 0\) in Assumption 4(ii), we have

\[
A_{NT,6} = O \left(\frac{1}{T} \right).
\] (B.19)

By Proposition C.2 we have

\[
A_{NT,7} = o_p \left(\frac{1}{\sqrt{NTH}} \right),
\] (B.20)

\[
\sqrt{NTH} A_{NT,8} \xrightarrow{D} N(0, \sigma_{\epsilon K}^2),
\] (B.21)

which complete the proof of Theorem 3.4.

Proof of Lemma 4.1

Denote \(\hat{\Omega}_{x,NT} = \frac{1}{NT} \sum_{i=1}^{N} \hat{X}_i^\top \hat{X}_i\). Under \(\beta_i = \beta\) for all \(i \geq 1\), by the same calculations as in Eqs. (B.3), it is straightforward to see that

\[
\hat{\beta}_p - \beta = \frac{1}{NT} \hat{\Omega}_{x,NT}^{-1} \sum_{i=1}^{N} \hat{X}_i^\top (\hat{e}_i + \hat{f}_i),
\]

\[
\hat{\beta}_{mg} - \beta = \frac{1}{NT} \sum_{i=1}^{N} \hat{\Omega}_{x,Ti}^{-1} \hat{X}_i (\hat{e}_i + \hat{f}_i).
\] (B.22)

Since \(\hat{\Omega}_{x,NT}^{-1} - \hat{\Omega}_{x,Ti}^{-1} = \hat{\Omega}_{x,NT}^{-1} \left(\hat{\Omega}_{x,Ti} - \hat{\Omega}_{x,NT} \right) \hat{\Omega}_{x,Ti}^{-1}\), then we have

\[
\hat{\beta}_p - \hat{\beta}_{mg} = \frac{1}{NT} \hat{\Omega}_{x,NT}^{-1} \sum_{i=1}^{N} \left(\hat{\Omega}_{x,Ti} - \hat{\Omega}_{x,NT} \right) \hat{\Omega}_{x,Ti}^{-1} \hat{X}_i (\hat{e}_i + \hat{f}_i)
\]

\[
= \frac{1}{NT} \hat{\Omega}_{x,NT}^{-1} \sum_{i=1}^{N} \left(\hat{\Omega}_{x,Ti} - \hat{\Omega}_{x,NT} \right) \hat{\Omega}_{x,Ti}^{-1} \hat{X}_i (\hat{e}_i + \hat{f}_i)
\]

\[
+ \frac{1}{NT} Q_{NT} \sum_{i=1}^{N} \left(\hat{\Omega}_{x,Ti} - \hat{\Omega}_{x,NT} \right) \hat{\Omega}_{x,Ti}^{-1} \hat{X}_i (\hat{e}_i + \hat{f}_i)
\]

\[
\equiv A_{NT,9} + A_{NT,10},
\] (B.23)
where $Q_{NT} = \hat{\Omega}_{NT}^{-1} - \Omega_{v}^{-1}$.

Denote $A_{NT,11} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(\bar{\Omega}_{v,i} + \Omega_{v,i} \Delta T_{i,t} \right) \xi_{it} + o_{P} \left(\frac{1}{\sqrt{\gamma_{NT}NT}} \right)$. Note that $Q_{NT} \xrightarrow{P} 0$, then for Lemma 4.1, we only need to prove

$$A_{NT,11} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(\bar{\Omega}_{v,i} + \Omega_{v,i} \Delta T_{i,t} \right) \xi_{it} + o_{P} \left(\frac{1}{\sqrt{\gamma_{NT}NT}} \right) \tag{B.24}$$

$$\implies A_{NT,11} = A_{NT,11,1} + A_{NT,11,2} \tag{B.27}$$

Recall in Eqs. (B.7) we have

$$\bar{\Omega}_{x,Ti} = \Omega_{v,i}^{-1} \left(I_{d} + \tilde{Q}_{Ti} + \tilde{Q}_{Ti}^\top \right) \Delta T_{i,T} \Omega_{v,i}^{-1} \text{ and } \tilde{\xi}_{it} = \Omega_{v,i}^{-1} \tilde{X}_{it} \left(\tilde{e}_{i} + \tilde{f}_{i} \right),$$

we have

$$A_{NT,11} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(\bar{\Omega}_{v,i} + \Omega_{v,i} \Delta T_{i,t} \right) \tilde{\xi}_{it} - \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(\tilde{Q}_{Ti} \Delta T_{i,t} \tilde{\xi}_{it} \right) \tag{B.28}$$

