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Abstract: This paper aims to investigate a Bayesian sampling approach to parameter estimation

in the GARCH model with an unknown conditional error density, which we approximate by a

mixture of Gaussian densities centered at individual errors and scaled by a common standard

deviation. This mixture density has the form of a kernel density estimator of the errors with

its bandwidth being the standard deviation. This study is motivated by the lack of robustness

in GARCH models with a parametric assumption for the error density when used for error–

density based inference such as value–at–risk (VaR) estimation. A contribution of the paper is

to construct the likelihood and posterior of the model and bandwidth parameters under the

kernel–form error density, and to derive the one–step–ahead posterior predictive density of asset

returns. We also investigate the use and benefit of localized bandwidths in the kernel–form error

density. A Monte Carlo simulation study reveals that the robustness of the kernel–form error

density compensates for the loss of accuracy when using this density. Applying this GARCH

model to daily return series of 42 assets in stock, commodity and currency markets, we find that

this GARCH model is favored against the GARCH model with a skewed Student t error density

for all stock indices, two out of 11 currencies and nearly half of the commodities. This provides

an empirical justification for the value of the proposed GARCH model.
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1 Introduction

The autoregressive conditional heteroscedasticity (ARCH) model of Engle (1982) and the gen-

eralized ARCH (GARCH) model of Bollerslev (1986) have proven to be very useful in modelling

volatilities of financial asset returns, and the assumption of conditional normality of the error

term has contributed to early successes of GARCH models. Weiss (1986) and Bollerslev and

Wooldridge (1992) showed that under this assumption, the quasi maximum likelihood estimator

(QMLE) of the vector of parameters is consistent when the first two moments of the underlying

GARCH process are correctly specified. However, the Gaussian QMLE suffers from efficiency

loss when the conditional error density is non–Gaussian. Engle and González-Rivera (1991)

investigated the efficiency loss through Monte Carlo simulations when the conditional error dis-

tribution is non–Gaussian. In the GARCH literature, evidence found by theoretical and empirical

studies has shown that it is possible to reject the assumption of conditional normality (Singleton

and Wingender, 1986; Bollerslev, 1986; Badrinath and Chatterjee, 1988, among others). This has

motivated the investigation of other specifications of the conditional distribution of errors in

GARCH models, such as the Student t and other heavy–tailed densities (see for example, Hall and

Yao, 2003). In this paper, we aim to investigate the estimation of parameters and error density

in a GARCH model with an unknown error density. Our investigation is motivated by the lack

of robustness in a GARCH model with a parametric assumption about its error density for the

purpose of error-density based inference.

A parametric distributional assumption of the error density has the benefit of simplicity in

obtaining some theoretical results, but is likely to suffer from the problem of being a poor fit to

the sample. Therefore, one may wish to improve the fit through a flexible distribution. Engle and

González-Rivera (1991) highlighted the importance of investigating the issue of nonparametric

estimation of the conditional density of errors at the same time the parameters are estimated.

They proposed a semiparametric GARCH model without any assumption on the analytical

form of the error density. The error density was estimated by the discrete maximum penalized
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likelihood estimator (DMPLE) of Tapia and Thompson (1978) based on residuals, which were cal-

culated either by ordinary least squares or QMLE (under conditional normality). The parameters

of the semiparametric GARCH model were then estimated by maximizing the log likelihood func-

tion constructed through the estimated error density based on initially derived residuals. Engle

and González-Rivera’s (1991) simulation results showed that this semiparametric estimation

approach could improve the efficiency of parameter estimates by up to 50% compared to QMLEs

obtained under conditional normality. However, their likelihood function is affected by initial

parameter estimates, which might be inaccurate. Also, their derived semiparametric estimates

of parameters are not used again to improve the accuracy of the error density estimator.

This paper aims to investigate how we can simultaneously estimate the parameters and

conditional error density using information provided by the data without specifying the form of

the error density. It is very attractive to impose minimal assumptions on the form of the error

density in a GARCH model, because the resulting semiparametric model would gain robustness

in terms of specifications of the error density (see for example, Durham and Geweke, 2013).

In this situation, being able to estimate the error density is as important as estimating the

parameters in the parametric component of the GARCH model because any error–density–based

inference would be robust with respect to the specification of the error density. Moreover, we

can forecast the density of the underlying asset’s return. Let y = (y1, y2, · · · , yn)′ be a vector of n

observations of an asset’s return. A GARCH(1,1) model is expressed as

yt =σt εt ,

σ2
t =ω+αy2

t−1 +βσ2
t−1, (1)

where εt , for t = 1,2, · · · ,n, are independent zero–mean errors. It is often assumed that ω> 0,

α≥ 0, β≥ 0 and α+β< 1, and that conditional on information available at t −1 denoted as It−1,

εt follows a known distribution. Strictly speaking, we will never know the true density of εt . To

estimate parameters and make statistical inferences, the error density is usually assumed to be

of a known form such as the standard Gaussian or Student t density. Any assumed density is only
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an approximation to the true unknown error density. In this paper, we assume that the unknown

density of εt , denoted as f (εt ), is approximated by

f̃ (εt |h) = 1

n

n∑
j=1

φ
1

h

(εt −ε j

h

)
. (2)

It is a location–mixture density of n Gaussian components, which have a common standard devi-

ation h and different mean values at individual errors. Therefore, it is a well–defined probability

density function characterized by h. From the view of kernel smoothing, f̃ (εt |h) is the kernel

error–density estimator based on errors, {ε1,ε2, · · · ,εn}. The performance of this kernel–form

error density would be only second to that of an oracle who knows the true error density.

From a Bayesian’s view, conditional on the parameters that characterize the GARCH model,

this kernel–form error density can be used to construct the likelihood and therefore, the posterior.

In the literature, the use of a scale–mixture density of several Gaussian densities as the error

density in a regression model has been investigated, where the Gaussian components are usually

assumed to have a zero mean and different variances (see Jensen and Maheu, 2013, among

others). Therefore, this type of error density is at the cost of dramatically increasing the number

of parameters. In contrast, our kernel–form error density places its locations at the individual

realized errors and has only one parameter, which is the bandwidth.

Instead of using frequency approaches to investigate parameter estimation, we propose to de-

rive an approximate posterior of the GARCH parameters and the bandwidths up to a normalizing

constant, where the likelihood is approximated through the Gaussian kernel density of the errors.

Bayesian sampling techniques have been used to estimate parameters of a GARCH model when

the error density is specified (see for example, Bauwens and Lubrano, 1998; Nakatsuma, 2000;

Vrontos, Dellaportas, and Politis, 2000). However, the posterior of the parameters, on which those

sampling methods were developed, is unavailable when the error density is unknown. In this

situation, Ausin, Galeano, and Ghosh (2013) developed a Bayesian semiparametric approach to

parameter estimation in GARCH models with a class of scale mixtures of Gaussian distributions
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with a Dirichlet process prior.2

To deal with possible misspecification of the error density and impose inequality constraints

on some parameters in the quasi likelihood, Koop (1994) presented Bayesian semiparametric

ARCH models, where the quasi likelihood was constructed through a sequence of complicated

polynomials.

Our proposed Gaussian kernel error density is different from the kernel density estimator of

pre–fitted residuals, which is often used to construct a quasi likelihood for adaptive estimation of

parameters in many models including (G)ARCH models investigated by Linton (1993) and Drost

and Klaassen (1997). The conclusion drawn from their investigations is that (G)ARCH parameters

are approximately adaptively estimable. This type of estimation is often conducted in a two–step

procedure that uses the data twice. Di and Gangopadhyay (2011) presented a semiparametric

maximum likelihood estimator of parameters in GARCH models. All those methods for the

semiparametric GARCH model are based on pre–fitted residuals, and therefore are second–stage

methods. In contrast, our Gaussian kernel error density depends on the errors rather than the

pre–fitted residuals.

The rest of the paper is organized as follows. In the next section, we discuss the validity and

benefit of the Gaussian kernel error density in GARCH models, derive the likelihood and poste-

rior, and discuss extensions including the use of localized bandwidths and the incorporation of

asymmetric effect of past squared returns. Section 3 presents a simulation study to demonstrate

the performance of the Gaussian kernel GARCH model in comparison to the skewed t GARCH

model proposed by Hansen (1994). In Section 4, we apply the Gaussian kernel asymmetric

GARCH(1,1) model to daily return series of the S&P 500 index. Section 5 presents a comprehen-

sive study of the performance of the Gaussian kernel GARCH model and the skewed t GARCH

model to daily return series of another nine stock indices, ten currency prices and 21 futures

prices. Section 6 concludes the paper.

