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Abstract: We propose to approximate the unknown error density of a nonparametric re-

gression model by a mixture of Gaussian densities with means being the individual error

realizations and variance a constant parameter. This mixture density has the form of a kernel

density estimator of error realizations. We derive an approximate likelihood and posterior for

bandwidth parameters in the kernel–form error density and the Nadaraya–Watson regression

estimator and develop a sampling algorithm. A simulation study shows that when the true

error density is non–Gaussian, the kernel–form error density is often favored against its

parametric counterparts including the correct error density assumption. Our approach is

demonstrated through a nonparametric regression model of the Australian All Ordinaries

daily return on the overnight FTSE and S&P 500 returns. Using the estimated bandwidths, we

derive the one–day–ahead density forecast of the All Ordinaries return, and a distribution–

free value–at–risk is obtained. The proposed algorithm is also applied to a nonparametric

regression model involved in state–price density estimation based on S&P 500 options data.
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1 Introduction

A simple and commonly used estimator of the regression function in a nonparametric re-

gression model is the Nadaraya–Watson (NW) estimator, whose performance is mainly

determined by the choice of bandwidths. A large literature exists on bandwidth selection for

the NW estimator, and the most popular approaches are the rule–of–thumb, cross–validation

(CV), plug–in and bootstrapping methods (see for example, Härdle, 1990; Herrmann, Engel,

Wand, and Gasser, 1995; Hall, Lahiri, and Polzehl, 1995). Even though the NW estimator

does not require an assumption on the analytical form of the error density, it is often of great

interest to investigate the distribution of the response around the estimated mean. Such

a distribution is characterized by the error density, estimation of which is a fundamental

issue in statistical inference for any regression model. This issue was extensively discussed by

Efromovich (2005), who developed a nonparametric approach to error–density estimation in

a nonparametric regression model using residuals as proxies of errors.

A simple approach to error density estimation is the kernel density estimator of residuals,

whose performance is mainly determined by the choice of bandwidth. This density estimator

depends on residuals fitted through the NW estimator of the regression function. More-

over, the resulting density estimator of residuals provides no information for the purpose of

choosing bandwidths in the NW regression estimator, although bandwidth selection in this

situation depends on the error distribution (see for example, Zhang, Brooks, and King, 2009).

Therefore, there is a lack of a data–driven procedure for choosing bandwidths for the two

estimators simultaneously. This motivates the study reported in this paper.

Our investigation of error density estimation is also motivated by its practical applications.

In financial econometrics, an important use of the estimated error density in modeling an

asset return is to estimate the value–at–risk (VaR) for holding the asset. In such a model,

any mis-specification of the error density may produce an inaccurate estimate of the VaR

and make the asset holder unable to control risk. Therefore, being able to estimate the error

density can be just as important as being able to estimate the mean of the regression model.
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Let y denote the response and x = (x1, x2, . . . , xd )′ a set of explanatory variables or re-

gressors. Given observations (yi ,xi ), for i = 1,2, . . . ,n, a nonparametric regression model is

expressed as

yi = m(xi )+εi , (1)

where εi , for i = 1,2, . . . ,n, are assumed to be independent and identically distributed (iid)

with an unknown density denoted as f (ε). Let the NW estimator of the regression function

be denoted as m̂(x;h) with h a vector of bandwidths. In this paper, we assume that the

unknown f (ε) is approximated by a kernel–form density given by

f (ε;b) = 1

n

n∑
i=1

1

b
φ

(ε−εi

b

)
, (2)

where φ(·) is the probability density function of the standard Gaussian distribution.

The density function given by (2) is a mixture of n Gaussian densities, and the component

densities have a common standard deviation b and means εi , for i = 1,2, . . . ,n. From the

viewpoint of kernel smoothing, this error density is of the form of a kernel density estimator

of the errors (rather than residuals) with φ(·) the kernel function and b the bandwidth.

Consequently, it is reasonable to expect that f (ε;b) can approximate f (ε) well when f (ε) is

unknown. We call (2) the kernel–form error density, and b is referred to as the bandwidth.

We aim to develop a sampling algorithm, through which the bandwidths, h and b, can be

simultaneously estimated. We treat bandwidths as parameters and conduct our investigation

in a parametric way although the underlying model is nonparametric. Our main contribution

is to construct an approximate likelihood and therefore, the posterior of bandwidth parame-

ters for the nonparametric regression model with its unknown error density approximated by

the kernel–form error density given by (2).

When the iid errors follow a Gaussian distribution, Zhang et al. (2009) derived an approxi-

mate posterior of h for given y = (y1, y2, . . . , yn)′, where the likelihood of y for given h is the

product of the Gaussian densities of yi with its mean approximated by the leave–one–out

NW estimator denoted as m̂i (xi ;h), for i = 1,2, . . . ,n. The error density can be assumed to be

of other parametric forms such as a mixture of Gaussian densities. However, any parametric
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assumption of the error density is likely to be wrong, and subsequent inference might be

misleading. The contribution of this paper is not only a relaxation of the Gaussian error

assumption of Zhang et al. (2009), but also a novel sampling algorithm under a flexible error

density in regression models.

There is a growing literature on the estimation of the error density in a nonparametric

regression model. Efromovich (2005) presented the so–called Efromovich–Pinsker estimator

of the error density and showed that this estimator is asymptotically as accurate as an oracle

that knows the underlying errors. Cheng (2004) showed that the kernel density estimator

of residuals is uniformly, weakly and strongly consistent. When the regression function is

estimated by the NW estimator and the error density is estimated by the kernel estimator of

residuals, Samb (2011) proved the asymptotic normality of the bandwidths in both estimators

and derived the optimal convergence rates of the two types of bandwidths. Linton and Xiao

(2007) proposed a kernel estimator based on residuals obtained through local polynomial

fitting of the unknown regression function. They showed that their estimator is adaptive and

concluded that adaptive estimation is possible in local polynomial fitting, which includes the

NW estimator as a special case. In a class of nonlinear regression models, Yuan and de Gooijer

(2007) constructed an approximate likelihood through the kernel density estimator of pre-

fitted residuals with its bandwidth pre-chosen by the rule–of–thumb. They proved that under

some regularity conditions, the resulting maximum likelihood estimates of parameters are

consistent, asymptotically normal and efficient. Jaki and West (2008) proposed using the

kernel density estimator of the pre-fitted residuals to construct an approximate likelihood,

which they called the kernel likelihood.