Recall also that $\Omega_{v,i}^{-1} \tilde{X}_{it} \tilde{e}_{it} = \xi_{it} + \xi_{ct}$, thus

$$A_{NT,11,1,1} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(\bar{\Omega}_{v,i} + \Omega_{v,i} \Delta T_{i,t,1} \right) \xi_{it} + \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \Omega_{v,i} \Delta T_{i,t,2} \xi_{it} \tag{B.29}$$

In Proposition C.1(ii), Proposition C.3(ii) and (iii), we have shown that

$$A_{NT,11,1,1,2} = o_{P} \left(\frac{1}{\sqrt{\gamma_{NT}NT}} \right), \quad A_{NT,11,1,1,3} = o_{P} \left(\frac{1}{\sqrt{\gamma_{NT}NT}} \right) \tag{B.30}$$

Thus we have

$$A_{NT,11,1,1} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(\bar{\Omega}_{v,i} + \Omega_{v,i} \Delta T_{i,t,1} \right) \xi_{it} + o_{P} \left(\frac{1}{\sqrt{\gamma_{NT}NT}} \right) \tag{B.31}$$

In Propositions C.1(iii) and C.3(iv) below, we have shown that

$$A_{NT,11,1,2} = o_{P} \left(\frac{1}{\sqrt{\gamma_{NT}NT}} \right) \tag{B.32}$$

30
Recall the definition of \hat{Q}_{T_i}, by the argument in Eqs. (B.13), we have
\[
A_{NT,11,1,3} = o_P\left(\frac{1}{\sqrt{\gamma_{NT}NT}}\right). \tag{B.33}
\]

Meanwhile, we have $\Delta_{NT} = o_P\left(\frac{1}{\sqrt{NT}}\right)$ in Proposition C.3(i), together with the proof of Theorem 3.3, we have
\[
A_{NT,11,2} = o_P\left(\frac{1}{\sqrt{\gamma_{NT}NT}}\right), \tag{B.34}
\]
which completes the proof of Eqs. (B.24).

Step(ii): Proof of Eqs. (B.25).
Recall that $ζ_{NT} = \frac{\sqrt{NT}}{\sqrt{N}} \sum_{i=1}^{N} \left(\hat{Ω}_{v,i} + Ω_{v,i} Δ_{T_i,1}\right) ξ_{it}$, we need to show
\[
\sum_{t=1}^{T} ζ_{NT} \xrightarrow{D} N(0_d, Σ_{ve,1}). \tag{B.35}
\]

Let $\mathcal{F}_{t-m} = σ\{ (v_{t-m}, e_{t-m}), \cdots, (v_{t+m}, e_{t+m}) \}$. In Proposition C.3(v), we have shown that,
\[
E \{ ||ζ_{NT} - E(ζ_{NT} | Φ_{t-m})||^2 \} < v_m d_t \tag{B.36}
\]
with $v_m = o(m^{-1})$, and d_t irrelevant with m. This means that $ζ_{NT}$ is a L_2-NED process defined on $α$ mixing sequence $\{(e_t, v_t), t ≥ 1\}$. By Eqs. (B.36), Assumptions 5 and 6, $\{ζ_{NT}, t ≥ 1\}$ satisfies the following conditions with $c_t = \frac{1}{\sqrt{T}}$: (a) $E(ζ_{NT}) = 0$ and $\text{Var} \left(\sum_{t=1}^{T} ζ_{NT}\right) → Σ_{ve,1}$; (b) $\sup_{T} E \{ ||ζ_{NT}/c_t||^{2+δ} \} < ∞$; (c) $ζ_{NT}$ is of size -1 on $\{(e_t, e_t), t ≥ 1\}$, which is $α$-mixing of size $-φ$ such that $φ > \frac{2+δ}{δ}$; and (d) $\sup_{T} TC^2_T < ∞$. Thus by CLT for NED processes, such as Corollary 24.7 in Davidson (1994), we have
\[
\sum_{t=1}^{T} ζ_t \xrightarrow{D} N(0_d, Σ_{ve}), \tag{B.37}
\]

