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Abstract

A geometric interpretation is developed for so-called reconciliation method-

ologies used to forecast time series that adhere to known linear constraints. In

particular, a general framework is established nesting many existing popular

reconciliation methods within the class of projections. This interpretation fa-

cilitates the derivation of novel results that explain why and how reconciliation

via projection is guaranteed to improve forecast accuracy with respect to a spe-

cific class of loss functions. The result is also demonstrated empirically. The

geometric interpretation is further used to provide a new proof that forecast rec-

onciliation results in unbiased forecasts provided the initial base forecasts are

also unbiased. Approaches for dealing with biased base forecasts are proposed

and explored in an extensive empirical study on Australian tourism flows. Over-

all, the method of bias-correcting before carrying out reconciliation is shown to

outperform alternatives that only bias-correct or only reconcile forecasts.
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1 Introduction

The past decade has seen rapid development in methodologies for forecasting time series

that follow a hierarchical aggregation structure. Of particular prominence have been fore-

cast reconciliation methods involving two steps: first separate forecasts are produced for

all series, then these are adjusted ex post to ensure coherence with aggregation constraints.

Forecast reconciliation has mostly been formulated using a regression model, see Hyndman

et al. (2011) and Wickramasuriya et al. (2019) for examples. This setup can be counter-

intuitive since a vector comprised of forecasts from different time series models is also

assumed to be the dependent variable in a regression model. In this paper, we eschew a

regression interpretation in favour of a novel, geometric understanding of forecast reconcil-

iation. This allows us to develop novel proofs and a clearer understanding of the interplay

between forecast bias and reconciliation methods.

Multivariate time series following an aggregation structure arise in many sectors such

as retail, energy, insurance, health and welfare and economics (see for example Karmy &

Maldonado 2019, Ben Taieb et al. 2017, Nystrup et al. 2019, Almeida et al. 2016, Jeon

et al. 2019, Mahkya et al. 2017, Li & Tang 2019, Shang & Hyndman 2017, Athanasopoulos

et al. 2019). Forecasts of these series should adhere to aggregation constraints to ensure

aligned decision making. Earlier studies achieved this by only forecasting a single level of

the hierarchy and then either aggregating in a bottom-up fashion (Dunn et al. 1976) or

disaggregating in a top-down fashion (Gross & Sohl 1990, Athanasopoulos et al. 2009). For

reviews of these approaches, including a discussion of their advantages and disadvantages,

see Schwarzkopf et al. (1988), Kahn (1998), Lapide (1998), Fliedner (2001).

In contrast to these methods, Hyndman et al. (2011) proposed forecasting all series in

the hierarchy, referring to these as base forecasts. Since base forecasts were produced inde-

pendently they were not guaranteed to adhere to aggregation constraints and could thus be

improved via further adjustment. A framework was proposed whereby the aggregation con-

straints were expressed in a regression model for the base forecasts. The predicted values

from this model were guaranteed to adhere to the linear constraints by construction and

could thus be used as a new set of forecasts. This approach and later modifications have
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subsequently been shown to outperform bottom-up and top-down approaches in a variety

of empirical settings (see for example Athanasopoulos et al. 2009, 2017, Wickramasuriya

et al. 2019, among others). Some theoretical insight into the performance of forecast recon-

ciliation methods has been provided by Van Erven & Cugliari (2015) and Wickramasuriya

et al. (2019). Both papers provide a proof that reconciliation is guaranteed to improve

base forecasts. The latter paper also proposes a particular version of reconciliation known

as the Minimum Trace (MinT) method. This is optimal in the sense of minimising the

trace of the reconciled forecast error covariance matrix under the assumption that the base

forecasts are unbiased.

Our main contribution is to propose a geometric interpretation of the entire hierarchical

forecasting problem. In this setting, we show that reconciled forecasts have a number of

attractive properties when they are obtained via projections. We believe that this is clearer

and more intuitive than explanations based on regression modelling. In addition to casting

existing results in a new light, the geometric interpretation also allows us to derive three

new important results.

First, our approach makes it clear that the defining characteristic of so-called hierarchi-

cal time series is not aggregation but linear constraints. As a result forecast reconciliation

can be applied in contexts where there are no clear candidates of bottom level series, an

insight that is not apparent when the problem is viewed through the lens of regression

modelling. Second, we provide a new proof that reconciled forecasts dominate unrecon-

ciled forecasts which makes explicit the link between a reconciliation method and a loss

function. We believe that this link is lacking in previous work that attempts to estab-

lish similar results, in particular Van Erven & Cugliari (2015) and Wickramasuriya et al.

(2019). Futhermore, unlike Van Erven & Cugliari (2015) and Wickramasuriya et al. (2019),

our proof does not require an assumption about convexity that may not hold in general.

Third, we prove that reconciliation using certain projection matrices guarantees unbiased

reconciled forecasts provided the base forecasts are also unbiased. A natural question that

arises is what to do in the case of biased reconciled forecasts. Rather than addressing this

issue by considering matrices that are not projections, we propose to bias-correct before
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reconciliation. This is evaluated in an extensive empirical study where we find that even

when bias correction fails, the extent of the problem is mitigated by reconciling forecasts.

The remainder of this paper is structured as follows. Section 2 deals with the concept of

coherence and defines hierarchical time series in a way that does not depend on any notion

of bottom-level series. Section 3 defines forecast reconciliation in terms of projections and

includes a proof that reconciled forecasts dominate base forecasts with respect to a specific

loss function. In Section 4 we prove the unbiasedness preserving property of reconciliation

via certain projection matrices and propose methods for bias correction. In Section 5 we

conduct an extensive empirical application to domestic tourism flow in Australia with two

objectives; first to demonstrate the theorems discussed in Section 3, second to evaluate

the methods for bias correction discussed in Section 4. Section 6 concludes with some

discussion and thoughts on the future research directions forf forecast reconciliation.