In all these investigations, residuals were commonly used as proxies of errors, and the

bandwidth for the kernel density estimator of residuals was pre–chosen. To our knowledge,

there is no method that can simultaneously estimate the bandwidths for the NW estimator of

the regression function and the kernel–form error density.

Our proposed kernel–form error density is robust in terms of different specifications of the
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error density in a nonparametric regression model. In order to understand the relative gains

and losses that result from this robust assumption against other parametric assumptions, we

conduct simulation studies by simulating samples through a nonlinear regression function,

where the error densities are respectively, the Gaussian and several mixture densities of

two Gaussians. We find that the proposed sampling approach to bandwidth estimation

outperforms its traditional counterparts, the rule–of–thumb, plug–in and bootstrapping

methods. Moreover, within the sampling framework, when the true error density is non–

Gaussian, the kernel–form error density is often favored against its parametric competitors,

including the correct error–density assumption.

We apply the proposed sampling algorithm to the estimation of the bandwidths for

the nonparametric regression of the Australian All Ordinaries (Aord) daily return on the

overnight FTSE and S&P 500 returns with its error density being the kernel–form. With the

estimated bandwidths and overnight FTSE and S&P 500 returns, we derive the one–day–ahead

density forecast of the Aord return to use it to compute a distribution–free VaR. Moreover,

the kernel–form error density is favored with very strong evidence against the Gaussian and

a location–scale mixture density of two Gaussians according to Bayes factors. Our second

application is the one discussed by Zhang et al. (2009) who estimated the bandwidths for a

nonparametric regression model so as to estimate the state–price density (SPD) of the S&P

500 index at the maturity of its call option. In this application, we assume that the unknown

error density is approximated by the kernel–form density and find that this robust error

density is favored with very strong evidence against the Gaussian error density.

The rest of this paper is organized as follows. In Section 2, we derive an approximate pos-

terior of bandwidth parameters in the NW estimator and kernel-form error density. Section 3

presents simulations to evaluate the performance of Bayesian estimation of bandwidths

under the Gaussian and several mixture densities of two Gaussians. In Section 4, we present

an empirical investigation of the nonparametric relationship between stock index returns

across three stock markets. Our proposed method is also validated through a nonparametric
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regression model involved in the SPD estimation. Section 6 concludes the paper.

2 Bayesian estimation of bandwidths

The bandwidths in the NW estimator of the regression function and the kernel-form error

density estimator play an important role in controlling the smoothness of the regression

function and the error density estimator. In this paper, we treat these bandwidths as parame-

ters. This is not new in the context of kernel density estimation based on direct observations

(see for example, Brewer, 2000; Gangopadhyay and Cheung, 2002; de Lima and Atuncar,

2011). In nonparametric and semiparametric regression models, bandwidths are also treated

as parameters (see Härdle, Hall, and Ichimura, 1993; Rothe, 2009, among others). Given

observations (yi ,xi ), for i = 1,2, . . . ,n, we aim to construct an approximate likelihood, as well

as an approximate posterior of the parameters.

2.1 Parametric assumptions about the error density

Before introducing a flexible error density into the nonparametric regression model given

by (1), we briefly describe how an approximate likelihood function could be constructed

under parametric assumptions of the error density. Zhang et al. (2009) considered the

nonparametric regression model given by (1), where εi , for i = 1,2, . . . ,n, are iid and follow

N (0,σ2) with σ2 an unknown parameter. The model implies that

yi −m(xi )

σ
∼ N (0,1).

As the analytical form of m(xi ) is unknown, it is estimated by the leave–one–out NW estimator,

m̂(−i ) (xi ;h) =
(n −1)−1 ∑n

j=1; j 6=i Kh(xi −x j )y j

(n −1)−1 ∑n
j=1; j 6=i Kh(xi −x j )

, (3)

where Kh(z) = (h1h2 · · ·hd )−1 K (z./h) with K (·) being a kernel function and “./” division by

elements. Let h2 = (
h2

1,h2
2, . . . ,h2

d

)′
. Treating σ2 and the elements of h2 as parameters, one

can derive an approximate likelihood of y = (y1, y2, . . . , yn)′ as

LG
(
y

∣∣h2,σ2 )= (
2πσ2)−n/2

exp

(
− 1

2σ2

n∑
i=1

[
yi −m̂i (xi ,h)

]2

)
. (4)
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Zhang et al. (2009) derived the posterior of h2 and σ2, which is proportional to the product of

(4) and pre-chosen priors of h2 and σ2. A posterior simulation algorithm was also presented

for estimating h2 and σ2.

One may also assume a location–scale mixture of two Gaussian densities for the iid errors

in (1) to reflect a wider range of error distributions. Such a mixture density is given by

φM (ε) = w

σ1
φ

(
ε−µ1

σ1

)
+ (1−w)

σ2
φ

(
ε−µ2

σ2

)
, (5)

where w ∈ (0,1) is a weight parameter, µ1 and µ2 are location parameters, and σ1 and σ2 are

scale parameters. As this mixture density is assumed to be the error density, a restriction of

the mean wµ1 + (1−w)µ2 = 0 leads to µ2 =−wµ1/(1−w). Thus, there are four parameters to

be estimated, namely (w,σ1,σ2,µ1)′.

The location–scale mixture density given by (5) can be simplified to either a scale mixture

of two Gaussians by restricting µ1 = 0, or a location mixture of two Gaussians by restricting

σ1 =σ2. Consequently, the number of parameters under each simplified mixture is less than

that under the location–scale mixture.

A limitation of these parametric assumptions about the error density is that any wrong

assumption may lead to a poor choice of bandwidths, leading to a more inaccurate estimate

of the regression function. In what follows, we will investigate a very flexible specification of

the error density, namely the kernel–form error density.

2.2 A kernel–form error density

A standard distributional assumption of regression errors has the benefit of simplicity in

obtaining theoretical results, but may suffer from the problem of being a poor fit to the data.