Proof of Theorem 4.1
Denote $\hat{L}_{NT}(r) = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{\lceil r\rceil} \left(\hat{Ω}_{x,i,NT}^{-1} - \hat{Ω}_{x,T_i}^{-1}\right) \hat{X}_{it} \hat{e}_{it}$. If we can prove
\[
\begin{pmatrix}
\frac{\sqrt{NT}}{\sqrt{N}T} \hat{L}_{NT}(r) \\
\frac{\sqrt{NT}}{\sqrt{N}T} \hat{L}_{NT}(r) (β_{mg} - \hat{β}_p)
\end{pmatrix}
\xrightarrow{D}
\begin{pmatrix}
Σ_{ve,2}^{1/2} W_d(r) - rΣ_{ve,2}^{1/2} W_d(1) \\
Σ_{ve,2}^{1/2} W_d(1)
\end{pmatrix}. \tag{B.38}
\]

Then, by using the definition of Riemann integral and continuous mapping theorem we have
\[
γ_{NT} \hat{H}_{NT} = \frac{1}{T} \sum_{m=1}^{T} \sqrt{γ_{NT}} \hat{L}_{NT} \left(\frac{m}{T}\right) \sqrt{γ_{NT}} \hat{L}_{NT}^\top \left(\frac{m}{T}\right) \xrightarrow{D} Σ_{ve,2}^{1/2} Φ_d Σ_{ve,2}^{1/2} \hat{L}. \tag{B.39}
\]
By Eqs. (B.38) and Eqs. (B.39), and continuous mapping theorem again, it is direct to see that Theorem 4.1 holds. Thus we only need to show Eqs. (B.38).

To prove Eqs. (B.38), denote that $L_{NT}(r) = \frac{\sqrt{NT}}{\sqrt{N}} \sum_{i=1}^{N} \sum_{t=1}^{\lceil r\rceil} \left(\hat{Ω}_{v,i} + Ω_{v,i} Δ_{T_i,1}\right) ξ_{it}$, note that by Lemma 4.1 we have
\[
\sup_{0 < r \leq 1} \| \sqrt{γ_{NT}} NT (β_p - β_{mg}) - Ω_e^{-1} L_{NT}(1) \| = o_P(1). \tag{B.40}
\]
And in Proposition C.4 we have

$$\sup_{0 \leq r \leq 1} \left\| \sqrt{\frac{N}{T}} L_{NT}(r) - \Omega_v^{-1} (L_{NT}(r) - r L_{NT}(1)) \right\| = o_P(1).$$ \hspace{1cm} (B.41)

Then we need only to show

$$\left(\begin{array}{c} \Omega_v^{-1} (L_{NT}(r) - r L_{NT}(1)) \\ \Omega_v^{-1} L_{NT}(1) \end{array} \right) \Rightarrow \left(\begin{array}{c} \Sigma_{ve,2}^{1/2} W_d(r) - r \Sigma_{ve,2}^{1/2} W_d(1) \\ \Sigma_{ve,2}^{1/2} W_d(1) \end{array} \right),$$ \hspace{1cm} (B.42)

which requires to prove $L_{NT}(r) \Rightarrow L(r)$, where $L(r) = \Sigma_{ve,2}^{1/2} W_d(r)$ and $\Sigma_{ve,2} = \Omega_v^{-1} \Sigma_{ve,1} \Omega_v^{-1}$.

To prove the functional central limit theorem for the $d \times 1$ vector of stochastic processes $L_{NT}(r)$ defined on $D[0,1]^d$, by Theorem 29.16 in Davidson (1994), we need to show that for any fixed λ with $\lambda^\top \lambda = 1$, we have

$$\lambda^\top L_{NT}(r) \Rightarrow \lambda^\top L(r)$$ \hspace{1cm} (B.43)

and

$$P \left(L(r) \in [0,1]^d \right) = 1.$$ \hspace{1cm} (B.44)

Condition Eqs. (B.44) is satisfied directly by the definition of $L(r)$. To verify the weak convergence for the univariate function $\lambda^\top L_{NT}(r)$, by Theorem 13.5 in Billingsley (1968)), we go through two steps to prove the finite dimensional distribution results: for arbitrary integer k and distinct r_1, \cdots, r_k,

$$(\lambda^\top L_{NT}(r_1), \cdots, \lambda^\top L_{NT}(r_k)) \overset{D}{\Rightarrow} (\lambda^\top L(r_1), \cdots, \lambda^\top L(r_k))$$ \hspace{1cm} (B.45)

and the tightness condition: for any $0 \leq r_1 \leq r_2 \leq r_3 \leq 1$, and $\beta > 0$, $\alpha > \frac{1}{2}$, $C > 0$,

$$E \left((\lambda^\top L_{NT}(r_2) - \lambda^\top L_{NT}(r_1))^2 \lambda^\top L_{NT}(r_3) - \lambda^\top L_{NT}(r_2) \right)^{2\beta} \leq C| r_3 - r_1 |^{2\alpha}.$$ \hspace{1cm} (B.46)