2There exists an extensive literature on Bayesian nonparametrics on the modeling of an unknown distribution.
See for example, Hjort, Holmes, Müller, and Walker (2010).
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2 Bayesian estimation of the GARCH model with Gaussian
kernel error density

2.1 A mixture of Gaussian densities

Let {x1, x2, · · · , xn} denote a sample of independent observations drawn from an unknown proba-

bility density function g (x|κ) with unbounded support, where κ is the parameter vector. In order

to make statistical inference based on the sample, one has to make assumptions about the ana-

lytical form of g (x|κ) based on some descriptive statistics such as the histogram of observations.

Strictly speaking, any specification of the true density is only an approximation to g (x|κ). One

such approximation is given by

g̃ (x|h) =
∫ ∞

−∞
g (z|κ)Kh (x − z)d z, (3)

where Kh(z) = K (z/h)/h with K (·) being a kernel function. This is a convolution–form kernel

estimator of g (x|κ) proposed by Parzen (1962). As a random sample is already observed from

g (x|κ), this kernel estimator can be approximated as

g̃ (x|h) ≈ 1

n

n∑
i=1

Kh (x −xi ) ,

which is commonly known as the kernel estimator of g (x|κ) in the literature. Silverman (1978)

proved that under some regularity conditions, g̃ (x|h) is strongly uniformly consistent.

In this paper, we investigate how we can use this mixture density of Gaussian components as

an approximation to the unknown error density in a parametric regression model. A realization

of this mixture density of the errors is equivalent to the kernel density estimator of pre-fitted

residuals, which is employed to construct a quasi likelihood for adaptive estimation in the sense

of Bickel (1982). Therefore, parameters can be estimated by maximizing the quasi likelihood.

One main issue of adaptive estimation is the efficiency of the resulting parameter estimates when

the sample size increases. It has been found that parameters can be asymptotically adaptively

estimable for a range of parametric models. However, a major problem in adaptive estimation is

that the bandwidth has to be pre-chosen based on pre–fitted residuals through initial estimates
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of parameters. Therefore, the sample is used twice, and the chosen bandwidth depends on

inaccurate initial estimates of parameters.

2.2 Conditional Gaussian kernel density of errors

Consider the GARCH(1,1) model given by (1), in which we assume that ω> 0, α≥ 0, β≥ 0 and

α+β < 1. Strictly speaking, the true density of εt denoted as f (εt ), is unknown. To estimate

parameters and make statistical inference, one usually specifies a density such as the standard

Gaussian density, as an approximation to the true unknown error density. As a consequence, a

quasi likelihood could be set up, and the QMLEs of the parameters could be obtained. However,

any specification of the error density is subject to doubt. This has motivated numerous inves-

tigations on different specifications of the error density in GARCH models, including those on

estimating the error density through pre–fitted residuals.

We propose to approximate the unknown error density of (1) by

f̃ (εt |h) =
∫ ∞

−∞
f (z)Kh (εt − z)d z, (4)

where the kernel function is chosen as the density of the standard Gaussian distribution de-

noted as φ(·). As f (·) is unknown, the convolution–form kernel estimator of f (·) given by (4) is

practically intractable. Nonetheless, it can be approximated as

f̃ (εt |h) ≈ 1

n

n∑
j=1

1

h
φ

(εt −ε j

h

)
, (5)

which we call the Gaussian kernel (GK) error density and is specified as the error density of (1).

The common standard deviation of the Gaussian components is also called the bandwidth due

to its smoothing role. In addition to the parameters that characterize the parametric component

of the GARCH model, we treat h as a parameter. The resulting GARCH model is referred to as the

Gaussian kernel GARCH model.

Remark 1: From the view of error density specification, the Gaussian kernel density is a

well–defined density function because it is a location–mixture density of n Gaussian component
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densities. These component Gaussian densities have means at individual errors and the same

variances. If these component densities were allowed a constant mean at zero, this mixture

density would become a Gaussian density with a zero mean and constant variance. Moreover, if

ε∼ f̃ (ε|h), we have

E(ε) = ε, V ar (ε) = h2 + s2
ε ,

where ε= 1/n
∑n

i=1εi and s2
ε = 1/n

∑n
i=1(εi −ε)2.

This Gaussian kernel density is defined conditional on model parameters, and we can rewrite

it as

f̃ (εt |h) = 1

n

n∑
i=1

1

h
φ

(
εt − yi /σi

h

)
, (6)

where σ2
i =ω+αy2

i−1 +βσ2
i−1, for i = 1,2, · · · ,n. From a Bayesian’s view, this mixture density has

a closed form conditional on two types of parameters: the model parameters and smoothing

parameter. Both the likelihood and posterior can be constructed through this error density.

However, the kernel density estimator of residuals used by adaptive estimation relies on the

residuals calculated through the pre–estimated parameters.

Remark 2: When using the density of εt to construct likelihood ofy, we use the leave–one–out

version of the Gaussian kernel density given by

f̃
(
εt |ε(t ),h

)= 1

n −1

n∑
i=1
i 6=t

1

h
φ

(εt −ε j

h

)
, (7)

where ε(t ) is ε= (ε1,ε2, · · · ,εn)′ without εt , for t = 1,2, · · · ,n. The purpose of leaving εt out of the

summation in (5) or (6) is to exclude φ(0/h)/h, which can be made arbitrarily large by allowing h

to be arbitrarily small. Otherwise, a numerical maximization of the likelihood with respect to h,

or any posterior simulator based on the resulting posterior, would encounter problems.

Remark 3: The functional form of f (εt |ε(t ),h) does not depend on t because it can also be

expressed as

f̃
(
εt |ε(t ),h

)= 1

(n −1)h

{
n∑

j=1
φ

(εt −ε j

h

)
−φ(0)

}
, (8)

for t = 1,2, · · · ,n.
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Remark 4: The density of yt is approximated by

fY
(
yt |y(t ),θ

)= 1

(n −1)σt

n∑
i=1
i 6=t

1

h
φ

(
yt /σt − yi /σi

h

)
, (9)

which is actually the leave–one–out kernel density estimator of yt through the transformation of

standardization, for t = 1,2, · · · ,n. A kernel density estimator of the direct observations of y is

likely to be inappropriate because the return series {yt : t = 1,2, · · · ,n} are heteroskedastic. How-

ever, scaling the returns by their conditional standard deviations, a reasonable approximation is

to assume the standardized returns are independent and identically distributed.

2.3 Likelihood

Let θ0 = (
ω,α,β,σ2

0

)′
denote the vector of parameters of the GARCH(1,1) model given by (1).

When f (ε) is known, the likelihood of y for given θ0 is

`0
(
y|θ0

)= n∏
t=1

1

σt
f
(
yt /σt

)
.

When the analytical form of f (ε) is unknown, we propose to approximate the density of yt by (9),

where h and σt always appear in the form of the product of the two. We found that

h2σ2
t = h2ω+h2αy2

t−1 +βh2σ2
t−1, (10)

where h2 and ω, as well as h2 and α, cannot be separately identified. If ω is assumed to be a

known constant, all the other parameters can be separately identified.

In the situation of adaptive estimation for ARCH models,ωwas restricted to be zero by Linton

(1993) and one by Drost and Klaassen (1997). In light of the fact that the unconditional variance

of yt is ω/(1−α−β), we assume that ω= (1−α−β)s2
y , where s2

y = (n −1)−1 ∑n
i=1(yt − y)2 is the

sample variance of yt . When the return series is pre–standardized, the value of ω would be

assumed to be (1−α−β), which is the same as what Engle and González-Rivera (1991) assumed

for ω in their GARCH model.
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The starting value of the conditional variance series, σ2
0, is unknown and is treated as a

parameter. Therefore, under the Gaussian kernel error density, the GARCH(1,1) model becomes

yt =σtεt ,

σ2
t =ω0 +αy2

t−1 +βσ2
t−1, (11)

where ω0 = (1−α−β)s2
y , and εt follow the Gaussian kernel density characterized by h. The

parameter vector is θ = (
σ2

0,α,β,h2
)′

, and restrictions on the parameter space are that 0 ≤α< 1,

0 ≤β< 1 and 0 ≤α+β< 1.