Consequently, one may wish to sacrifice some analytical convenience so as to improve the fit

to the data through a more flexible distribution. There have been some advances along these

lines. For example, in a smoothly mixing regression model, Geweke and Keane (2007) used a

finite Gaussian mixture to derive the likelihood. In a linear regression model, Leslie, Kohn,

and Nott (2007) proposed to model the error distribution through a Dirichlet process mixture
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prior. Griffin, Quintana, and Steel (2011) provided a survey of some of the recent work in this

area.

In the nonparametric regression model given by (1), we assume that the iid errors follow

an unknown distribution with its density approximated by the kernel–form density given by

(2). In the current literature, when the error density of a regression model is non–Gaussian,

a location–scale mixture density of several Gaussian components is often used, where the

component Gaussian densities have different means and variances. However, the use of

such a mixture density is at the cost of increasing the number of parameters. In contrast, the

kernel–form error density has only one bandwidth parameter to be estimated, and this is one

of its advantages against the location–scale mixture density. Moreover, due to its form of the

kernel density estimator of errors, this kernel–form error density will be very close to the true

error density when the sample size is large. Zhang and King (2011) demonstrated the validity

of this kernel–form density as a density of iid errors in a family of univariate GARCH models.

Their derived approximate likelihood is well defined, and subsequent posterior simulation is

meaningful.

We investigate the construction of an approximate likelihood and posterior for (1) with

its unknown error density approximated by the kernel–form error density given by (2). If

m(x) is known, this kernel–form density is a well–defined density function of the iid errors.

Therefore, we can derive the density of the response variable as

yi ∼ f
({

yi −m(xi )
}

;b
)= 1

n

n∑
j=1

1

b
φ

({
yi −m(xi )

}−{
y j −m(x j )

}
b

)
, (6)

for i = 1,2, . . . ,n.

The regression function in (1) is typically unknown, but can be estimated by the NW

estimator for the purpose of constructing the likelihood. The realized errors or residuals are

used as proxies of errors. We propose to plug–in the leave–one–out NW estimator of m(x)

given by (3) into (6). Therefore, the density of yi is approximated by f̃
({

yi −m̂(−i )(xi ;h)
}

;b
)
,
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which is expressed as

f̃
({

yi −m̂(−i )(xi ;h)
}

;b
)= 1

n

n∑
j=1

1

b
φ

({
yi −m̂(−i )(xi ;h)

}−{
y j −m̂(− j )(x j ;h)

}
b

)
. (7)

The use of m̂(−i )(xi ;h) as an approximation to the mean of yi was also proposed by Zhang

et al. (2009) in the nonparametric regression model with Gaussian errors. They constructed

the likelihood through the Gaussian density of yi with its mean approximated by m̂(−i )(xi ;h).

2.2.1 An approximate likelihood

The likelihood of y for given h and b, is approximated by the product of the density of yi given

by (7), for i = 1,2, . . . ,n. However, it is impossible to estimate b by maximizing the resulting

approximate likelihood, because it contains at least one unwanted term φ(0)/b. The resulting

approximate likelihood would approach infinity as b tends to zero. Exclusion of the i th term

only from the summation of (7) is not enough, because if y j −m̂(− j )(x j ;h) = yi −m̂(−i )(xi ;h),

for j 6= i , the j th term in the summation becomes φ(0)/b. Nonetheless, a remedy to this

problem is to exclude the j th term that makes
{

y j −m̂(− j )(x j ;h)
}= {

yi −m̂(−i )(xi ;h)
}

, from

the summation given by (7). Let

Ji =
{

j : y j −m̂(− j )(x j ;h) 6= yi −m̂(−i )(xi ;h), for j = 1,2, . . . ,n
}

,

for i = 1,2, . . . ,n, and let ni denote the number of terms excluded from the summation in (7).

The density of yi is therefore, approximated as

f̃
({

yi −m̂(−i )(xi ;h)
}

;b
)= 1

n −ni

∑
j∈Ji

1

b
φ

({
yi −m̂(−i )(xi ;h)

}−{
y j −m̂(− j )(x j ;h)

}
b

)
, (8)

where the subscript of m̂ means that this is the leave–one–out estimate. Let ε̂i denote

yi −m̂(−i )(xi ;h), for i = 1,2, . . . ,n.

Given h2 and b2, the likelihood of y = (y1, y2, . . . , yn)′ is approximated by

LK
(
y|h2,b2)= n∏

i=1

{
1

n −ni

n∑
j∈Ji

1

b
φ

({
yi −m̂(−i )(xi ;h)

}−{
y j −m̂(− j )(x j ;h)

}
b

)}
. (9)
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2.2.2 Priors

We now discuss the issue of prior choices for the bandwidths. Let π
(
h2

k

)
denote the prior

of h2
k , for k = 0,1, . . . ,d . As b2 and h2

k , for k = 1,2, . . . ,d , which are respectively, the squared

bandwidths for the kernel–form error density and the NW estimator, play the same role as a

variance parameter, we assume that the priors of b2 and h2
k are the inverse Gamma density

denoted as IG(αb ,βb) and IG(αh ,βh), respectively. Therefore, the priors of b2 and h2
k are

expressed explicitly as

π
(
b2)= (

βb
)αb

Γ(αb)

(
1

b2

)αb+1

exp

{
−βb

b2

}
, (10)

π
(
h2

k

)= (
βh

)αh

Γ(αh)

(
1

h2
k

)αh+1

exp

{
−βh

h2
k

}
, for k = 1,2, . . . ,d , (11)

where αb , βb , αh and βh are hyperparameters.

2.2.3 An approximate posterior

The joint posterior of h2 and b2 is approximately expressed as (up to a normalizing constant)

π
(
h2,b2|y)∝ LK

(
y|h2,b2)π(b2)

d∏
k=1

π
(
h2

k

)
. (12)

Note that unlike the joint approximate posterior derived by Zhang et al. (2009), the posterior

given by (12) does not suggest a closed form for either a marginal posterior or a conditional

posterior. Therefore, we use an adaptive version of the random–walk Metropolis algorithm to

sample the elements of h2 and b2 from (12) (see Garthwaite, Fan, and Sisson, 2011).