Step(i): Finite dimensional distribution. To show Eqs. (B.45), by Cramér-Wold device, it suffices to show for any $c = (c_1, \cdots, c_k)^\top$,

$$\sum_{l=1}^{k} c_l \lambda^\top L_{NT}(r_l) \overset{D}{\Rightarrow} \sum_{l=1}^{k} c_l \lambda^\top L(r_l).$$ \hspace{1cm} (B.47)

On the one hand, by Assumption 5(ii) and (iii), for any $0 < r_1 \leq r_2 \leq 1$, we have

$$E \left(L_{NT}(r_1) L_{NT}^\top(r_1) \right) \rightarrow \Sigma_{ve,1},$$ \hspace{1cm} (B.48)

$$E \left(L_{NT}(r_1) L_{NT}(r_2 - r_1) \right) \rightarrow 0.$$ \hspace{1cm} (B.49)

Thus by standard calculation, we have

$$\text{Var} \left(\sum_{l=1}^{k} c_l \lambda^\top L_{NT}(r_l) \right) \rightarrow \text{Var} \left(\sum_{l=1}^{k} c_l \lambda^\top L(r_l) \right).$$ \hspace{1cm} (B.50)

On the other hand, recall that in Assumption 5, $\zeta_{N,t} = \frac{\sqrt{N}}{\sqrt{T}} \sum_{i=1}^{N} \left(\tilde{\Omega}_{v,i} + \Omega_{v,i} \Delta_{T_{i,1}} \right) \xi_{it}$. Thus

$$\sum_{l=1}^{k} c_l \lambda^\top L_{NT}(r_l) = \frac{\sqrt{N}}{\sqrt{T}} \sum_{l=1}^{k} c_l \sum_{i=1}^{N} \sum_{t=1}^{[r_l T]} \lambda^\top \left(\tilde{\Omega}_{v,i} + \Omega_{v,i} \Delta_{T_{i,1}} \right) \xi_{it}$$
\[c_{T,t} = \frac{1}{\sqrt{T}} \sum_{l=1}^{k} (c_l(t \leq [r_lT])). \]

Note that for any given \(0 \leq r_1, \ldots, r_k \leq 1 \), \(\{c_{T,t}, t \geq 1\} \) will be a deterministic sequence of vectors with \(T \left(\sup_{1 \leq t \leq T} ||c_{T,t}||^2 \right) < \infty \). Thus, \(\{\hat{c}_{T,t} \lambda^\top \zeta_{N,t}, t \geq 1\} \) is also a \(L_2 \)-NED process satisfying all the requirements (a) to (d) in the proof of Lemma 4.1, which suffices to prove Eqs. (B.47).

Step(ii) Tightness condition. For the tightness condition in Eqs. (B.46), recall that \(\zeta_{N,t} = \sqrt{\frac{N}{NT}} \sum_{i=1}^{N} \left(\tilde{\Omega}_{v,i} + \Omega_{v,i} \Delta T_{i,1} \right) \xi_{it} \), by Assumption 5, for any \(0 \leq r_1 \leq r_2 \leq 1 \), we have

\[
E \left\| L_{NT}(r_2) - L_{NT}(r_1) \right\|^{2+\delta} \leq E \left\| \sum_{i=[r_1T]+1}^{[r_2T]} \zeta_{N,t} \right\|^{2+\delta}
\]

\[
\leq C_1 \left(\frac{|r_2T| - |r_1T|}{T} \right)^{\frac{2+\delta}{2}} \leq C (r_2 - r_1)^{\frac{2+\delta}{2}}.
\]

(B.52)

Then by Cauchy-Schwarz inequality and \(0 \leq r_1 \leq r_2 \leq r_3 \leq 1 \)

\[
E \left(\left(\lambda^\top L_{NT}(r_2) - \lambda^\top L_{NT}(r_1) \right)^{2+\delta} \right)^{1/2} \left(\left(\lambda^\top L_{NT}(r_3) - \lambda^\top L_{NT}(r_2) \right)^{2+\delta} \right)^{1/2}
\]

\[
\leq C(r_2 - r_1)^{\frac{2+\delta}{2}} (r_3 - r_2)^{\frac{2+\delta}{2}} \leq C |r_3 - r_1|^{\frac{2+\delta}{2}},
\]

(B.53)

which verifies the tightness condition in Eqs. (B.46) with \(\alpha = \beta = 1 + \delta^*/4 \).