The likelihood of y, for given θ, is approximately

`(y|θ) =
n∏

t=1
fY

(
yt |y(t ),θ

)= n∏
t=1

 1

(n −1)σt

n∑
i=1
i 6=t

1

hn
φ

(
yt /σt − yi /σi

hn

) , (12)

which is an approximate likelihood of y for given θ. Conditional on model parameters, this

likelihood function is the one used by the likelihood cross–validation in choosing bandwidth for

the kernel density estimator of the standardized yi , for i = 1,2, · · · ,n (see for example, Bowman,

Hall, and Titterington, 1984).

Remark 5: It is important to note that the approximate likelihood given by (12) has the form

of a full conditional composite likelihood in the sense that the density of yt is defined conditional

on y(t ). This feature has not been noted ino the current literature even though the composite

likelihood has been extensively investigated.3

Remark 6: The likelihood function given by (12) is related to the so–called kernel likelihood

functions derived by Yuan and de Gooijer (2007) and Yuan (2009) for semiparametric regression

models and by Grillenzoni (2009) for dynamic time–series regression models, where their likeli-

hood functions were derived based on pre–fitted residuals. In contrast, our likelihood given by

(12) is constructed based on a well–defined error density given by (7).

If the proposed Gaussian kernel error density is to replace the DMPLE density estimator in the

3See for example, Varin, Reid, and Firth (2011) and Mardia, Kent, Hughes, and Taylor (2009) for an overview of
and discussion about composite likelihood.
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semiparametric estimation procedure suggested by Engle and González-Rivera (1991), the imple-

mentation of their estimation method becomes an issue of choosing bandwidth and maximizing

the quasi likelihood, which was constructed through the nonparametrically estimated error

density, with respect to the parameters. It is possible to maximize the constructed likelihood

with respect to the parameters and bandwidth. Therefore, their initial parameter estimates have

no effect on the resulting parameter estimates that maximize the quasi likelihood. However,

numerical optimization of the approximate likelihood sometimes encounters a convergence

problem due to the Hessian matrix failing to invert. Nonetheless, we confine our investigation

within posterior simulation.

2.4 Priors

The prior of each component of θ should be a proper prior because later on, we will compute

the marginal likelihood and use Bayes factors for decision making. In the empirical finance

literature, the magnitude of β reflects the persistency level of the volatility of the underlying asset

returns. Many empirical studies reveal that the value of β is often close to one. Therefore, we

assume that the prior of β is the density of the Beta distribution given as

p
(
β
)= Γ

(
aβ+bβ

)
Γ

(
aβ

)
Γ

(
bβ

)βaβ−1 (
1−β)bβ−1 ,

where aβ and bβ are hyperparameters, which we choose 10 and 2, respectively. Such a choice

reflects the empirical finding that the value of β is usually close to one. An alternative choice of

prior for β is the uniform density on (0,1), which also works very well.

As the constraint imposed on α is 0 <α< 1−β. Therefore, its prior density is assumed to be

uniform on (0,1−β).

The prior of h2 is chosen to be the inverse Gamma density denoted as IG(ah ,bh) with its

density given by

p
(
h2)= bah

h

Γ(ah)

(
1

h2

)ah+1

exp

{
−bh

h2

}
, (13)

where ah and bh are hyperparameters, which can be chosen to be 1 and 0.05, respectively. The
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appropriateness of the inverse Gamma prior is due to the fact that the squared bandwidth h2

is the variance parameter of the component densities. The prior of the variance of a Gaussian

distribution is usually the inverse Gamma density (see for example, Geweke, 2009). An alternative

choice of prior for h2 is the exponential density given by

p
(
h2)= δexp

(−δh2) ,

where the hyperparameter δ is chosen to be 1 in this situation. If h is treated as a parameter, its

prior density can be chosen as either the standard Cauchy density truncated above zero or the

exponential density. In our experience, both priors work very well.

The prior of σ2
0 is assumed to be the log normal density with mean zero and variance one.

An alternative choice of prior for this parameter is the IG(1,0.05) density. In our experience, the

posterior estimate of θ, as well as the error–density estimator, is insensitive to the prior choice of

σ2
0.

The joint prior of θ denoted as p(θ), is the product of the marginal priors of α, β, h2 and σ2
0.

2.5 Posterior of parameters

The posterior of θ for given y is proportional to the product of the joint prior of θ and the

likelihood of y given θ. In the re–parameterized GARCH model given by (11), the posterior of θ is

(up to a normalizing constant)

π(θ|y) ∝ p(θ)×`(y|θ), (14)

which is well explained in terms of conditional posteriors. Conditional on h2, the Gaussian kernel

density of the errors is well defined, and the posterior of
(
α̃,β,σ2

0

)′
can be derived. Similarly,

conditional on
(
α̃,β,σ2

0

)′
, we can compute the errors, or equivalently the standardized returns,

and then derive the posterior of h2 constructed through the Gaussian kernel error density.

We use the Markov chain Monte Carlo (MCMC) simulation technique to sample θ from its

posterior given by (14). The random–walk Metropolis algorithm is used to simulate θ, and the

sampling procedure is as follows.
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Step 1: Randomly choose initial values denoted as θ(0).

Step 2: Update θ using the random–walk Metropolis algorithm with the proposal density being

the standard Gaussian and the acceptance probability computed through π(θ|y). Let θ(1)

denote the updated θ.

Step 3: Repeat Step 2 until the chain {θ(i ) : i = 1,2, · · · } achieves reasonable mixing performance.

Upon completing the sampling procedure, we use the ergodic average of the sampled values

of θ as an estimate of θ. The density of standardized returns can be derived through averaging.

At each iteration in thhis sampling procedure, we calculate the density function at a number of

grid points by plugging–in the simulated value of θ. After completing all iterations, we take an

average of the density value calculated at each grid point over all iterations. Alternatively, as the

density of standardized returns has a closed form, the density can be estimated by plugging–in

the estimated θ.

The second step of the above–mentioned sampling procedure can also be implemented as

follows. First, conditional on the current value of h2, we update (α,β,σ2
0) using the random–walk

Metropolis algorithm with the acceptance probability computed through (14). This sampling

algorithm is the same as the one developed by Zhang and King (2008) for the GARCH(1,1) model

with its Student t density replaced by the proposed Gaussian kernel density. Second, conditional

on the updated (α,β,σ2
0), we sample h2 from the posterior given by (14) using the random–walk

Metropolis algorithm. This algorithm is the same as that proposed by Zhang, King, and Hyndman

(2006) for kernel density estimation of directly observed data, which are now replaced by the

standardized returns.

2.6 Asymmetric GARCH model with the Gaussian kernel error density

It is generally believed that the past negative and positive returns may have asymmetric effects

on the current conditional variance. Glosten, Jagannathan, and Runkle (1993) introduced an
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asymmetric GARCH model:

yt =σtεt ,

σ2
t =ω+α1 y2

t−1I
(
yt−1 ≥ 0

)+α2 y2
t−1I

(
yt−1 < 0

)+βσ2
t−1, (15)

where I (·) is an indicator function that equals one when its argument is true and zero otherwise.

The restrictions on parameters are ω> 0, 0 ≤α1 < 1, 0 ≤α2 < 1, 0 ≤β< 1 and max{α1,α2}+β< 1.

The errors ε1,ε2, · · · ,εn are usually assumed to be iid and follow a known parametric distribution

such as the standard Gaussian or Student t distribution.

We assume that ε1,ε2, · · · ,εn are iid and follow a distribution with the Gaussian kernel density

given by (6). We also assume that ω= (
1−max{α1,α2}−β)

s2
y for identification purposes. The

likelihood of y for given parameters, denoted as `GJR
(
y|α1,α2,β,h2

)
, has the same form as (12)

with its conditional variance modelled by (15).

The priors of β and h2 are assumed to be same as those given in Section 2.4. The priors

of α1 and α2 are assumed to be the uniform density defined on (0,1−β). The joint prior of

all parameters is the product of the marginal priors and is denoted as pGJR
(
α1,α2,β,h2

)
. The

posterior is proportional to the product of the joint prior and likelihood and is expressed as

πGJR
(
α1,α2,β,h2|y)∝ pGJR

(
α1,α2,β,h2)×`GJR

(
y|α1,α2,β,h2) , (16)

from which we sample parameters using the random–walk Metropolis algorithm. The sampling

procedure is the same as the one described in Section 2.5.