At the j th iteration, the current value of h2 denoted as h2
( j ) is updated by h2

( j+1) =

h2
( j ) +τ ju/||u||, where u is simulated from a proposal density that is the multivariate stan-

dard Gaussian, and τ j is an adaptive tuning coefficient computed according to Garthwaite

et al. (2011). h2
( j+1) is accepted or rejected according to the Metropolis–Hastings rule. At

this iteration, the current value of b2 is also updated through the random–walk Metropolis

algorithm, where the proposal density is the univariate standard Gaussian. The optimal target

value of the acceptance probability is 0.234 for multivariate updating and 0.44 for univariate

updating (see for example, Roberts and Rosenthal, 2009; Garthwaite et al., 2011).
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Upon completing the sampling procedure, we use the ergodic average of the sampled

chain of (b,h′)′ as the estimate of (b,h′)′. Therefore, the analytical form of the kernel–form

error density can be derived based on the estimated b and h.

3 Monte Carlo simulation

The purpose of this simulation study is three–fold. First, with one simulated sample, we

illustrate the use and effectiveness of our Bayesian sampling algorithm for estimating the

bandwidths in the NW regression estimator and the kernel–form error density. As the true

error density is unknown in practice, the proposed method is expected to be more flexible

than its parametric counterparts.

Second, we generate 1,000 samples from the same nonparametric regression model with

its error densities assumed to be respectively, Gaussian, a scale mixture of two Gaussians,

a location mixture of two Gaussians, and a location–scale mixture of two Gaussians. We

examine the performance of the proposed Bayesian sampling in estimating the bandwidths of

the NW estimator, in comparison with the performance of some existing bandwidth selection

methods, such as the rule–of–thumb (ROT) discussed in Scott (1992), CV and bootstrapping.

Moreover, we examine the performance of the bandwidth in the kernel–form error density

estimated through Bayesian sampling, in comparison to the performance of the bandwidth

selected through CV based on residuals.

Finally, we compare the results derived through Bayesian sampling under the assumptions

of kernel–form error density, the Gaussian and a mixture of two Gaussians, where Bayes

factors are used for comparison purposes. We briefly describe Bayes factors below.

3.1 Bayes factors

In Bayesian inference, model selection is often conducted through the Bayes factor of the

model of interest against a competing model. The Bayes factor reflects a summary of evidence

provided by the data supporting the model as opposed to its competing model. The Bayes

factor is defined as the ratio of the marginal likelihoods derived under the model of interest
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and its competing model, respectively. The marginal likelihood is the expectation of the

likelihood with respect to the prior of parameters. It is seldom calculated as the integral

of the product of the likelihood and prior of parameters, but instead, is often computed

numerically (Gelfand and Dey, 1994; Newton and Raftery, 1994; Chib, 1995; Kass and Raftery,

1995; Geweke, 1999, among others). In this paper, we employed the method proposed by

Chib (1995) to compute the marginal likelihood.

Let θ denote the parameter vector and y the data. Chib (1995) showed that the marginal

likelihood under a model A is expressed as

PA (y) = `A (y|θ)πA (θ)

πA (θ|y)
, (13)

where `A (y|θ), πA (θ) and πA (θ|y) denote respectively, the likelihood, prior and posterior

under model A . PA (y) is usually computed at the posterior estimate of θ. The numerator

has a closed form and can be computed analytically. The denominator is the posterior of

θ, which is often replaced by its kernel density estimator based on the simulated chain of θ

through a posterior sampler. The Bayes factor of model A against model B is defined as

BF = PA (y)

PB(y)
,

which is used to make a decision on whether A is favored against B, according to the Jeffreys

(1961) scales modified by Kass and Raftery (1995). A Bayes factor value between 1 and 3

indicates that the evidence supporting A against B is not worth more than a bare mention.

When the Bayes factor is between 3 and 20, A is favored against B with positive evidence;

when the Bayes factor is between 20 and 150, A is favored against B with strong evidence;

and when the Bayes factor is above 150, A is favored against B with very strong evidence.

3.2 Performance of the proposed bandwidth estimation methods

Consider the relationship between y and x= (x1, x2, x3)′ given by

yi = sin(2πx1,i )+4(1−x2,i )(1+x2,i )+ 2x3,i

1+0.8x2
3,i

+εi , (14)
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for i = 1,2, . . . ,n. A sample of 1,000 observations was generated by drawing x1,i , x2,i and x3,i

independently from the uniform density on (0,1) and εi from the mixture of two Gaussian

densities defined as 0.7N (1,0.72)+0.3N (−7/3,1.52), and calculating yi according to (14).

The relationship between yi and (x1,i , x2,i , x3,i )′ was modeled by the nonparametric re-

gression model given as

yi = m(x1,i , x2,i , x3,i )+εi , (15)

where ε1,ε2, . . . ,εn are assumed to be iid.

Assuming that the error density of (15) is unknown and is approximated by the kernel–

form density (2), we applied our sampling algorithm to (15) using the generated sample. The

hyperparameters were chosen as αh =αb = 1 and βh =βb = 0.05. These values are often used

as hyperparameter values of an inverse Gamma density when it is chosen as the prior of a

variance parameter (see for example, Geweke, 2009). The adaptive random–walk Metropolis

algorithm was employed, where the proposal density is the multivariate Gaussian with an

identity variance–covariance matrix for updating h2, but each vector simulated from the

proposal density was scaled by its length. The proposal density for updating b2 is the standard

Gaussian. The burn–in period contains the first 1,000 draws, and the following 10,000 draws

were recorded. The acceptance rate was controlled to be around 0.234 for multivariate draws

and 0.44 for univariate draws through the adaptive random–walk Metropolis algorithm of

Garthwaite et al. (2011). The posterior means of the bandwidths are presented in Table 1.

The mixing performance of this posterior sampler is examined by the simulation ineffi-

ciency factor (SIF), which can be loosely interpreted as the number of draws needed so as to

obtain independent draws from the simulated Markov chain. For example, a SIF value of 20

indicates that approximately, we would need to keep one draw for every 20 draws so as to

derive independent draws (see for example, Roberts, 1996; Kim, Shephard, and Chib, 1998;

Tse, Zhang, and Yu, 2004; Nott and Kohn, 2005).