Proof of Theorem 4.2. By similar calculations in the proof of Lemma 4.1, we have

\[
\hat{\beta}_p - \hat{\beta}_{mg} = \left(\hat{\beta}_p - \beta_0 \right) - \left(\hat{\beta}_{mg} - \beta_0 \right)
\]

\[
= \frac{1}{NT} \sum_{i=1}^{N} \left(\hat{\Omega}_{x,NT}^{-1} - \hat{\Omega}_{x,T_i}^{-1} \right) \hat{X}_i^\top (\hat{e}_i + \hat{f}_i) + \delta_{NT} \left(\hat{\Omega}_{x,NT}^{-1} \frac{1}{N} \sum_{i=1}^{N} \hat{\Omega}_{x,T_i} \epsilon_i - \tau \right)
\]

\[
\equiv \theta_{NT,1} + \theta_{NT,2}.
\]

(B.54)

Note that \(\hat{\Omega}_{x,NT} = \frac{1}{N} \sum_{i=1}^{N} \hat{\Omega}_{x,T_i} \), thus \(\hat{\tau} = \hat{\Omega}_{x,NT}^{-1} \frac{1}{N} \sum_{i=1}^{N} \hat{\Omega}_{x,T_i} \tau \), recall \(\hat{e}_i = \epsilon_i - \hat{\tau} \), we have

\[
\theta_{NT,2} = \delta_{NT} \hat{\Omega}_{x,NT}^{-1} \frac{1}{N} \sum_{i=1}^{N} \hat{\Omega}_{x,T_i} \hat{e}_i
\]

\[
= \delta_{NT} \hat{\Omega}_{x,NT}^{-1} \frac{1}{N} \sum_{i=1}^{N} \Omega_{x,T_i} \epsilon_i + \delta_{NT} \Omega_{x,NT}^{-1} \frac{1}{N} \sum_{i=1}^{N} \Omega_{v,i} \Delta T_i \hat{e}_i
\]

\[
\equiv \theta_{NT,2,1} + \theta_{NT,2,2}.
\]

(B.55)

By Assumption 7(ii) and (iii) and results in Proposition C.3(i) below, we have

\[
\theta_{NT,2,2} = O_P \left(\sqrt{\frac{1}{\gamma_{NT} NT}} \right).
\]

(B.56)
Along with Eqs. (B.56), under Assumption 7(iii) in H_1, and by $Q_{NT} = o_P(1)$ in Proposition C.3(i), we have

$$\left(\delta_{NT}\right)^{-1} \theta_{NT} \rightarrow \Omega^{-1}_{\psi}.$$ \hspace{1cm} (B.57)

Next, the statistics can be rewritten as

$$\hat{J}_{NT} = NT (\theta_{NT,1} + \theta_{NT,2})^\top \bar{H}_{NT}^{-1} (\theta_{NT,1} + \theta_{NT,2})$$
$$= NT (\theta_{NT,1}^\top \bar{H}_{NT}^{-1} \theta_{NT,1} + NT \theta_{NT,2}^\top \bar{H}_{NT}^{-1} \theta_{NT,1} + NT \theta_{NT,1}^\top \bar{H}_{NT}^{-1} \theta_{NT,2} + NT \theta_{NT,2}^\top \bar{H}_{NT}^{-1} \theta_{NT,2})$$
$$\equiv A_{NT,12} + \cdots + A_{NT,15}, \hspace{1cm} (B.58)$$

where $\theta_{NT,1}$ is the difference between the two estimators under H_0. Then by the proof of Theorem 4.1,

$$A_{NT,12} \xrightarrow{D} W_d^\top (1) \Phi_d W_d^\top (1). \hspace{1cm} (B.59)$$

By Lemma 4.1, Eqs. (B.39) and Eqs. (B.57), we have

$$\left(\delta_{NT} \sqrt{\gamma_{NT} NT}\right)^{-1} A_{NT,13} \xrightarrow{D} \psi^\top \Omega^{-1}_v \Phi_d W_d^\top (1). \hspace{1cm} (B.60)$$