2.7 Localized bandwidths for the Gaussian kernel density of errors

In Section 2.2, we proposed using the leave–one–out Gaussian kernel error density to approx-

imate the unknown error density. In terms of kernel density estimation of directly observed

data, the leave–one–out estimator is known to be heavily affected by extreme observations in

the sample (see for example, Bowman, 1984). Consequently, when the true error density has

sufficiently long tails, the leave–one–out Gaussian kernel density with its bandwidth selected
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under the Kullback–Leibler criterion, is likely to overestimate its tail density. One may argue that

this phenomenon is likely to be caused by the use of a global bandwidth. A possible remedy is to

use variable bandwidths or localized bandwidths (see for example, Silverman, 1986).

The approximate likelihood given by (12) was built up through the leave–one–out Gaussian

kernel density. In the empirical finance literature, there is evidence that the density of the

standardized errors is heavy–tailed. Therefore, we have to be cautious about large standardized

errors when the Gaussian kernel error density is used for constructing the posterior for the

GARCH model. We now investigate the use of localized bandwidths in the Gaussian kernel error

density.

Recent developments on kernel density estimation of directly observed data with adaptive or

variable bandwidths suggest that small bandwidths should be assigned to the observations in

the high–density region and larger bandwidths should be assigned to those in the low–density

region. One of the key issues on the use of adaptive bandwidths is how we choose different

bandwidths for different groups of observations. Brewer (2000) suggested assigning different

bandwidths to different observations and obtaining the posterior estimates of the bandwidths.

As we treat bandwidths as parameters, we do not want lots of parameters in addition to the

model parameters.

In light of the above intuitive idea of using variable bandwidths for kernel density estimation,

we assume that the underlying true error density is unimodal. Therefore, large absolute errors

should be assigned relatively large bandwidths, while small absolute errors should be assigned

relatively small bandwidths. Thus, we propose the following error density:

flocal (εt |h,hε) = 1

n −1

n∑
i=1
i 6=t

1

h (1+hε |εi |)
φ

(
εt −εi

h (1+hε |εi |)
)

, (17)

where h (1+hε |εi |) is the bandwidth assigned to εi , for i = 1,2, · · · ,n, and the vector of parame-

ters is now θlocal =
(
σ2

0,α,β,h2,hε
)′

. The meaning of this kernel–form error density is also clear.

The density of εt is approximated by a mixture of n−1 Gaussian densities with their means being

at the other errors and variances localized.
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The approximate likelihood of y for given θlocal is:

`local
(
y|θlocal

)= n∏
t=1

1

σt
flocal

(
yt /σt |h,hε

)
, (18)

where σ2
t can be modelled by either (11) or (15).

We assume the prior of hε is the uniform density on (0,1). The priors of the other parameters

are the same as those in the situation of using a global bandwidth discussed in Sections 2.2

and 2.6. The joint prior of θlocal denoted as plocal (θlocal), is the product of these marginal priors.

Therefore, the posterior of θlocal is (up to a normalizing constant)

πlocal
(
θlocal|y

)∝ plocal (θlocal)×`local
(
y|θlocal

)
, (19)

from which we sample θlocal using the random–walk Metropolis algorithm.

3 Monte Carlo simulation study

3.1 Generate samples

An argument in favor of the proposed specification of Gaussian kernel error density is that even

though the true distribution is parametric, the flexible kernel model might perform reasonably

well. Presumably, there would be an efficiency loss, for which the robustness would compensate,

because we never know what the true distribution is in practice. Thus, we would like to study

this issue through simulations.

We generate samples through the asymmetric GARCH(1,1) model given by (15), where the

error density is the skewed Student t density proposed by Hansen (1994). This density function,

which will be briefly discussed in Section 3.2, is characterized by two parameters, η and λ. To

generate samples, we choose the parameter values as ω= 0.03,α1 = 0.01,α2 = 0.08,β= 0.9,η= 9

and λ=−0.2. These values are very close to those estimated based on a sample of a stock index

return series. We generated 1,000 samples, each of which has a size of 1,000.
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3.2 A competing model

For comparison purposes, we choose the competing model as a GARCH model with a skewed

Student t error density of Hansen (1994). The error density of the GARCH model given by (15) is

g
(
ε
∣∣η,λ

)=


bscs

{
1+ 1

η−2

[
(bsε+as)

/
(1−λ)

]2
}−(η+1)/2

if ε<−as/bs

bscs

{
1+ 1

η−2

[
(bsε+as)

/
(1+λ)

]2
}−(η+1)/2

if ε≥−as/bs

, (20)

where η> 2, −1 <λ< 1, and

as = 4λcs
(
η−2

)/(
η−1

)
,

bs =
√

1+3λ2 −a2
s ,

cs = Γ((η+1)/2)
/[√

π(η−2) Γ(η/2)
]
.

Hansen (1994) proved that the function given by (20) is a proper probability density function

with a mean zero and variance one. He also proposed to allow λ and η to be time–varying in the

following sense:

ηt = ηa +ηb yt−1 +ηc y2
t−1,

λt =λa +λb yt−1 +λc y2
t−1,

where both ηt and λt should satisfy the above restrictions. Therefore, a logistic type transforma-

tion is applied to ηt and λt :

zt = Lz + (Uz −Lz)
/

(1+exp(−zt )),

where zt is either ηt or λt , and Lz and Uz are the corresponding lower and upper bounds.

The likelihood of y for given
(
ω,α1,α2,β,η,λ,σ2

0

)′
is

`skewt
(
y

∣∣ω,α1,α2,β,η,λ,σ2
0

)= n∏
t=1

g
(
yt /σt

∣∣η,λ
)/
σ2

t , (21)

where σ2
t is given by (15).
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The prior of ω is the uniform density on (0,1), and the priors of α1, α2, β and σ2
0 are assumed

to be the same as those discussed in Section 2.6. We assume that the prior of η is the density

of N (7,32) truncated at 2 from below to guarantee that η is greater than 2. The prior of λ is the

uniform density defined on (−1,1). When time–varying parameters are used in the skewed t

distribution, the priors of ηa , ηb , ηc , λa , λb and λc are the density of N (0,32). The joint prior of

all parameters is the product of the marginal priors and is denoted as pskewt
(
ω,α1,α2,β,η,λ,σ2

0

)
.

Therefore, by Bayes theorem, the posterior of y is

πskewt
(
ω,α1,α2,β,η,λ,σ2

0

∣∣y)∝ pskewt
(
ω,α1,α2,β,η,λ,σ2

0

)×`skewt
(
y

∣∣ω,α1,α2,β,η,λ,σ2
0

)
,

from which we used the random–walk Metropolis algorithm to sample parameters.

3.3 Bayes factors for model comparison

The Bayes factor for a model denoted as A 0, against a competing model A1, is defined by

(Spiegelhalter and Smith, 1982)

B01 = m(y|A0)/m(y|A1),

where m(y|A0) and m(y|A1) are marginal likelihoods derived under A0 and A1, respectively.

Marginal likelihood is the expectation of the likelihood under the prior density of parameters and

is often intractable in Bayesian inference. Nonetheless, there are several methods to numerically

approximate the marginal likelihood (Newton and Raftery, 1994; Chib, 1995; Geweke, 1999; Chib

and Jeliazkov, 2001, among others).

Let θA denote a vector of parameters under the model A , which can be either A0 or A1. The

marginal likelihood is

m(y|A ) =
∫
`A (y|θA )pA (θA )dθA , (22)

where `A (y|θA ) is the likelihood of y, and pA (θA ) is the prior of θA . Chib (1995) showed that

the marginal likelihood under a model A is expressed as

m̃A (y) = `A (y|θ)pA (θ)

πA (θ|y)
, (23)
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where πA (θ|y) is the posterior under model A . m̃A (y) is usually computed at the posterior

mean of the simulated chain of θ. The numerator has a closed form, while the denominator is

often approximated by its kernel density estimator based on the simulated chain of θ.