2 Coherent forecasts

2.1 Notation and preliminaries

We briefly define the concept of a hierarchical time series in a fashion similar to Athana-

sopoulos et al. (2019), Hyndman & Athanasopoulos (2018) and others, before elaborating

on some of the limitations of this understanding. A hierarchical time series is a collection of

n variables indexed by time, where some variables are aggregates of other variables. We let

yt ∈ Rn be a vector comprising observations of all variables in the hierarchy at time t. The

bottom-level series are defined as those m variables that cannot be formed as aggregates of

other variables; we let bt ∈ Rm be a vector comprised of observations of all bottom-level

series at time t. The hierarchical structure of the data implies that the following holds for

all t:

yt = Sbt,

where S is an n×m constant matrix that encodes the aggregation constraints.
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Figure 1: An example of a two level hierarchical structure.

To clarify these concepts, consider the example of the hierarchy in Figure 1. For

this hierarchy, n = 11, yt = [yTot,t, yA,t, yB,t, yC,t, yAA,t, yAB,t, yAC,t, yBA,t, yBB,t, yCA,t, yCB,t]
′,

m = 7, bt = [yAA,t, yAB,t, yAC,t, yBA,t, yBB,t, yCA,t, yCB,t]
′ and

S =



1 1 1 1 1 1 1

1 1 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1

I7


,

where I7 is the 7× 7 identity matrix.

While such a definition is completely serviceable, it obscures the full generality of the

literature on so-called hierarchical time series. In fact, concepts such as coherence and

reconciliation, defined in full below, require the data to have only two important charac-

teristics: the first is that they are multivariate, the second is that they adhere to linear

constraints.

2.2 Coherence

The property that data adhere to some linear constraints is referred to as coherence. We

now provide definitions aimed at providing geometric intuition of hierarchical time series.

Definition 2.1 (Coherent subspace). The m-dimensional linear subspace s ⊂ Rn for which

some linear constraints hold for all y ∈ s is defined as the coherent subspace.
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To further illustrate, Figure 2 depicts the simplest three variable hierarchy where yTot,t =

yA,t + yB,t. The coherent subspace is depicted as a grey 2-dimensional plane within 3-

dimensional space; i.e. m = 2 and n = 3. It is worth noting that the coherent subspace is

spanned by the columns of S; i.e. s = span(S). In Figure 2, these columns are ~s1 = (1, 1, 0)′

and ~s2 = (1, 0, 1)′. However, it is equally important to recognise that the hierarchy could

also have been defined in terms of yTot,t and yA,t rather than the bottom-level series, yA,t and

yB,t. In this case the corresponding ‘S matrix’ would have columns (1, 0, 1)′ and (0, 1,−1)′.

However, while there are multiple ways to define an S matrix, in all cases the columns will

span the same coherent subspace, which is unique.

Definition 2.2 (Hierarchical Time Series). A hierarchical time series is an n-dimensional

multivariate time series such that all observed values y1, . . . ,yT and all future values

yT+1,yT+2, . . . lie in the coherent subspace, i.e., yt ∈ s ∀t.

Despite the common use of the term hierarchical time series, it should be clear from the

definition that the data need not necessarily follow a hierarchy. Also notable by its absence

in the above definition is any reference to aggregation. In some ways, terms such as hier-

archical and aggregation can be misleading since the literature has covered instances that

cannot be depicted in a similar fashion to Figure 1 and/or do not involve aggregation. Ex-

amples include, temporal hierarchies which involve grouped structures (see Athanasopoulos

et al. 2017), overlapping temporal hierarchies (see Jeon et al. 2019), applications for which

the difference rather than the aggregate is of interest (see Li & Tang 2019), or structures

that involve both cross-sectional and temporal dimensions referred to as cross-temporal

structures (see Kourentzes & Athanasopoulos 2019). Finally, although Definition 2.2 makes

reference to time series, this definition can be easily generalised to any vector-valued data

for which some linear constraints are known to hold for all realisations.

Definition 2.3 (Coherent Point Forecasts). Let y̆t+h|t ∈ Rn be a vector of point forecasts

of all series in the hierarchy where the subscript t + h|h implies that the forecast is made

as time t for a period h steps into the future. Then y̆t+h|t is coherent if y̆t+h|t ∈ s.

Without any loss of generality, the above definition could also be applied to prediction

for multivariate data in general, rather than just forecasting of time series.
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Figure 2: Depiction of a three dimensional hierarchy with yTot = yA + yB. The gray

coloured two dimensional plane depicts the coherent subspace s where ~s1 = (1, 1, 0)′ and

~s2 = (1, 0, 1)′ are basis vectors that span s. The red points in s represent realisations or

coherent forecasts

Much of the early literature that dealt with the problem of forecasting hierarchical

time series (see Gross & Sohl 1990, and references therein) produced forecasts at a single

level of the hierarchy in the first stage. Subsequently forecasts for all series were recovered

through aggregation, disaggregation according to historical or forecast proportions, or some

combination of both. Consequently, incoherent forecasts were not a problem in these earlier

papers.