The standard deviation of the posterior mean is approximated by the batch–mean stan-

dard deviation. It becomes smaller and smaller when the number of simulation iterations
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Table 1: Parameter estimates and their statistics for Bayesian bandwidth estimation under the
kernel–form, Gaussian and location–scale mixture error densities for a simulated sample with
sample size n = 1,000. LML refers to log marginal likelihood.

Error Parameter Estimate 95% Bayesian Standard Batch–mean SIF
density credible interval deviation standard dev
Kernel–form b 0.2514 (0.1613, 0.3520) 0.1582 0.0061 14.9

h1 0.2132 (0.1790, 0.2645) 0.0539 0.0026 24.0
h2 0.1984 (0.1711, 0.2296) 0.0411 0.0015 13.2
h3 0.4982 (0.4252, 0.5749) 0.1072 0.0033 9.6
LML -1832.49

Gaussian σ 1.9217 (1.8405, 2.0037) 0.0221 0.0002 1.2
h1 0.1994 (0.1472, 0.2806) 0.0266 0.0008 9.1
h2 0.2052 (0.1618, 0.2685) 0.0217 0.0007 10.1
h3 0.4409 (0.3027, 0.6285) 0.0767 0.0032 17.1
LML -2079.48

Location–scale w 0.6804 (0.6381, 0.7191) 0.0226 0.0008 13.9
mixture h1 0.1068 (0.0874, 0.1288) 0.0282 0.0009 10.5

h2 0.1003 (0.0823, 0.1202) 0.0247 0.0008 9.7
h3 0.2489 (0.2058, 0.3017) 0.0642 0.0021 10.3
σ1 0.7313 (0.6764, 0.7851) 0.0290 0.0009 8.6
σ2 1.6889 (1.4677, 1.9279) 0.1173 0.0038 10.4
µ1 1.0562 (0.9873, 1.1206) 0.0356 0.0011 10.4
LML -1848.89

increases, if the sampler achieves a reasonable mixing performance. The SIF and batch–mean

standard deviation were used to monitor the mixing performance. Table 1 presents the values

of these two indicators, which show that the sampler has mixed very well.

For comparison purposes, we also report the estimates of bandwidths and parameter(s)

derived through Zhang et al.’s (2009) sampling algorithm with the error density assumed

to be respectively, the Gaussian and a location–scale mixture of two Gaussians given by (5).

Under both assumptions of the error density, the priors of bandwidths are the same as those

under the kernel–form error density. Under Gaussian errors, the prior of σ2 is the inverse

Gamma density with hyperparameters ασ = 1 and βσ = 0.05. The same prior was chosen for

σ2
1 and σ2

2 under the assumption of location–scale mixture density, where in addition, the

prior of w is the uniform density on (0,1), and the prior of µ1 is N (0,9). The results are also

given in Table 1.

We calculated the marginal likelihood at the estimates of parameters in each situation and

found the following evidence. First, the marginal likelihood obtained under the assumption
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of kernel–form error density is larger than that obtained under either the Gaussian or the

location–scale mixture density. The Bayes factors of the kernel–form density are respectively,

exp(246.99) against the Gaussian and exp(16.4) against the location–scale mixture. Therefore,

the kernel–form error density is favored against its parametric counterparts with very strong

evidence. Second, we obtained an estimate of the bandwidth for the kernel–form error density

estimator, whose graph is plotted in Figure 1, along with the graphs of the true error density,

the Gaussian and location–scale mixture with plugged–in parameter estimates. Among these

three estimated error density functions, the one derived under the kernel–form error density

is the closest to the true density.

−6 −4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Error

E
st

im
at

ed
 d

en
si

ty

True density
Kernel−form
Gaussian
Location−scale mixture

Figure 1: Graphs of the true and estimated densities of regression errors.

For each of the three error–density assumptions in the nonparametric regression model

given by (15), we computed the marginal likelihood given by (13) and the average squared

errors (ASE) defined as

ASE = 1

n

n∑
i=1

[m̂(xi ,hn)−m(xi )]2 .
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3.3 Accuracy of the estimated bandwidths

We examine the accuracy of the estimated bandwidths for the NW estimator and the kernel–

form error density through the proposed Bayesian sampling algorithm. Therefore, we gener-

ated 1,000 samples through the model given by (14), where the error density was assumed

to be respectively, Gaussian, a scale mixture of two Gaussians, a location mixture of two

Gaussians and a location–scale mixture of two Gaussians. As both m(x) and the error density

are known, we are able to examine the performance of the proposed Bayesian sampling

procedure for estimating bandwidths.

3.3.1 Accuracy of the estimated bandwidths for the NW estimator

The accuracy of the estimated/selected bandwidths for the NW estimator is measured by the

ASE of the resulting NW estimator of the regression function. In kernel density estimation

of directly observed data, the rule–of–thumb (ROT) is often used for bandwidth selection

(see for example, Silverman, 1986; Scott, 1992; Bowman and Azzalini, 1997). Härdle and

Müller (2000) indicated that methods for bandwidth selection in nonparametric regression

are the same as those for kernel density estimation. Therefore, we considered the ROT as a

bandwidth selection method for comparison purposes.

The CV for bandwidth selection has been extensively discussed (Wahba and Wold, 1975;

Härdle and Marron, 1985; Härdle and Müller, 2000, among others). In addition, the bootstrap-

ping approach to bandwidth selection in nonparametric regression was presented by Hall

et al. (1995), where two pilot bandwidths have to be specified before bootstrapping begins.

The purpose of the first bandwidth is to generate a bootstrapping sample, while the second

aims to obtain an initial estimate of the regression function. In our simulation study, the two

pilot bandwidths were chosen using the ROT and CV.

We generated 1,000 samples through the model given by (14) under each of the four error

densities. The error densities we used are given in Table 2. For each sample, we estimated

bandwidths through the proposed Bayesian sampling with the error density assumed to

be respectively, the correct one from which we simulated random errors, and the kernel–
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form density. We also chose bandwidths for the NW estimator through the ROT, CV and

bootstrapping. The ASE of the NW estimator with its bandwidth vector derived through each

of the aforementioned methods was calculated.2

Table 2: Choices of the error density.