Let m̃(y|A0) and m̃(y|A1) denote the marginal likelihoods derived under the Gaussian kernel

GARCH(1,1) and skewed t GARCH(1,1) models, respectively. The Bayes factor of the former

model against the latter is

B̃F 01 = m̃(y|A0)/m̃(y|A1).

According to Jeffreys’ (1961) scales modified by Kass and Raftery (1995), when a Bayes factor

value is between 1 and 3, the evidence supporting A against B is “not worth more than a bare

mention”. A Bayes factor value between 3 and 20 indicates that A is favored against B with

positive evidence. When the Bayes factor is between 20 and 150, A is favored against B with

strong evidence; and when the Bayes factor is greater than 150, A is favored against B with very

strong evidence.

3.4 Simulation results

For each generated sample, we estimated parameters of the Gaussian kernel asymmetric GARCH(1,1)

model by implementing the proposed sampling algorithms, where both global and localized

bandwidths were considered. We also estimated parameters of the GARCH(1,1) model with its

error density being assumed to be the skewed Student t density. The marginal likelihood under

each model was calculated, and the Bayes factor of the Gaussian kernel GARCH model with a

global bandwidth (and localized bandwidths) against its competitor, the skewed t GARCH model,

was then calculated.

Table 1 presents relative frequencies of simulated samples falling in different categories of

Bayes factors. The Gaussian kernel GARCH model with a global bandwidth is favored against

the skewed t GARCH model with very strong evidence in 2.7% of the simulated samples, strong

evidence in 6.3% of the simulated samples, and positive evidence in 10.1% of the simulated sam-
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ples. Therefore, the Gaussian kernel GARCH model is favored against its parametric competitor,

the GARCH model with the correct assumption of error density, with at least positive evidence

in 19.1% of the simulated samples. In contrast, the parametric GARCH model, from which the

samples are generated, is favored against the Gaussian kernel GARCH model in 63.6% of the

simulated samples. In the other 17.3% of simulated samples, neither is favored against the other.

For the Gaussian kernel GARCH model, the use of localized bandwidths tends to increase the

marginal likelihood and improve the competitiveness of the model. According to the computed

Bayes factors, the use of localized bandwidths is favored against the use of a global bandwidth

with at least positive evidence in 59.1% of the simulated samples, while the latter is favored

against the former in only 7.6% of the simulated samples. In the other 33.3% of the simulated

samples, neither is favored against the other.

With the use of localized bandwidths, the Gaussian kernel GARCH model is favored against

the skewed t GARCH model with very strong evidence in 2.5% of the simulated samples, strong

evidence in 5.1% of the simulated samples, and positive evidence in 14.1% of the simulated

samples. Thus, the Gaussian kernel GARCH model is favored against its competitor with at

least positive evidence in 21.7% of the simulated samples. Moreover, with localized bandwidths,

the relative frequency of simulated samples, where the skewed t GARCH is favored against the

Gaussian kernel GARCH model with at least positive evidence, is reduced from 63.6% to 47.0%.

To conclude, the Gaussian kernel GARCH model is favored against the correct model, from

which the samples are generated, in 21.7% of the simulated samples, and neither of the two

models is favored against the other in another 31.3% of the simulated samples. This demonstrates

the competitiveness of the proposed Gaussian kernel GARCH model. Although the model cannot

compete against the correct model in 47.0% of simulated samples, the robustness of our model

compensates for the loss because in practice, the true error density is never known.
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4 Modelling daily returns of the S&P 500 closing index

4.1 Data

In this section, we use the proposed sampling algorithm to estimate parameters of the GARCH(1,1)

model of daily continuously compounded returns of the S&P 500 closing index, where the errors

are assumed to be iid and follow the Gaussian kernel error density. The sample period is from

03/01/2007 to 31/05/2013 with 1,613 observations. The starting value of the return series, which

is known as y0, is the first observation in the sample. Thus, the actual sample size is n = 1,612.

4.2 Gaussian kernel error densities

We implemented the sampling algorithm procedure proposed in Section 2.2 to estimate the

Gaussian kernel asymmetric GARCH(1,1) model of S&P 500 daily returns. We discarded 3000

iterations in the burn–in period, after which 10,000 iterations were recorded. The acceptance

rate was controlled to be around 0.234 (see for example, Garthwaite, Fan, and Sisson, 2010).

We calculated the batch–mean standard deviation and simulation inefficiency factor (SIF) for

each parameter in each model. The batch–mean standard deviation is an approximation to the

standard deviation of the posterior average of the simulated chain. If the mixing performance is

reasonably good, the batch–mean standard deviation will decrease at a reasonable speed as the

number of iterations increases (see Roberts, 1996, among others).4

We applied our sampling algorithms to the Gaussian kernel asymmetric GARCH(1,1) models

of S&P 500 daily returns with respectively, a global bandwidth and localized bandwidths. Ta-

ble 2 presents the estimate of each parameter, together with its 95% Bayesian credible interval,

batch–mean standard deviation and SIF for each type of bandwidth. The batch–mean standard

deviation and SIF were used to monitor the mixing performance, and both indicate very good

4The SIF is approximately interpreted as the number of draws needed to derive independent draws, because
the simulated chain is a Markov chain (Kim, Shepherd, and Chib, 1998, among others). For example, a SIF value of
20 means that approximately, we should retain one draw for every 20 draws to obtain independent draws in this
sampling procedure. According to our experience, a sampler usually achieves reasonable mixing performances
when its SIF values of all parameters are below 100.
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mixing performance of each simulated chain.

In terms of the question on which type of bandwidth should be used, we found that the Bayes

factor of the Gaussian kernel asymmetric model with localized bandwidths against the same

model with a global bandwidth is 6.6×105, which shows very strong evidence supporting the

former model against the latter.

4.3 Skewed Student t error densities

With the same sample of S&P 500 daily returns, we applied the sampling procedure discussed

in Section 3.2 to the asymmetric GARCH(1,1) model with skewed t error densities, where the

two parameters, η and λ, in the error density were considered respectively, constants and time–

varying. Table 3 presents a summary of the derived results. The batch–mean standard deviation

and SIF indicate that the sampling algorithm has achieved very good mixing performance no

matter whether the skewed t parameters are constants or time–varying.

The log marginal likelihood of the skewed t GARCH with η and λ being constants is almost

the same as that of the same model with two parameters being time–varying. One may also

notice that the averaged log likelihood value is increased to −2472.17 by 12.51 as a consequence

of allowing the two parameters to be time–varying. However, the improvement is at the cost of

increasing the number of parameters.

4.4 Gaussian kernel density or skewed Student t density?

The Bayes factor of the Gaussian kernel asymmetric GARCH(1,1) model with a global bandwidth

against the skewed t GARCH(1,1) model with constant parameters is 6.65×106, indicating that

the former model is favored against the latter with very strong evidence. The use of localized

bandwidths improves the competitiveness of the Gaussian kernel GARCH model, and its Bayes

factor against the skewed t GARCH model is 1.6×1012. This is very strong evidence favoring the

Gaussian kernel GARCH model against its competitors. Thus, in terms of modelling S&P 500

daily returns, the Gaussian kernel error density with localized bandwidths is the best choice.
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4.5 Posterior predictive densities of S&P 500 daily returns

It is of interest to estimate the density of the one–day–ahead return, yn+1. Under the Gaussian

kernel asymmetric GARCH model, the density of yn+1 conditional on In , is estimated as

fY
(
yn+1|y,θ

)= 1

(n −1)σn+1

n∑
i=1

1

h
φ

(
yn+1/σn+1 − yi /σi

h

)
, (24)

where σ2
t = ω+α1 y2

t−1I (yt−1 ≥ 0)+α2 y2
t−1I (yt−1 < 0)+βσ2

t−1 with ω = (
1−max{α1,α2}−β)

s2
y .

Note that the density function can use either a global bandwidth or localized bandwidths.

The posterior predictive density requires the parameters to be integrated out over the pos-

terior density and can be approximated numerically by averaging the sampling distribution

through posterior draws of the parameters. Therefore, we have

fY
(
yn+1|y

)= ∫
fY

(
yn+1|y,θ

)
π

(
θ|y)

dθ ≈ 1

M

M∑
i=1

fY

(
yn+1|y,θ(i )

)
,

where θ(i ), i = 1,2, · · · , M , are draws from π
(
θ|y)

.