Forecasting a single level of the hierarchy did not, however echo common practice within

many industries. In many organisations different departments or ‘silos’ each produced their
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own forecasts, often with their own information sets and judgemental adjustments. 1 This

approach does have several advantages over only forecasting a single level. First, there is

no loss of information since all levels and series are modelled. Second, modelling higher

level series often identifies features such as trend and seasonality that cannot be detected

in noisy disaggregate data. However, when forecasts are produced independently at all

levels, forecasts are likely to be incoherent.2 This problem of incoherent forecasts cannot

in general be solved by multivariate modelling either. Instead, the solution is to make an

ex post adjustment that ensures coherence, a process known as forecast reconciliation

3 Forecast reconciliation

The concept of forecast reconciliation is predicated on there being an n-vector of forecasts

that are incoherent. We call these base forecasts and denote them as ŷt+h|t. In the sequel,

this subscript will be dropped at times for ease of exposition. In the most general terms,

reconciliation can be defined as follows.

Definition 3.1 (Reconciled forecasts). Let ψ be a mapping, ψ : Rn → s. The point

forecast ỹt+h|t = ψ(ŷt+h|t) “reconciles” a base forecast ŷt+h|t with respect to the mapping

ψ(.)

All reconciliation methods that we are aware of consider a linear mapping for ψ, which

involves pre-multiplying base forecasts by an n × n matrix that has s as its image. One

way to achieve this is with a matrix SG, where G is an m× n matrix (some authors use

P in place of G). This facilitates an interpretation of reconciliation as a two-step process.

In the first step, base forecasts ŷt+h|t are combined to form a new set of bottom-level

forecasts. In the second step, these are mapped to a full vector of coherent forecasts via

pre-multiplication by S.

Although pre-multiplying base forecasts by SG will result in coherent forecasts, a num-

ber of desirable properties arise when SG has the specific structure of a projection ma-

1Chase (2013) discusses silos and the importance of information and data sharing across an organisation.
2There are some special cases of using simple approaches such as näıve, which extrapolate the coherent

nature of the data to the forecasts.
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trix onto s. In general a projection matrix is defined via its idempotence property, i.e.

(SG)2 = SG. However we also rely on another property of projection matrices, namely

that any vector lying in the image of a projection is mapped to itself by that projection

(see Lemma 2.4 in Rao 1974, for a proof). In our context this implies that for any v ∈ s,

SGv = v.

We begin by considering the special case of an orthogonal projection whereby G =

(S′S)−1S′. This is equivalent to so called OLS reconciliation as introduced by Hyndman

et al. (2011). We refrain from any discussion of regression models focusing instead on

geometric interpretations. However the connection between OLS and orthogonal projection

should be clear, in the context of regression modelling predicted values from OLS are

obtained via an orthogonal projection of the response onto the span of the regressors.

3.1 Orthogonal projection

In this section we discuss two sensible properties that can be achieved by reconciliation via

orthogonal projection.

• The first is that reconciliation should adjust the base forecasts as little as possible;

i.e. the base and reconciled forecasts should be ‘close’.

• The second is that reconciliation in some sense should improve forecast accuracy,

or more loosely, that the reconciled forecast should be ‘closer’ to the realised value

targeted by the forecast.

To address the first of these properties we make the concept of closeness more concrete,

by considering the Euclidean distance between the base forecast ŷ and the reconciled

forecast ỹ. A property of an orthogonal projection is that the distance between ŷ and ỹ

is minimal over any possible ỹ ∈ s. In this sense reconciliation via orthogonal projection

leads to the smallest possible adjustments of the base forecasts.

The property that reconciliation should improve forecasts was touched upon in Section

2.3 of Wickramasuriya et al. (2019). The discussion in that paper focuses on the case of

MinT. Here we provide a new explicit proof of that result. We do so first in the case
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of an orthogonal projection where the geometric intuition of the proof is clear and then

generalise the result to reconciliation using any projection matrix in Section 3.2.

Consider the Euclidean distance between the target and a forecast. This is equivalent

to the square root of the sum of squared forecast errors over the entire hierarchy. Let yt+h

be the realisation of the data generating process at time t+h. The following theorem shows

that reconciliation never increases, the sum of squared errors of point forecasts.

Theorem 3.1 (Distance reducing property). If ỹt+h|t = SGŷt+h|t, where G is such that

SG is an orthogonal projection (in the Euclidean sense) onto s and let ‖v‖ be the L2 norm

(in the Euclidean sense) of vector v then:

‖(yt+h − ỹt+h|t)‖ ≤ ‖(yt+h − ŷt+h|t)‖.

Proof. Since yt+h|t, ỹt+h|t ∈ s and since the projection is orthogonal, by Pythagoras’ theo-

rem

‖(yt+h − ŷt+h|t)‖2 = ‖(yt+h − ỹt+h|t)‖2 + ‖(ỹt+h|t − ŷt+h|t)‖2.

Since ‖(ỹt+h|t − ŷt+h|t)‖2 ≥ 0 this implies,

‖(yt+h − ŷt+h|t)‖2 ≥ ‖(yt+h − ỹt+h|t)‖2,

with equality only holding when ỹt+h|t = ŷt+h|t. Taking the square root of both sides proves

the desired result.

The simple geometric intuition behind the proof is demonstrated in Figure 3. In this

schematic, the coherent subspace is depicted as a black arrow, and the base forecast ŷ is

shown as a blue dot. Since ŷ is incoherent, ŷt+h|t /∈ s and in this case the inequality is

strict. Reconciliation is an orthogonal projection from ŷ to the coherent subspace yielding

the reconciled forecast ỹ shown in red. Finally, the target of the forecast y is displayed

as a black point, and although its exact location is unknown to the forecaster, it is known

that it will lie somewhere along the coherent subspace.