Gaussian density N (0,0.92)
Scale mixture of two Gaussians 0.7N (0,0.72)+0.3N (0,1.52)
Location mixture of two Gaussians 0.7N (−1,1)+0.3N (7/3,1)
Location-scale mixture of two Gaussians 0.7N (1,0.72)+0.3N (−7/3,1.52)

We calculated the mean and standard deviation (sd) of the 1,000 ASE values obtained

under each error density and through each bandwidth estimation/selection method. These

results are presented in Table 3. No matter which error density was used to generate samples,

the mean ASE derived through Bayesian sampling with any error–density assumption is

clearly smaller than that derived through either the ROT, CV or bootstrapping. The standard

deviations of the corresponding ASE values are comparable among different methods, except

that the bootstrapping results vary for different error densities.

Table 3: Mean and standard deviation (sd) of 1,000 ASE derived through each bandwidth
estimation method based on 1,000 generated samples with errors simulated from four densities.

Source of simulated errors ROT CV Bootstrap Bayesian
Correct Kernel–form Inefficiency (%)

N (0,0.92) Mean 0.0721 0.0701 0.0900 0.0582 0.0585 100.52
sd 0.0089 0.0107 0.0161 0.0090 0.0091 101.11

0.7N (0,0.72)+0.3N (0,1.52) Mean 0.0794 0.0754 0.1136 0.0653 0.0656 100.46
sd 0.0103 0.0120 0.0244 0.0104 0.0105 100.96

0.7N (−1,1)+0.3N (7/3,1) Mean 0.1534 0.1452 0.4223 0.1159 0.1176 101.47
sd 0.0237 0.0247 0.1364 0.0225 0.0228 101.33

0.7N (1,0.72)+0.3N
(−7/3,1.52

)
Mean 0.1744 0.1647 0.4307 0.1152 0.1174 101.91
sd 0.0238 0.0249 0.1501 0.0222 0.0227 102.25

In terms of Bayesian sampling for bandwidth estimation, the kernel–form error density

leads to a slightly inaccurate NW estimator in comparison to the correct error density, which

is unknown in practice. Regardless of the type of error density, Bayesian sampling with the

kernel–form error density performs slightly worse than its Bayesian counterpart with the

2As with Bayesian sampling, the bandwidth for the kernel–form error density, together with the parameter(s)
in each parametric assumption of the error density, were also estimated, but they were not used for the purpose
of calculating the ASE because only the mean function was used.
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correct error–density assumption. Under each of the four error densities, the inefficiency

factor of the kernel–form density in comparison to the correct one, which we define as the

ratio of the mean ASE of the former over the mean ASE of the latter, is reported in the last

column of Table 3. In terms of the mean of ASE, the kernel–form error–density assumption is

slightly inefficient than the correct assumption of the error density by a value that is between

0.46% and 1.91%. Moreover, in terms of the standard deviation of ASE, the former assumption

is inefficient than the latter by a value that is between 0.96% and 2.25%.

3.3.2 Accuracy of the estimated bandwidth for the kernel–form error density

The performance of the estimated bandwidth for the kernel–form error density was examined

through the integrated squared errors (ISE) defined as

∫ ∞

−∞

[
f̂ (ε; b̂)− f (ε)

]2
dε,

where f̂ (ε; b̂) is the kernel–form error density with bandwidth b̂ estimated through Bayesian

sampling. In this simulation study, the ISE was approximated through a large number of grid

points on a wide interval that covers the vast majority of the density function.

Our proposed Bayesian sampling method for bandwidth estimation in the kernel–form

error density is competing with the likelihood CV for bandwidth selection in the kernel

density estimator of the residuals. To compute residuals, CV was used to select bandwidths

for the NW estimator because CV is the best performer among the bandwidth selection

methods that are alternatives to Bayesian sampling. Thus, this competing approach involves

two stages of using the CV method, in which the first stage uses the CV to select bandwidths

for the NW estimator, and the second stage uses the likelihood CV to select the bandwidth for

the kernel density estimator of residuals. Therefore, we call it the two–stage CV.

Under each of the four error densities, we calculated the approximate ISE of the error

density estimator with its bandwidths estimated through Bayesian sampling or the two–stage

CV for each simulated sample. Averaging over all 1,000 samples, we derived the mean and

standard deviation of ISE for each method under each error density. As shown in Table 4,
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Bayesian sampling with the errors being assumed to follow either the kernel–form density or

the correct density, performs clearly better than the two–stage CV in terms of both mean and

standard deviation of ISE.

Table 4: 100× mean and standard deviation (sd) of 1,000 ISE derived through Bayesian band-
width estimation with different error–density assumptions, based on 1,000 generated samples
with errors simulated from four specified densities.

Source of simulated errors Bayesian Two–stage Inefficiency (%)
Correct Kernel Kernel–form Two–stage

N (0,0.92) Mean 0.0430 0.1067 0.1995 248 464
0.7N (0,0.72)+0.3N (0,1.52) Mean 0.0920 0.1405 0.3821 153 415

sd 0.0905 0.0959 0.1816 106 201
0.7N (−1,1)+0.3N (7/3,1) Mean 0.0967 0.1695 0.8641 175 894

sd 0.0660 0.0863 0.3464 131 525
0.7N (1,0.72)+0.3N

(−7/3,1.52
)

Mean 0.2237 0.4659 2.8637 208 1280
sd 0.1313 0.1972 1.2727 150 969

It is not surprising that the kernel–form error density leads to a slightly worse performance

than the correct error density in Bayesian sampling. The inefficiency factor of Bayesian

sampling with a kernel–form error density against its Bayesian competitor is smaller than

that of the two–stage CV method against the same competitor. As the correct error–density

assumption is impossible in practice, Bayesian sampling with the kernel–form error density

is more appropriate than the two–stage CV for bandwidth estimation/selection for estimating

error density.

3.4 Bayesian comparison among error–density assumptions

The benefit of the kernel–form error density assumption is to gain robustness in terms of

error–density specifications, because it has the capacity and flexibility to approximate an

unknown error density. In the nonparametric regression model given by (1), the kernel–form

error density does not outperform its parametric competitors under correct error–density

assumptions. However, this kernel–form error density usually outperforms its parametric

counterparts when the underlying assumptions of the error density are not met. We con-

ducted a simulation study using the same 1,000 samples generated in Section 3.3 to illustrate

this. Under each of the four error densities from which the errors are simulated, we calculate
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Bayes factors of one error–density assumption against its competitors for each simulated

sample. For all 1,000 simulated samples, the derived Bayes factors are grouped into different

categories according to the Jeffreys (1961) scales modified by Kass and Raftery (1995). The

relative frequencies of simulated samples falling in these categories are reported, respectively.