At each iteration of the proposed sampling procedure, we calculated the predictive density of

yn+1 according to (24) at 10,000 grid points, while these values were saved in a row of a matrix

with M rows and 10,000 columns. Upon completing the sampling procedure, we calculated the

average of these density functions derived at all iterations. The posterior predictive cumulative

density function (CDF) was derived in the same way. The posterior predictive Gaussian kernel

density and CDF of yn+1 are plotted in Figure 1, where in each graph, the blue solid and black

dashed lines represent respectively, the posterior predictive density functions and CDFs obtained

through a global bandwidth and localized bandwidths. The use of localized bandwidths leads to

an obviously higher peak of the posterior predictive Gaussian kernel density than the use of a

global bandwidth.

Let θskewt denote the vector of parameters updated at each iteration of the sampling proce-

dure described in Section 3.2. The density of yn+1 conditional on In , is derived by plugging–in

the updated parameters into the skewed Student t density and is given as

f̃Y
(
yn+1|θskewt

)= fskewt
(
yn+1/y,σn+1|θskewt

)
/σn+1,
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where fskewt(·|θskewt) is the skewed Student t density with its parameter vector given by θskewt.

The posterior predictive density of yn+1 is approximated by averaging f̃Y
(
yn+1|y,θskewt

)
.

The posterior predictive skewed Student t density (with constant η and λ) and its CDF are

shown by the red dotted lines of Figure 1. The posterior predictive Gaussian kernel densities of

yn+1 have obviously thicker left tails and higher peaks than their skewed Student t counterpart.

One direct application of the posterior predictive density and CDF of the one–day–ahead

return is to calculate the conditional VaR. At a given confidence level denoted as 100(1−τ)% with

τ ∈ (0,1), the VaR of an investment is defined as a threshold value, such that the probability that

the maximum expected loss on this investment over a specified time horizon exceeds this value

is no more than τ (see for example, Jorion, 1997). The VaR has been a widely used risk measure

to control huge losses of a financial position by investment institutions.

The VaR for holding an asset is often estimated through the distribution of the asset return.

When this distribution is modeled conditional on time-varying volatilities, the resulting VaR

is referred to as the conditional VaR. For example, GARCH models are often used to estimate

the conditional VaR. For a given sample
{

y1, y2, · · · , yn
}
, the conditional VaR with 100(1−τ)%

confidence is defined as

yτ = inf
{

y : P
(
yn+1 ≤ y |y0, y1, · · · , yn

)≥ τ} , (25)

where the value of τ is often chosen as either 5% or 1%.

At the 95% confidence level and for every $100 investment on the S&P 500 index, the one–

day conditional VaRs are respectively, $1.7155 (or $1.9054) and $1.4772 under the Gaussian

kernel asymmetric GARCH(1,1) models with a global bandwidth (or localized bandwidths) and

asymmetric skewed t GARCH(1,1) model. This indicates that the skewed t assumption is likely

to underestimate conditional VaR in comparison with its Gaussian kernel counterpart. However,

we should not make such a conclusion based on one sample only.
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5 Gaussian kernel GARCH models of other asset returns

To demonstrate the usefulness of the proposed Gaussian kernel GARCH model, we considered

daily return series of another 9 stock indices, 21 futures prices and 11 currency prices. All stock

data were downloaded from yahoo.com, price data of futures front contracts were downloaded

from quandl.com, and currency data were downloaded from the website of the Federal Reserve

under its H.10 data category. The sample periods are from 03/01/2007 to 31/05/2013 for stock

indices, and from 03/01/2007 to 17/05/2013 for futures and currency assets.

When modelling the return series of a stock index or futures price, we used the asymmetric

GARCH model with a Gaussian kernel error density. For currency return series, there is no

clear evidence of an asymmetric effect of past returns and thus the GARCH model given by

(1) was used to model each currency’s return series. We implemented the proposed sampling

algorithms on the Gaussian kernel GARCH model of each asset’s return series, where both a

global bandwidth and localized bandwidths are considered.

As a competing model, the skewed Student t GARCH(1,1) model was estimated for each re-

turn series using the sampling algorithm discussed in Section 3.2. We calculated the log marginal

likelihood at the posterior estimates of parameters, as well as the averaged log likelihood, under

the Gaussian kernel GARCH model and its competitor, respectively.

5.1 Model comparison for stock indices

The stock indices in our study are the Dow Jones industrial average (DJIA), Nasadaq–100, NYSE

composite, CAC, DAX, FTSE 100, All Ordinaries (AORD), Hang Seng (HS) and Nikkei 225. Table 4

presents the estimates of parameters, their associated SIF values, log marginal likelihood and

averaged log likelihood derived under the Gaussian kernel GARCH(1,1) model of each asset’s

return series, where these results were obtained using respectively, a global bandwidth and

localized bandwidths.

The Bayes factors of the Gaussian kernel GARCH model with localized bandwidths against
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the same model with a global bandwidth are respectively, 2.51×107, 3905.0, 149.9 and 137.0 for

DJIA, NYSE, DAX and Nikkei. Therefore, the use of localized bandwidths is favored against the

use of a global bandwidth with either very strong or strong evidence. The Bayes factor of the

former against the latter is 17.8 for Nasdaq, indicating that the use of localized bandwidths is

favored against its counterpart with positive evidence. However, for the daily return series of

CAC, FTSE, AORD and HS, the corresponding Bayes factors indicate that the use of localized

bandwidths does not improve the model’s competitiveness in comparison with the use of a

global bandwidth.

The results obtained through the asymmetric GARCH(1,1) model with skewed Student t error

are presented in right–hand–side panel of Table 4, where results were obtained by allowing the

two parameters, η and λ, to be constants as well as time–varying. The skewed t model with time–

varying η and λ is favored against the same model with constant η and λ for Nasdaq, DAX and

HS with positive evidence according to the corresponding Bayes factors. Thus, it is sometimes

possible to improve the competitiveness of the skewed t model by allowing the two parameters

to be time–varying. However, the skewed t model with constant η and λ is favored against its

time–varying counterpart for NYSE and AORD with either strong or very strong evidence, and

for DJIA and Nikkei with positive evidence. This indicates that the model’s competitiveness is

worsened by allowing the two parameters to be time–varying. The inclusion of time–varying η

and λ into the skewed t model neither improves nor worsens the competitiveness of the model

for CAC and FTSE.

In terms of the comparison between the Gaussian kernel GARCH and the skewed t GARCH

models, the former model with a global bandwidth is favored against the latter with very strong

evidence for all stock indices, except for the Nikkei. Nonetheless, allowing the bandwidth to be

localized, the Gaussian kernel model for the Nikkei is favored against its skewed t counterpart

with very strong evidence. This demonstrates the clear competitiveness of the Gaussian kernel

GARCH model of stock index returns over its skewed Student t counterpart.
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5.2 Model comparison for currency return series

The symmetric Gaussian kernel GARCH(1,1) model and its skewed t counterpart were applied to

currency return series, where we considered 11 currencies, namely the Australian dollar (denoted

as AUS), Canadian dollar (denoted as CAN), Danish Krone, Euro, Japanese Yen, Norwegian Krone,

New Zealand dollar (denoted as NZ), Singapore dollar, Swedish Krona, Swiss Franc and UK

Pound. Table 5 presents the averaged log likelihood and log marginal likelihood values obtained

through each model.

Under the Gaussian kernel symmetric GARCH(1,1) model, the marginal likelihood is in-

creased through the use of localized bandwidths rather than a global bandwidth for each asset.

The use of localized bandwidths is favored against the use of a global bandwidth with either very

strong or strong evidence for the Australian dollar, Japanese Yen, Norwegian Krone, New Zealand

dollar, Singapore dollar and Swiss Franc, and with positive evidence for the Euro. Therefore,

for these eight currencies, the competitiveness of the Gaussian kernel GARCH model has been

clearly improved by using localized bandwidths. However, the improvement of the model’s

competitiveness is merely marginal for the Canadian dollar, Danish Krone and UK Pound.

Should the skewed t GARCH model use constant or time–varying η and λ? According to the

calculated Bayes factors, the use of time–varying parameters is favored against the use of constant

parameters with either very strong or strong evidence for the Canadian dollar, Danish Krone,

Norwegian Krone, Singapore dollar, Swedish Krona, Swiss Franc and UK Pound. Meanwhile,

the use of constant parameters is favored against its counterpart with either strong or positive

evidence for the Australian dollar, Euro and New Zealand dollar. The marginal likelihood under

the skewed t model for the Japanese Yen is largely unchanged by allowing the two parameters to

be time–varying.