Figure 3 clearly shows that ŷ, ỹ and y form a right angled triangle with ỹ at the right-

angled vertex. In this triangle the line between y and ŷ is the hypotenuse and therefore
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ỹ

y

Figure 3: Orthogonal projection of ŷ onto s yielding the reconciled forecast ỹ.

must be longer than the distance between y and ỹ. Therefore reconciliation is guaranteed

to reduce the squared error of the forecast.

Theorem 3.1 is in some ways more powerful than perhaps previously understood. Cru-

cially, the result is not a result that requires taking expectations. This distance reducing

property will hold for any realisation and any forecast and not just on average. Nothing

needs to be assumed about the statistical properties of the data generating process or the

process by which forecasts are made.

However, in other ways, Theorem 3.1 is weaker than perhaps often understood. First,

when improvements in forecast accuracy are discussed in the context of the theorem, this

refers to a very specific measure of forecast accuracy. In particular, this measure is the

square root of the sum of squared forecast errors of all variables in the hierarchy. Conse-

quently, while forecast improvement is guaranteed for the hierarchy overall, reconciliation

can lead to less accurate forecasts for individual series. Second, although orthogonal pro-

jections are guaranteed to improve on base forecasts, they are not necessarily the projection
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that leads to the greatest improvement in forecast accuracy. Therefore, referring to recon-

ciliation via orthogonal projections as ‘optimal’ is somewhat misleading since it does not

have the optimality properties of some oblique projections, in particular MinT. It is to

oblique projections that we now turn our attention.

3.2 Oblique Projections

One justification for using an orthogonal projection is that it leads to improved forecast

accuracy in terms of the square root of the sum of squared errors of all variables in the

hierarchy. A clear shortcoming of this measure of forecast accuracy is that forecast errors

in all series should not necessarily be treated equally. For example, in hierarchies, top-level

series tend to have a much larger scale than bottom-level series. Even when two series are on

a similar scale, series that are more predictable or less variable will tend to be downweighted

by simply aggregating squared errors. An even more sophisticated understanding may

take the correlation between series into account. All of these considerations lead towards

reconciliation of the form ỹ = S(S′W−1S)−1S′W−1ŷ, where W is a symmetric matrix.

Generally, it is assumed that W is invertible, otherwise a pseudo inverse can be used.

It should be noted that S(S′W−1S)−1S′W−1 is an oblique, rather than an orthog-

onal projection matrix in the usual Euclidean geometry. However this matrix can be

considered to be an orthogonal projection for a different geometry defined by the norm

||v||W−1 = v′W−1v, referred to as the generalised Euclidean geometry with respect to

W−1. One way to understand this geometry is that it is the same as Euclidean geome-

try when all vectors are first transformed by pre-multiplying by W−1/2. This leads to a

transformed S matrix S∗ = W−1/2S and transformed ŷ and ỹ vectors ŷ∗ = W−1/2ŷ and

ỹ∗ = W−1/2ỹ. The transformed reconciled forecast results from an orthogonal projection

in the transformed space since

ỹ∗ = W−1/2ỹ

= W−1/2S(S′W−1S)−1S′W−1ŷ

= S∗(S∗
′
S∗)−1S∗

′
ŷ∗.
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Thinking of the problem in terms of a geometry defined by the norm v′W−1v is also

quite instructive when it comes to thinking about the connection between distances and

loss functions. In the generalised Euclidean geometry, the distance between the reconciled

forecast and the realisation is given by (y − ŷ)′W−1(y − ŷ). For diagonal W−1, this is

equivalent to a weighted sum of squared error loss function and when W is a covariance

matrix, this is equivalent to a Mahalanobis distance. Therefore Theorem 3.1 can easily be

generalised as follows.

Theorem 3.2 (General distance reducing property). If ỹt+h|t = SGŷt+h|t, where G is

such that SG is an orthogonal projection (in the generalised Euclidean sense) onto s then:

‖(yt+h − ỹt+h|t)‖W−1 ≤ |(yt+h − ŷt+h|t)‖W−1 .

Proof. The proof is identical to the proof for Theorem 3.1 but relies on the Gener-

alised Pythagorean Theorem (applicable to Generalised Euclidean space) rather than the

Pythagorean Theorem.

The implication of Theorem 3.2 is that if the objective function is some weighted

sum of squared errors, or a Mahalanobis distance, then the projection matrix

S(S′W−1S)−1S′W−1 is guaranteed to improve forecast accuracy over base forecasts, for

an appropriately selected W .

Note here that we rely here on the Generalised Pythagorean Theorem (which involves

an equality). In contrast, Wickramasuriya et al. (2019) follow Van Erven & Cugliari (2015)

in stating their result in terms of the Generalised Pythagorean Inequality. The proof of

Wickramasuriya et al. (2019) requires an assumption about convexity so that the angle

between the base forecast and coherent subspace must be greater than 90 degrees. The

proof we have provided here requires no such assumption, since this may not hold for

an arbitrary W . As such the statement from Wickramasuriya et al. (2019) that “MinT

reconciled forecasts are at least as good as the incoherent forecasts” should be qualified —

this is true only with respect to a loss function that depends on W . If Euclidean distance

(or mean squared error) is used, there will be realisations where the MinT estimator does
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not improve forecast accuracy relative to base forecasts. This will be demonstrated using

a real data set in the empirical study in Section 5.2.

3.3 MinT

While the properties discussed so far hold for any projection matrix, the MinT method

of Wickramasuriya et al. (2019) has an additional optimality property. Wickramasuriya

et al. (2019) show that for unbiased base forecasts, the trace of the forecast error covariance

matrix of reconciled forecasts is minimised by an oblique projection with a particular choice

of W . Their choice is that W should be the forecast error covariance matrix where errors

come from using the base forecasts. Although the base forecast error covariance matrix is

unknown, it can be estimated using in-sample errors.