3.4.1 Gaussian distribution for simulating errors

The relative frequencies of simulated samples with N (0,0.92) errors falling in each category

of Bayes factors of the Gaussian error assumption against respectively, the kernel–form error

density and the mixture error density, are presented in Table 5.

Table 5: Relative frequencies of simulated samples falling in different categories of Bayes factors
when errors were simulated from Gaussian.

Category of Scale mixture Kernel–form
Bayes factors of two Gaussians
(0,1/150] 0.0% 1.0%
(1/150,1/20] 0.0% 2.1%
(1/20,1/3] 0.4% 5.7%
(1/3,1] 0.3% 8.7%
(1,3] 0.9% 12.1%
(3,20] 3.4% 29.6%
(20,150] 4.9% 25.1%
(150,∞) 90.1% 15.7%

The kernel–form error density is favoured against the correct Gaussian assumption of the

error density with very strong evidence in 1% of simulated samples, with strong evidence

in 2.1% of simulated samples and with positive evidence in 5.7% of simulated samples. It

means that the kernel–form error density outperforms the correct assumption in 8.8% of

simulated samples. On the other hand, the correct error–density assumption is favored

against the kernel–form error density with very strong evidence in 15.7% of samples, with

strong evidence in 25.1% of samples and with positive evidence in 29.6% of samples. Neither

is favored in 20.8% of simulated samples.

In this case, the scale mixture density of two Gaussians is less competitive than the kernel–

form error density. It is favored with positive evidence in only 0.4% of samples against the

correct error density, while the correct error density is favored against the scale mixture with
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very strong evidence in 90.1% of samples .

3.4.2 Scale mixture density of two Gaussians for simulating errors

The relative frequencies of simulated samples with a 0.7N (0,0.72)+0.3N (0,1.52) error density

falling in each category of Bayes factors of the scale mixture density against respectively, the

Gaussian and kernel–form error densities, are reported in Table 6.

Table 6: Relative frequencies of simulated samples falling in different categories of Bayes factors
when errors were simulated from a scale mixture of two Gaussians.

Category of Gaussian Kernel–form
Bayes factors
(0,1/150] 0.1% 9.2%
(1/150,1/20] 0.0% 10.5%
(1/20,1/3] 0.1% 16.5%
(1/3,1] 0.0% 12.3%
(1,3] 0.0% 10.8%
(3,20] 0.2% 15.4%
(20,150] 1.3% 10.3%
(150,∞) 98.3% 15.0%

The kernel–form error density is favored against the correct assumption of the error

density in 36.2% of simulated samples, while the latter is favored against the former in 40.7%

of simulated samples. Therefore, the kernel–form error density performs slightly worse

than the correct density, which is unknown in practice. The Gaussian error density cannot

compete against the correct error density because the latter is favored against the former in

99.8% of simulated samples.

3.4.3 Location mixture density of two Gaussians for simulating errors

The relative frequencies of simulated samples with a 0.7N (−1,1)+0.3N (7/3,1) error density

falling in each category of Bayes factors of the kernel–form error density against respectively,

the Gaussian and location–scale mixture error densities, are reported in Table 7.

The benefit of the kernel–form error density is clearly indicated by its relative performance

against its parametric rival, the location–scale mixture of two Gaussians. The kernel–form

error density is favored with very strong evidence in 58.8% of simulated samples, strong

evidence in 3% of samples and positive evidence in 2.2% of samples. In total, it is favored
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Table 7: Relative frequencies of simulated samples falling in different categories of Bayes factors
when errors were simulated from a location mixture of two Gaussians.

Category of Gaussian Location–scale
Bayes factors mixture
(0,1/150] 0.0% 28.6%
(1/150,1/20] 0.0% 2.2%
(1/20,1/3] 0.0% 1.9%
(1/3,1] 0.0% 2.3%
(1,3] 0.0% 0.9%
(3,20] 0.0% 2.2%
(20,150] 0.0% 3.0%
(150,∞) 100.0% 58.8%

against the location–scale mixture density in 64% of simulated samples. In contrast, the

location–scale mixture density is favored against the kernel–form density in 34.7% of samples.

The Gaussian error density cannot compete with against kernel–form error density because

the latter is favored against the former with very strong evidence in all simulated samples.

3.4.4 Location–scale mixture for simulating errors

The relative frequencies of simulated samples with a 0.7N (−1,0.72)+0.3N (7/3,1.52) error

density falling in each category of Bayes factors of the location–scale mixture error density

against the Gaussian and kernel–form error densities are respectively, presented in Table 8.

Table 8: Relative frequencies of simulated samples falling in different categories of Bayes factors
when errors were simulated from a location–scale mixture of two Gaussians.

Category of Gaussian Kernel–form
Bayes factors
(0,1/150] 0.0% 84.5%
(1/150,1/20] 0.0% 4.9%
(1/20,1/3] 0.0% 2.7%
(1/3,1] 0.0% 1.0%
(1,3] 0.0% 0.9%
(3,20] 0.0% 1.2%
(20,150] 0.0% 1.0%
(150,∞) 100.0% 3.8%

The kernel–form error density demonstrated a strong competing capacity against its

competitor, the location–scale mixture error density. The former is favored against the latter

with very strong evidence in 84.5% of samples, strong evidence in 4.9% of samples and
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positive evidence in 2.7% of samples. In a total of 92.1% of simulated samples, the kernel–

form density is favored against the location–scale mixture. In contrast, the location–scale

mixture is only favored in 6% of simulated samples. The Gaussian error–density assumption

cannot compete against the location–scale mixture error density because the latter is favored

against the former with very strong evidence in all simulated samples.