In terms of comparison between the Gaussian kernel GARCH model and skewed t GARCH

model, the former model with localized bandwidths is favored against the latter with at least

positive evidence for the Australian dollar and Japanese Yen. Meanwhile, the skewed t model is
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favored with very strong evidence against its Gaussian kernel counterpart for the other currencies

except for the Euro and New Zealand dollar, for which neither model is favored against the other.

5.3 Model comparison for futures return series

We applied the Gaussian kernel asymmetric GARCH(1,1) model and its skewed t counterpart to

the return series of 21 futures contracts’ closing prices. The futures assets in our study include

gold, silver, copper, platinum, palladium in the category of metals; corn, wheat, soybean meal,

soybean oil, soybeans and oats in the category of grains; sugar, coffee, cocoa, cotton and orange

juice in category of softs; live cattle, lean hogs, feeder cattle and lumber in the category of other

agriculturals; and heating oil in the energy category.

The averaged log likelihood and log marginal likelihood derived under the Gaussian kernel

GARCH(1,1) model with a global bandwidth as well as localized bandwidths are presented in the

left–hand–side panel of Table 6. The use of localized bandwidths for the Gaussian kernel model

increases the model’s competitiveness. The marginal likelihood values derived through localized

bandwidths are larger than those derived through a global bandwidth for 19 out of 21 futures

assets. For the other two assets, which are platinum and lumber, the use of localized bandwidths

leads to slightly smaller marginal likelihood values than the use of a global bandwidth. The

model with localized bandwidths is favored against the same model with a global bandwidth for

18 futures assets with at least positive evidence. This shows that the use of localized bandwidths

clearly increases the competitiveness of the Gaussian kernel asymmetric GARCH model. Only

for the platinum futures contract, the use of a global bandwidth is favored with positive evidence

against the use of localized bandwidths.

The right–hand–side panel of Table 6 presents the averaged log likelihood and log marginal

likelihood derived under the skewed t GARCH(1,1) model. The model with constant η and λ

is favored against the same model with time–varying η and λ for 20 futures assets with very

strong evidence. This finding indicates that the competitiveness of the skewed t GARCH model

is worsened by allowing η and λ to be time–varying. The only exception is the return series of
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lean hogs prices, for which the competitiveness of the skewed t model is neither improved nor

worsened by allowing the two parameters to be time–varying.

The Gaussian kernel asymmetric GARCH model with a global bandwidth is favored against

its skewed t counterpart for return series of platinum, wheat, soybean oil, oats, sugar, cocoa,

and lumber with at least positive evidence. Meanwhile, with a global bandwidth, the Gaussian

kernel model cannot compete with its skewed t counterpart for gold, lean hogs and feeder cattle.

However, by allowing localized bandwidths, the Gaussian kernel model is favored against its

skewed t counterpart with very strong evidence for each of these three futures assets.

The skewed t GARCH model is favored against its Gaussian kernel counterpart with at least

positive evidence for the return series of seven futures assets, which are silver, palladium, corn,

soybean meal, cotton, live cattle and heating oil.

To summarize, the Gaussian kernel asymmetric GARCH model with either a global bandwidth

or localized bandwidths is favored against the skewed Student t GARCH model for ten futures

assets, while the latter model is favored against the former for seven futures assets. Neither of

these two models is favored against for the other four futures assets, which are copper, soybeans,

coffee and orange juice.

For all 41 assets considered in this section, we summarized parameter estimates and their

associated SIF values derived under each model and reported them in tables, which are available

at http://users.monash.edu/~xzhang/research/section5.tables.pdf.

6 Conclusion

We have presented a Bayesian sampling approach to parameter estimation for a GARCH model

with an unknown error density, which we propose to approximate by a mixture of n Gaussian

component densities centered at individual errors and scaled by a standard deviation parameter.

This mixture density has the form of a kernel density estimator of the errors with Gaussian

kernels and bandwidth being the standard deviation. Assuming an inverse Gamma prior of
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the bandwidth parameter and noninformative priors of model parameters, we have derived an

approximate posterior of both types of parameters. The random–walk Metropolis algorithm has

been used to sample these parameters simultaneously during MCMC iterations. To address the

concern about the performance of a global bandwidth in the Gaussian kernel error density, we

considered the use of localized bandwidths and derived the posterior of all parameters. Most

importantly, the Gaussian kernel error density allows us to estimate the density of one–step

out–of–sample return, which can be used to compute value–at–risk.

A simulation study was conducted, where samples were simulated from the GARCH model

with a skewed Student t error density. In 53% of the simulated samples, the Gaussian kernel error

density performs better, or at least no worse, than the correct assumption of the error density.

This demonstrates the robustness of the Gaussian kernel error density, which compensates for

the loss of accuracy, because the true error density is always unknown in practice.

Applying the Gaussian kernel asymmetric GARCH model and its competitor, the asymmetric

skewed Student t GARCH model, to a range of daily return series of stock indices, daily returns

of closing prices of futures front contracts and daily returns of currency prices, we find that

the Gaussian kernel GARCH model is favored against its competitor for all ten stock indices

considered, for two out of 11 currencies, and for ten out of 21 futures assets. Neither model

is favored against the other for two currencies and four futures assets. This provides a clear

empirical justification for the symmetric and asymmetric GARCH models with Gaussian kernel

error densities proposed in this paper.

Our investigation is only focused on the GARCH(1,1) specification. The proposed Gaussian

kernel error density can be employed to replace any parametric assumption of the error density

in any parametric GARCH models as long as parameter constraints can be imposed. Moreover,

the proposed Bayesian sampling algorithm can be modified accordingly without any increased

difficulty.
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Table 1: Relative frequencies of simulated samples falling in different categories of Bayes factors.

Category of GK GARCH with GK GARCH with Localized bandwidths
Bayes factors a global bandwidth localized bandwidths against global bandwidth
(150,∞) 2.7% 2.5% 19.3%
(20,150] 6.3% 5.1% 14.4%
(3,20] 10.1% 14.1% 25.4%
(1/20,1/3] 18.6% 25.9% 7.4%
(1/150,1/20] 12.9% 12.0% 0.2%
(0,1/150] 32.1% 9.1% 0.0%

Table 2: Results from Bayesian estimation of the Gaussian kernel GARCH(1,1) model of S&P 500
daily returns. LL represents averaged log likelihood, and LML represents log marginal likelihood.

Parameters Mean 95% Bayesian Batch–mean Standard SIF
credible interval standard dev. deviation

Global bandwidth
σ2

0 0.630914 (0.083006,2.546813) 0.033031 0.653635 25.5
α1 0.003089 (0.000125,0.011348) 0.000237 0.003122 57.7
α2 0.084255 (0.053367,0.121305) 0.000933 0.017995 26.9
β 0.905672 (0.864104,0.941188) 0.001049 0.020343 26.6
h 0.370311 (0.246164,0.472523) 0.002788 0.057566 23.5
LL −2475.79
LML −2482.68

Localized bandwidths
σ2

0 0.311810 (0.061545,0.909515) 0.004954 0.227820 4.7
α1 0.003333 (0.000125,0.012042) 0.000213 0.003190 44.8
α2 0.100950 (0.073451,0.130125) 0.000489 0.014508 11.4
β 0.890691 (0.858333,0.920562) 0.000539 0.015834 11.6
h 0.230680 (0.151495,0.336961) 0.002392 0.047543 25.3
hε 0.639238 (0.286648,0.964853) 0.009720 0.180288 29.1
LL −2460.78
LML −2469.28
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Table 3: Results from Bayesian estimation of the skewed Student t GARCH(1,1) model of S&P 500
daily returns. LL represents averaged log likelihood. LML represents log marginal likelihood.