Figure 4 provides geometrical intuition into the MinT method. Suppose that the orange

points in panel (a) represent in-sample forecast errors. These provide information on the

most likely direction of large deviations from the coherent subspace s. This direction is

denoted by R. Panel (b) shows a target value of y, while the grey points indicate possible

values for the base forecasts (the base forecasts are of course stochastic). One possible value

of the forecast is depicted in blue as ŷ. An oblique projection of the blue point back along

the direction of R, yields a reconciled forecast closer to the target, especially compared

to an orthogonal projection. Panel (c) shows the orthogonal projection of every potential

base forecast onto the coherent subspace. Panel (d) depicts an oblique projection along R

for all the gray points. The oblique projection yields reconciled forecasts tightly packed

near the target y. In this sense, the oblique MinT projection minimises the forecast error

variance of the reconciled forecasts. In contrast to the result in Theorem 3.2, this property

is a statistical property in the sense that MinT is optimal in expectation.
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Figure 4: A schematic represention of orthogonal and oblique reconciliations. The orange

points in (a) represent in-sample errors and R shows the most likely direction of deviations

from the coherent subspace s. Grey points in (b) indicate potential base forecasts while the

blue dot ŷ represents one such realisation. The black dot y denotes the (unknown) target

of the forecast. (c) shows the orthogonal projection of all potential base forecasts onto the

coherent subspace while (d) shows an oblique projection.



4 Bias in forecast reconciliation

Before turning our attention to the issue of bias itself it is important to state a desirable

property that any reconciliation method should have. That is if base forecasts are already

coherent then reconciliation should not change the forecasts. As stated in Section 3, this

property holds only when SG is a projection matrix. As a corollary, reconciling using an

arbitrary G, may in fact change an already coherent forecast.

The property that projections map all vectors in the coherent subspace onto themselves

is also useful in proving the unbiasedness preserving property of reconciliation of Wickra-

masuriya et al. (2019). Before restating this proof using a clear geometric interpretation,

we discuss in a precise fashion what is meant by unbiasedness.

Suppose that the target of a point forecast is µt+h|t := E(yt+h | y1, . . . ,yt) where the

expectation is taken over the predictive density. Our point forecast can be thought of as

an estimate of this quantity. The forecast is random due to uncertainty in the training

sample and it is with respect to this uncertainty that unbiasedness is defined. Specifically,

the point forecast will be unbiased if E1:t(ŷt+h|t) = µt+h|t, where the subscript 1 : t denotes

an expectation taken over the training sample.

Theorem 4.1 (Unbiasedness preserving property). For unbiased ŷt+h|t, the reconciled point

forecast is also an unbiased prediction as long as SG is a projection onto s.

Proof. The expected value of the reconciled forecast is given by

E1:t(ỹt+h|t) = E1:t(SGŷt+h|t) = SGE1:t(ŷt+h|t) = SGµt+h|t.

Since µt+h|t is an expectation taken with respect to the degenerate predictive density it

must lie in s. We have already established that when SG is a projection onto s then it

maps all vectors in s onto themselves. As such SGµt+h|t = µt+h|t when SG is a projection

matrix.

The above result holds when the projection SG has the coherent subspace s as its image

and not for all projection matrices in general. To describe this more explicitly suppose SG

has as its image L which is itself a lower dimensional linear subspace of s, i.e. L ⊂ s. Then
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for
{
µt+h|t : µt+h|t ∈ s,µt+h|t /∈ L

}
, SGµt+h|t 6= µt+h|t. This is depicted in Figure 5 where

µ is projected to a point µ∗ in L. In this case, the expectation of reconciled forecast will

be µ∗ rather than µ and hence biased.

This result has implications in practice. The top-down method (Gross & Sohl 1990)

has

G =
(
p 0(m×n−1)

)
,

where p = (p1, . . . , pm)′ is an m-dimensional vector consisting a set of proportions used to

disaggregate the top-level forecast. In this case it can be verified that SG is idempotent,

i,e. SGSG = SG and therefore SG is a projection matrix. However the image of this

projection is not an m-dimensional subspace but a 1-dimensional subspace. As such, top-

down reconciliation produces biased forecasts even when the base forecasts are unbiased.

Finally, it is often stated that an assumption required to prove the unbiasedness pre-

serving property is that SGS = S or alternatively that GS = I. Both of these conditions

are equivalent to assuming that SG is a projection matrix (see Section A.1 in Appendix

A for a proof). However, problems arise when viewing the preservation of unbiasedness

through the prism of imposing the constraint GS = I. This thinking suggests that a way

to deal with biased forecasts is to select G in an unconstrained manner. However, equipped

with a geometric understanding of the problem, we would advise against this approach.

The constraint GS = I is not just about bias. Dropping the constraint compromises all of

the attractive properties of projections. It also opens the door to reconciliation methods

that change already coherent base forecasts, which suggests an increase in the variability

of the forecasts. This seems particularly perverse when the motivation for using a biased

method in the first place is to reduce variance.

4.1 Bias correction

Our own solution to dealing with biased forecasts is to bias correct before reconciliation.

In many cases the method for bias correction will be context specific. For instance, in our

empirical study in Section 5 we consider a scenario where bias is induced via taking either

a log transformation or a Box-Cox transformation before modelling. In this well-known
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Figure 5: L is a linear subspace of the coherent subspace s. If a projection is onto L instead

of s, then µ ∈ s will be moved to µ∗ ∈ L.

case a number of bias correction methods exist based on Taylor expansions.