Similarly, we have

$$\left(\delta_{NT} \sqrt{\gamma_{NT} NT}\right)^{-1} A_{NT,14} \xrightarrow{D} W_d^\top (1) \Phi_d \Omega^{-1}_v \psi, \hspace{1cm} (B.61)$$

$$\left(\delta_{NT}^2 \gamma_{NT} NT\right)^{-1} A_{NT,15} \xrightarrow{D} \psi^\top \Omega^{-1}_v \Phi_d \Omega^{-1}_v \psi. \hspace{1cm} (B.62)$$

Since $\delta_{NT} \sqrt{\gamma_{NT} NT} \rightarrow \infty$ in Assumption 7(i), we have

$$\left(\delta_{NT}^2 \gamma_{NT} NT\right)^{-1} \hat{J}_{NT} = \left(\delta_{NT} \sqrt{\gamma_{NT} NT}\right)^{-1} A_{NT,15} + \mathcal{O_P} \left(\left(\delta_{NT} \sqrt{\gamma_{NT} NT}\right)^{-\frac{1}{2}}\right), \hspace{1cm} (B.63)$$

which completes the proof of Theorem 4.2.

Appendix C Propositions

In this part, we give some necessary propositions that have been used in the proofs of the main theorems. The proofs of these propositions are provided in Appendix D in the supplementary material.

Proposition C.1. Under Assumptions 1 to 4, we have

(i) $\sum_{i=1}^N P (\|Q_T\| > \mathcal{M}) = O(1)$ for constant \mathcal{M} large enough;

(ii) $E \left| \sum_{i=1}^N \sum_{t=1}^T \bar{G}_{v,i} c_i^r \right|^2 \leq \frac{C N^{1/4}}{N^{1/4} T^{1/4 r}}$, and $E \left| \sum_{i=1}^N \sum_{t=1}^T w_i s_i \right|^2 \leq \frac{C N^{1/4}}{N^{1/4} T^{1/4 r}}$;

(iii) $E \left| \sum_{i=1}^N \sum_{t=1}^T \bar{G}_{v,i} (I_d + \bar{Q}_T) \Delta T_i \tilde{\xi}_i^r \right| \leq \frac{C N^{1/2}}{T^{1/2} \tau^{1/2}}$, and

$E \left| \sum_{i=1}^N \sum_{t=1}^T w_i (I_d + \bar{Q}_T) \Delta T_i \tilde{\xi}_i^r \right| \leq \frac{C N^{1/2}}{T^{1/2} \tau^{1/2}}$.

Proposition C.2. Under Assumptions 1 to 4, we have

(i) $\sqrt{\frac{1}{N T h}} \sum_{i=1}^N \left(s_i(\tau) X_i - X_i^T \right) (\beta_i - \hat{\beta}_i) = o_P \left(\frac{1}{\sqrt{N T h}} \right)$;

(ii) $\sqrt{\frac{T h}{N}} \sum_{i=1}^N s_i(\tau) e_i \xrightarrow{D} N(0, \sigma^2)$.
Proposition C.3. Under Assumptions 1 to 6, we have

(i) \(\Delta_{NT} = o \left(\frac{1}{\sqrt{NT}} \right) \), \(Q_{NT} = o_P(1) \), and \(\frac{1}{N} \sum_{i=1}^{N} \Omega_{v,i} \Delta T_i \bar{r}_i = o_P \left(\frac{1}{\sqrt{NT}} \right) \);

(ii) \(E \left| \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \Omega_{v,i} \Delta T_i \xi_{it} \right| \leq \frac{C}{\sqrt{NT} \hat{h}^2} + \frac{C_2}{\sqrt{T h^2}} \);

(iii) \(E \left| \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \Omega_{v,i} \Delta T_i \xi_{c it} \right| \leq \frac{C_1}{\sqrt{NT} \hat{h}^2} + \frac{C_2}{\sqrt{T h^2}} \);

(iv) \(E \left| \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \Omega_{v,i} \Delta T_i (I_d + \tilde{Q}_T) \Delta T_i \xi_{id} \right| \leq \frac{C}{\sqrt{T h^2}} \);

(v) \(E \left| \zeta_{N,t} - E \left(\zeta_{N,t} | \mathcal{F}_{t-m} \right) \right|^2 \leq v_m d_t \) for some \(v_m = O(\log m) \) with \(\phi > 1 \) and \(d_t \) irrelevant with \(m \).

Proposition C.4. Under Assumptions 1 to 6, \(\sup_{0 \leq r \leq 1} \left| \sqrt{NT} \hat{L}_{NT}(r) - L_{NT}(r) - r L_{NT}(1) \right| = o_P(1) \).

References