Parameters Mean 95% Bayesian Batch–mean Standard SIF
credible interval standard dev. deviation

Constant η and λ

σ2
0 0.363243 (0.081781,0.984899) 0.002295 0.243678 4.4

ω 0.038075 (0.023952,0.056014) 0.000212 0.008400 31.9
α1 0.036799 (0.013805,0.065484) 0.000345 0.013055 35.0
α2 0.110905 (0.083294,0.143847) 0.000352 0.015435 26.1
β 0.887206 (0.854141,0.915225) 0.000355 0.015577 25.9
η 8.096940 (5.948114,11.05629) 0.015074 1.313166 6.6
λ −0.149503 (−0.204655,−0.093378) 0.000275 0.028547 4.6
LL −2484.68
LML −2498.59

Time–varying η and λ

σ2
0 0.412586 (0.090246,1.157786) 0.002491 0.285808 3.8

ω 0.042601 (0.026392,0.064054) 0.000239 0.009451 31.9
α1 0.064249 (0.032059,0.107267) 0.000361 0.018871 18.3
α2 0.127057 (0.094794,0.166564) 0.000457 0.018354 31.0
β 0.870868 (0.831012,0.903595) 0.000464 0.018562 31.3
ηa −0.627567 (−1.572456,1.150751) 0.023096 0.697102 54.9
ηb −1.747564 (−4.090188,−0.587690) 0.037173 0.960488 74.9
ηc −0.137599 (−0.784369,0.811043) 0.015311 0.424880 64.9
λa −0.320770 (−0.463858,−0.180617) 0.000941 0.071274 8.7
λb 0.042849 (−0.080012,0.162133) 0.000691 0.061708 6.3
λc 0.002644 (−0.075765,0.074786) 0.000621 0.038005 13.3
LL −2472.17
LML −2498.53
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Table 4: Averaged log likelihood (LL) and log marginal likelihood (LML) derived from the Gaussian
kernel asymmetric GARCH(1,1) model and skewed Student t GARCH(1,1) model of daily stock
index returns. The largest LML in each row is in blue color.

Stock Gaussian kernel asymmetric GARCH Skewed t GARCH
index Global bandwidth Localized bandwidths Constant η and λ Time–varying η and λ

LL LML LL LML LL LML LL LML
DJIA −2328.78 −2334.70 −2308.48 −2317.66 −2334.34 −2348.43 −2321.77 −2350.20
Nasdaq −2652.85 −2660.02 −2650.06 −2657.14 −2669.39 −2681.99 −2655.93 −2680.66
NYSE −2588.95 −2596.59 −2580.53 −2588.32 −2596.80 −2610.04 −2588.23 −2613.08
CAC −2867.35 −2875.54 −2868.09 −2875.68 −2886.71 −2899.04 −2875.05 −2899.35
DAX −2745.83 −2754.23 −2741.42 −2749.22 −2757.27 −2769.90 −2743.47 −2767.81
FTSE −2509.84 −2517.56 −2509.24 −2516.86 −2521.07 −2534.33 −2508.95 −2534.40
AORD −2367.81 −2376.49 −2371.07 −2379.79 −2383.33 −2397.52 −2381.78 −2403.76
HS −2875.60 −2881.85 −2875.05 −2881.63 −2882.55 −2895.55 −2869.19 −2894.25
Nikkei −2781.04 −2787.74 −2776.99 −2782.82 −2776.02 −2788.20 −2766.25 −2790.47

Table 5: Averaged log likelihood (LL) and log marginal likelihood (LML) derived from the Gaussian
kernel symmetric GARCH(1,1) model and skewed Student t GARCH(1,1) model of daily currency
price returns. The largest LML in each row is in blue color.

Currency Gaussian kernel symmetric GARCH Skewed t GARCH
Global bandwidth Localized bandwidths Constant η and λ Time–varying η and λ

LL LML LL LML LL LML LL LML
AUS −1479.61 −1484.41 −1475.00 −1480.22 −1474.57 −1485.65 −1464.11 −1486.79
CAN −1619.19 −1625.29 −1618.35 −1624.62 −1615.61 −1628.36 −1578.73 −1602.56
Denmark −1152.41 −1160.13 −1151.96 −1159.29 −1147.57 −1161.25 −1118.26 −1146.18
Euro −811.58 −816.63 −808.39 −813.19 −802.12 −813.64 −798.14 −822.92
Yen −2723.63 −2729.61 −2718.83 −2725.18 −2716.63 −2727.69 −2700.31 −2728.07
Norway −1583.32 −1589.50 −1564.00 −1569.83 −1550.78 −1561.99 −1518.92 −1543.99
NZ −1074.26 −1083.50 −1047.41 −1053.86 −1042.51 −1054.19 −1034.05 −1057.81
Singapore −1674.91 −1687.74 −1668.44 −1677.86 −1662.48 −1675.54 −1600.87 −1630.34
Swedish −1634.76 −1640.37 −1631.49 −1637.30 −1629.94 −1642.48 −1591.30 −1614.85
Swiss −1738.82 −1747.35 −1717.99 −1725.04 −1702.86 −1714.83 −1662.14 −1686.50
UK −1930.36 −1937.21 −1929.44 −1936.37 −1932.89 −1945.39 −1906.74 −1930.27
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Table 6: Averaged log likelihood (LL) and log marginal likelihood (LML) derived from the Gaussian
kernel asymmetric GARCH(1,1) model and skewed Student t GARCH(1,1) model of futures asset
daily returns. The largest LML in each row is in blue color.

Futures Gaussian kernel GARCH Skewed t GARCH
Global bandwidth Localized bandwidths Constant η and λ Time–varying η and λ

LL LML LL LML LL LML LL LML
Gold −2627.64 −2635.92 −2619.86 −2625.66 −2622.51 −2633.82 −2619.80 −2645.50
Silver −3479.36 −3483.21 −3473.27 −3477.47 −3465.51 −3475.54 −3460.60 −3486.24
Copper −3354.21 −3361.96 −3354.71 −3361.17 −3350.76 −3362.23 −3350.77 −3375.94
Platinum −2870.26 −2877.51 −2871.17 −2878.80 −2875.24 −2886.57 −2873.19 −2895.73
Palladium −3423.18 −3429.40 −3419.37 −3424.92 −3412.64 −3423.65 −3410.09 −3433.89
Corn −3451.48 −3459.11 −3450.04 −3455.18 −3444.06 −3453.01 −3448.25 −3468.56
Wheat −2904.35 −2910.35 −2901.28 −2907.39 −2904.51 −2916.59 −2903.41 −2925.23
Soybean meal −3273.50 −3282.20 −3258.84 −3265.00 −3249.10 −3259.85 −3248.80 −3274.35
Soybean oil −2904.34 −2910.34 −2901.24 −2907.27 −2904.48 −2916.47 −2903.46 −2925.25
Soybeans −3040.21 −3051.38 −3037.78 −3044.92 −3032.14 −3044.22 −3024.35 −3049.39
Oats −3462.33 −3467.54 −3457.84 −3462.43 −3459.72 −3469.06 −3458.52 −3481.58
Sugar −3550.04 −3556.08 −3546.61 −3552.27 −3545.58 −3557.98 −3539.95 −3567.25
Coffee −3264.06 −3267.03 −3253.58 −3258.19 −3248.58 −3258.25 −3246.06 −3269.87
Cocoa −3325.29 −3331.93 −3325.00 −3330.89 −3324.11 −3335.97 −3324.92 −3350.84
Cotton −3377.39 −3384.01 −3357.52 −3363.74 −3352.16 −3362.56 −3363.06 −3388.34
Orange juice −3523.98 −3530.28 −3511.72 −3516.78 −3506.98 −3516.75 −3502.45 −3526.07
Live cattle −2157.82 −2165.84 −2132.10 −2138.03 −2120.16 −2132.07 −2119.33 −2146.24
Lean hogs −2894.64 −2909.44 −2875.60 −2887.15 −2881.94 −2892.91 −2871.49 −2893.60
Feeder cattle −1848.35 −1859.02 −1845.40 −1851.48 −1846.28 −1859.79 −1842.46 −1869.98
Lumber −3491.89 −3501.93 −3493.16 −3502.05 −3512.64 −3525.25 −3504.90 −3531.37
Heating oil −3262.10 −3269.74 −3252.68 −3259.51 −3242.36 −3255.45 −3239.38 −3263.29
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Figure 1: The posterior predictive densities and CDFs of the one–step out–of–sample return
under the Gaussian kernel GARCH(1,1) and skewed Student t GARCH(1,1) models for the S&P
500 index: (1) density of yn+1; and (2) CDF of yn+1.
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