Alternatively, a more general purpose approach to bias correction is to simply estimate

the bias by taking the sample mean of yt+h − ŷt+h|t for all t + h in the training sample.

This can then be subtracted from future forecasts. As stated in the discussion of MinT,

in-sample errors are already used to estimate the optimal direction of projection. As such

it may be possible to use the same errors to bias correct. Geometrically, the intuition

is simple. In panel (a) of Figure 4, the orange points are centered around the origin as

would be expected from an unbiased forecast. If forecasts are biased, then errors should

simply be translated until they are centered at the origin. Nonetheless there are also

a number of pitfalls to such an approach. First, for the very construction we consider,

19



where bias is induced by taking a log or Box Cox transformation, bias should be corrected

by a multiplicative rather than an additive factor. Second, if in-sample errors are non-

stationary due to model misspecification or structural breaks, then the proposed method

for bias correction may break down.

5 Empirical study

Using an empirical application to forecast Australian domestic tourism flows, we illustrate

the usefulness of projection-based reconciliation in practice. Previous studies have found

that reconciliation improves point forecast accuracy in domestic tourism flows for Australia

(see for example Athanasopoulos et al. 2009, Hyndman et al. 2011, Wickramasuriya et al.

2019). However, our motivation in this study is twofold. First, we demonstrate the impli-

cations of Theorem 3.1 by comparing reconciled and base forecasts. In contrast to previous

studies, we consider individual periods rather than computing averages over a rolling win-

dow. Second, we demonstrate how the bias correction methods discussed in the previous

section along with the projection-based reconciliation help to improve forecast accuracy.

5.1 Data

We consider “overnight trips” across Australia as a measure of domestic tourism flows.

The data are provided by the National Visitor Survey and are collected through telephone

interviews from an annual sample of 120, 000 Australian residents aged 15 years or more.

We disaggregate tourism flows into 7 states, 27 zones and 75 regions forming a natural

geographical hierarchy that is of interest to tourism operators and policy makers amongst

others. Hence, there are 110 series across the hierarchy with 75 bottom-level series. More

information about the series and the geographical hierarchy is presented in Table 3 in

Appendix B. The data span the period January 1998 to December 2017, which gives a

total of 240 observations per series.

Figure 6 shows time, sub-series and seasonal plots of the aggregate overnight trips. As

is usual with tourism data, these show a strong seasonal pattern with peaks observed every
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January corresponding to the summer vacation season in Australia. There are also some

lower peaks observed in April, July and October corresponding to school term breaks. On

the other hand, the month with the least overnight trips is February indicating that people

travel least for the month following their summer vacation. The time plot also shows a

pronounced upward trend starting from around 2010 to the end of the sample, with flows

being fairly flat from the beginning of the sample and a slight downward trend during

2004–2010.

The top panel of Figure 7 shows time plots for the seven states, hence the first level of

the geographical hierarchy. The panels below show some selected series from the second-

level zones and the bottom-level regions. The plots display the diversity of time series

features, within but also between levels. For example, noticeable at the first level is the

asynchronous seasonal pattern between the Northern Territory and the other states. For

the Northern Territory the high tourist season occurs during June-August with July being

the peak, while the low season is during December-February. This reflects the tropical

climate of the Northern Territory, with Australians mostly visiting the North during its

dry winter-season rather than the wet summer season. Noticeable as we move to the lower

levels is the variation in the signal-to-noise ratio, with the regional bottom-level series

being much noisier compared to the series from levels above. This of course highlights the

importance of modelling series at all levels without any loss of valuable information. We

should note here that we observed an anomalous (extremely high) observation for ‘Adelaide

Hills’ for December 2002. We replaced this observation with the average overnight trips on

December 2001 and December 2003 for the same destination.

5.2 Comparison to Base Forecasts

To demonstrate the implications of Theorem 3.1 we consider the improvement of different

reconciliation methods over base forecasts. For each series the ARIMA model minimising

AICc is chosen using the auto.arima() function in the forecast package. Using these

fitted models, base forecasts are produced for h = 1 to 12-steps ahead for each series in

the hierarchy. This is first carried out with a training sample of 100 observations, i.e., Jan-
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Figure 6: Total domestic overnight trips (in logs) for Australia from January 1998 to

December 2017. The top-panel shows a time plot; the bottom-left panel a sub-series plot

for each month; the bottom-right panel shows a seasonal plot coloured by year.
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Figure 7: Time plot of overnight trips for some selected series from different disaggregate

levels of the hierarchy. All values are presented in log scale. To avoid impact from the zero

values we added a constant 1 to all observations



1998 to Apr-2006. The training window is then rolled forward one observation at a time

until the end of the sample. This generates 140 1-step-ahead, 139 2-steps-ahead through

to 129 12-steps-ahead forecasts available for forecast evaluation.

After obtaining the base forecasts these are reconciled using three different projection

methods: OLS reconciliation, MinT using a shrinkage estimator for W and WLS rec-

onciliation using variance scaling. Squared forecast errors are computed for each series

and aggregated across the entire hierarchy; i.e., we compute the loss function described in

Section 3.1. We then compute the difference in this loss function between base forecasts

and reconciled forecasts, where positive values indicate that reconciled forecasts are more

accurate. We also include bottom-up forecasts in this comparison for completeness.

The boxplots in Figure 8 summarise the distribution of this measure over each rolling

window. We only present the results for h = 1, but the results and conclusions that follow

are almost identical for the other longer forecast horizons. We do not present these here to

save space but they are available upon request.

As the theory predicts, OLS reconciliation always leads to an improvement relative to

base forecasts. The entire boxplot for OLS reconciliation is above zero. This is not the

case for MinT and WLS which for some windows generate forecasts less accurate than

the base forecasts. The boxplots also demonstrate that OLS reconciliation is more stable

than MinT and WLS reconciliation, a result not entirely unsurprising since the latter two

methods require estimation of a W matrix which in practice is not trivial. Nonetheless

when averaging over the entire rolling window the MinT estimator performs best on average,

which is again precisely what the theorem proved in Wickramasuriya et al. (2019) would

suggest. The average MSE values across the entire rolling window of 140 replications are

shown in Table 1.

Table 1: Average MSE(×103) over all 140 rolling window replications for h = 1.

Base OLS MinT WLS Bottom-up

MSE 4.31 4.20 4.16 4.48 5.28
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Figure 8: MSE differences between base forecasts and reconciled forecasts using OLS, MinT

and WLS, and also the bottom-up approach for h = 1. A positive value indicates that the

coherent forecasts are an improvement over the base forecasts.

5.3 Transformations and bias adjustment

We first transform each series in the hierarchy using two types of transformations. Namely,

we perform a log-transformation and also the more general Box-Cox transformation. A

Box-Cox transformation is defined as,

wt =

log(yt) if λ = 0;

yλt −1
λ

otherwise.

We first set λ = 0 and hence consider only a log transformation. For the second more

general Box-Cox transformation we select λ using the “Guerrero” method (Guerrero 1993)

implemented in the BoxCox.lambda() function in the forecast package in R (Hyndman

et al. 2019). In order to avoid extreme and volatile transformations we restrict λ ∈ (−0.5, 2).

As zero observations exist in some of the bottom-level series, before transforming we add

a constant (more specifically 1) to each series. This overcomes the challenge of undefined
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transformed values for zero observations when we specifically implement the log trans-

formation or when λ is selected to be zero by the “Guerrero” method. The constant is

subtracted from the final forecasts.

After transformation we fit univariate ARIMA models to each transformed series. The

auto.arima() function in the forecast package is used to choose the best model that

minimises the AICc. Using the fitted models, forecasts are produced for h = 1 to 12-steps

ahead for each series in the hierarchy. The same rolling window described in Section 5.2 is

used here as well.

The forecasts are then back-transformed by simply reversing the Box-Cox transforma-

tion using,

ŷt+h|t =

exp(ŵt+h|t) if λ = 0,

(λŵt+h|t + 1)1/λ otherwise.
(1)

These back-transformed forecasts are potentially biased as they are not the mean of the

forecast distribution but the median (assuming that the distribution of the transformed

space is symmetric). Hence, the reconciled forecasts that follow from these forecasts will

also be biased. We refer to these as “Biased” base forecasts in the results that follow.

This is the exact scenario we want to demonstrate in this study and we next move to

our proposed solution of bias correcting the base forecasts before reconciling for which we

explore two scenarios.

Using a Taylor series expansion (Guerrero 1993), the back-transformed mean of the

forecast distribution for a Box-Cox transformation is given by

ŷt+h|t =

exp(ŵt+h|t)
[
1 +

σ2
h

2

]
if λ = 0,

(λŵt+h|t + 1)1/λ
[
1 +

σ2
h(1−λ)

2(λŵt+h|t+1)2

]
if λ 6= 0,

(2)

where ŵt+h|t is the h-step-ahead forecast from the Box-Cox transformed series and σ2
h is

the variance of ŵt+h|t. Using the mean of the forecast distribution returns bias-adjusted

base forecasts compared to the simple back-transformation of Eq. (1). We refer to this as

“Method-1” in the results that follow. The second scenario of bias adjustment we explore is

using the in-sample forecast error mean of the biased forecasts to adjust the out-of-sample

forecasts. We refer to this as “Method-2” in the results that follow.
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Using the three sets of base forecasts from each of the two transformations, we generate

coherent forecasts implementing OLS, MinT and WLS reconciliation projections, and also

the bottom-up approach and compare the results for when the base forecasts are biased

and bias-adjusted, i.e., unbiased. Table 2 presents the results over the 140 rolling window

replications for 1-step-ahead forecasts. As was the case with Section 5.2, the conclusions

that follow extend almost identically to longer forecast horizons. We do not present these

here to save space but they are available upon request.

Recall that reconciliation approaches via projections preserve unbiasedness in the recon-

ciled forecasts iff the base forecasts are unbiased. Hence, the two columns labelled “Biased”

contain results for biased base but also reconciled forecasts. Using Method-1 for first bias

adjusting the base forecasts and then reconciling, results in forecast improvements for all

methods for both the log and the Box-Cox transformation induced bias. In this case MinT

returns the lowest MSE across all forecasts. Notice that the “Box-Cox biased” base fore-

casts carry a higher bias compared to the “log biased” base forecasts. Even for these MinT

Table 2: Average MSE(×103) of 1-step-ahead point forecasts from log and Box-Cox trans-

formed series. Biased denotes forecasts from simply reversing the transformation via

Eq. (1). Unbiased(Method-1) performs bias adjustment via a Taylor series expansion as

shown in Eq. (2) whereas Unbiased(Method-2) bias adjusts by subtracting the in-sample

forecast error mean.

Log Transformation Box-Cox Transformation

Method Biased Unbiased Unbiased Biased Unbiased Unbiased

(Method-1) (Method-2) (Method-1) (Method-2)

Base 4.47 4.43 4.51 4.59 4.52 4.78

OLS 4.34 4.31 4.36 4.46 4.40 4.63

MinT 4.32 4.16 4.61 4.29 4.17 4.54

WLS 4.82 4.38 5.43 4.77 4.42 5.23

Bottom-up 6.36 5.26 8.06 6.21 5.31 7.46
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reconciliation of bias adjusted base forecasts generates very accurate forecasts, almost as

accurate as the forecasts that come from the less biased log transformation.

In contrast to the results from using Method-1 for bias adjusting before reconciliation,

using Method-2 has an adverse effect on the forecast accuracy of the reconciled forecasts.

In this case the reconciled unbiased forecasts are less accurate than the biased reconciled

forecasts. This reflects the fact and sends the warning that implementing inappropriate

bias adjustment, in this case using an additive rather than a multiplicative factor, will

hinder forecast accuracy and extra care must be taken in this bias adjustment procedure.

6 Conclusions

Defining concepts such as coherence and reconciliation in geometric terms provides new

insights into hierarchical forecasting methods. We have also provided evidence that bias

correction before reconciliation improves forecast accuracy compared to approaches that

do not bias correct and/or do not use reconciliation. Our intention in proposing a geomet-

ric interpretation is also to provoke research into new areas. We now discuss three such

possibilities.

First, it should be possible to extend the concept of coherence to non-linear constraints.

In these cases the coherent space may need to be defined by a manifold. Although much

more challenging, it is still possible to define reconciled forecasts in terms of projections

onto a manifold. Second, since we have established that the concept of bottom-level se-

ries is not crucial in forecast reconciliation, an open question is whether it may be better

to construct base forecasts of linear combinations of the time series rather than the time

series themselves. Finally, the geometric interpretations of hierarchical forecast reconcili-

ation facilitates an extension into a probabilistic framework. The latter two are issues we

investigate in separate papers.
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A Appendix

A.1 Proof SGS = S implies SG is a projection

Here we establish that if SG is a projection onto the linear subspace spanned by S then

SGS = S. We also prove that the converse holds, namely that if the condition SGS = S

holds then SG must be a projection onto the linear subspace spanned by S.

To establish the first statement, let sj be the jth column of S. Since by definition, sj

lies in s, it must hold that SGsj = sj. Stacking these vectors horizontally

SGS =
(
SGs1, SGs2, · · · SGsm

)
=
(
s1, s2, · · · sm

)
= S.

To establish the converse it suffices to postmultiply the condition SGS = S by G.

This yields SGSG = SG, which in turn implies idempotence since (SG)2 = SG.
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B Australian Tourism Data

Table 3: Geographical hierarchy of Australian tourism flow

Level 0 - Total Regions cont. Regions cont.

1 Tot Australia 37 AAB Central Coast 76 CBD Mackay

Level 1 - States 38 ABA Hunter 77 CCA Whitsundays

2 A NSW 39 ABB North Coast NSW 78 CCB Northern

3 B Victoria 40 ACA South Coast 79 CCC Tropical North Queensland

4 C Queensland 41 ADA Snowy Mountains 80 CDA Darling Downs

5 D South Australia 42 ADB Capital Country 81 CDB Outback

6 E Western Australia 43 ADC The Murray 82 DAA Adelaide

7 F Tasmania 44 ADD Riverina 83 DAB Barossa

8 G Northern Territory 45 AEA Central NSW 84 DAC Adelaide Hills

Level 2 - Zones 46 AEB New England North West 85 DBA Limestone Coast

9 AA Metro NSW 47 AEC Outback NSW 86 DBB Fleurieu Peninsula

10 AB North Coast NSW 48 AED Blue Mountains 87 DBC Kangaroo Island

11 AC South Coast NSW 49 AFA Canberra 88 DCA Murraylands

12 AD South NSW 50 BAA Melbourne 89 DCB Riverland

13 AE North NSW 51 BAB Peninsula 90 DCC Clare Valley

14 AC ACT 52 BAC Geelong 91 DCD Flinders Range and Outback

15 BA Metro VIC 53 BBA Western 92 DDA Eyre Peninsula

16 BB West Coast VIC 54 BCA Lakes 93 DDB Yorke Peninsula

17 BC East Coast VIC 55 BCB Grippsland 94 EAA Australia’s Coral Coast

18 BC North East VIC 56 BCD Phillip Island 95 EAB Experience Perth

19 BD North West VIC 57 BDA Central Murray 96 EAC Australia’s South West

20 CA Metro QLD 58 BDB Goulburn 97 EBA Australia’s North West

21 CB Central Coast QLD 59 BDC High Country 98 ECA Australia’s Golden Outback

22 CC North Coast QLD 60 BDD Melbourne East 99 FAA Hobert and South

23 CD Inland QLD 61 BDE Upper Yarra 100 FBA East Coast

24 DA Metro SA 62 BDF Murray East 101 FBB Launceston, Tamar & North

25 DB South Coast SA 63 BEA Wimmera+Mallee 102 FCA North West

26 DC Inland SA 64 BEB Western Grampians 103 FCB Wilderness West

27 DD West Coast SA 65 BEC Bendigo Loddon 104 GAA Darwin

28 EA West Coast WA 66 BED Macedon 105 GAB Kakadu Arnhem

29 EB North WA 67 BEE Spa Country 106 GAC Katherine Daly

30 EC South WA 68 BEF Ballarat 107 GBA Barkly

31 FA South TAS 69 BEG Central Highlands 108 GBB Lasseter

32 FB North East TAS 70 CAA Gold Coast 109 GBC Alice Springs

33 FC North West TAS 71 CAB Brisbane 110 GBD MacDonnell

34 GA North Coast NT 72 CAC Sunshine Coast

35 GB Central NT 73 CBA Central Queensland

Level 2 - Regions 74 CBB Bundaberg

36 AAA Sydney 75 CBC Fraser Coast
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