4 An application to nonparametric regression of stock returns

Many market analysts tend to believe that the Australian stock market usually follows the

overnight U.S. stock market since the beginning of the sub–prime mortgage crisis. Therefore,

it is of interest to investigate how the Australian stock market is affected by the daily outcome

of the U.S. stock market. As the Australian market does not always follow the overnight

U.S. market, we might need another variable to explain such discrepancies. That suggests a

nonparametric regression model of the All Ordinaries (Aord) daily return on the overnight

S&P 500 and FTSE returns, through which we can investigate the empirical relevance of

the proposed sampling algorithm for bandwidth estimation. As the opening time for share

trading in the Australian stock market is several hours after the closing time of the previous

day trading in the UK and USA stock markets, such an investigation can reveal the relationship

between the Australian stock market and the other two markets.

4.1 Data

We collected the daily closing indices of Aord, S&P 500 and FTSE during the period from

the 3rd January 2007 to the 1st October 2012, excluding non–trading days. The Aord daily

index was matched to the overnight FTSE and S&P 500 indices. When one market had a

non–trading day, we deleted the trading data (if there were any) in the other two markets on

that day. We collected 1,374 observed vectors of the three indices, from which we computed

daily continuously compounded percentage returns. The daily returns of the S&P 500 and

FTSE indices on the 1st October 2012 (local time) were not used for estimating bandwidths,

but were used for forecasting the Aord return and its density on the next day (local time).
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Thus, the sample size is n = 1,373.

We used the bivariate nonparametric regression model given by

yi = m(x1,i , x2,i )+εi , for i = 1,2, . . . ,n, (16)

where yi is the Aord daily return, and the two regressors are respectively, the FTSE and S&P

500 returns, and ε1,ε2, . . . ,εn are assumed to be iid with their density being assumed be the

kernel–form density given by (2). For comparison purposes, we also considered the Gaussian

and location–scale mixture density of two Gaussians as the error density, respectively.

4.2 Bandwidth estimates under different error densities

We used the adaptive random–walk Metropolis algorithm to sample bandwidths under the

kernel–form error density, as well as bandwidths and other parameter(s) under the Gaussian

and location–scale mixture error densities. Under each error density, the ergodic averages of

the resulting simulated chains are used as the estimates of the corresponding bandwidths

and/or other parameters(s). These estimates, as well as their 95% Bayesian credible intervals

and other statistics, are tabulated in Table 9. According to the batch–mean standard deviation

and SIF values, all simulated chains have achieved a very good mixing performance.

The empirical finding justifies the validity and usefulness of the kernel–form error density

in the nonparametric regression model. The log marginal likelihood values are respectively,

−1921.99, −1954.64 and −1925.47 under the kernel–form, Gaussian and location–scale mix-

ture error densities. The Bayes factors of the kernel–form error density are respectively,

exp(32.65) against Gaussian and exp(3.48) against the location–scale mixture. Therefore, the

kernel–form error density is supported against the two parametric competitors with very

strong evidence and strong evidence, respectively.

With the available observed FTSE and S&P 500 returns on the 1st October 2012 (local time),

we forecasted the Aord return on the 2nd October 2012, which is the day being immediately

out of the sample.3 Under each error density, with the updated bandwidths at each iteration,

3Such a forecast could be conducted during the period between the closing time of the U.S. stock market and
the opening time of the Australian stock market.
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Table 9: Estimates of bandwidths and parameter(s), their 95% Bayesian credible intervals, and
their associated statistics under the kernel–form, Gaussian and location–scale mixture of two
Gaussian error densities. ŷn+1 is the one–day–ahead point forecast of the Aord return on the
2nd October 2012.

Error Parameter Estimate 95% Bayesian Standard Batch–mean SIF
density credible interval deviation standard dev
Kernel–form b 0.2072 (0.1104, 0.3306) 0.2718 0.0133 23.8

h1 0.4634 (0.4098, 0.5295) 0.1072 0.0061 32.6
h2 0.6147 (0.5291, 0.7226) 0.1680 0.0092 30.1
ŷn+1 0.3455 (0.3353, 0.3540)

Gaussian σ 0.9983 (0.9622, 1.0351) 0.0190 0.0002 1.0
h1 0.5463 (0.4835, 0.6130) 0.1106 0.0048 18.9
h2 0.6884 (0.6091, 0.7742) 0.1419 0.0064 20.2
ŷn+1 0.3330 (0.3221, 0.3423)

Location–scale w 0.7152 (0.5451, 0.8519) 0.0797 0.0045 31.8
mixture h1 0.5239 (0.4629, 0.5850) 0.1088 0.0045 17.0

h2 0.6363 (0.5627, 0.7103) 0.1283 0.0053 17.3
σ1 0.7277 (0.6267, 0.8147) 0.0463 0.0024 26.3
σ2 1.4838 (1.2760, 1.7830) 0.1274 0.0067 27.7
µ1 0.0443 (-0.0143,0.1142) 0.0320 0.0009 8.1
ŷn+1 0.3334 (0.3231, 0.3438)

we calculated the NW estimator and treated it as the one–day–ahead point forecast. Upon

completing the sampling procedure, we took the average of the forecasted values made at

all iterations. Table 9 presents the averaged forecast and its 95% Bayesian credible interval

obtained under each error density. The one–day–ahead point forecasts of the Aord return

derived under the kernel–form, Gaussian and a location–scale mixture error densities are

respectively, 0.3455%, 0.3330% and 0.3334%, where the forecast under the kernel–form error

density is slightly closer to the observed return, which is 0.9842%, than that derived under

each competitor.

4.3 One–day–ahead density forecast of the Aord return

Under the kernel–form error density, with the updated bandwidths denoted as h̃ and b̃ at

each iteration, we calculated the approximate density of yn+1 given by

f̃Y
(
yn+1;h̃, b̃

)= 1

n

n∑
j=1

1

b̃
φ

({
yn+1 −m̂(xn+1;h̃)

}−{
y j −m̂(x j ;h̃)

}
b̃

)
, (17)

where xn+1 is the vector of observed FTSE and S&P 500 returns on the 1st October 2012.

Note that the leave–one–out strategy is not required for the purpose of calculating density
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values. Upon completing all iterations, we took the average of density functions given by (17)

forecasted at all iterations. The averaged density forecast of yn+1 is presented in Figure 2.
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Figure 2: Estimated densities of the forecasted All Ordinaries return on the 2nd October 2012.

In a similar way, we calculated the averaged error density functions under the assumptions

of Gaussian and location–scale mixture error densities. The graphs of the two forecasted

density functions are also presented in Figure 2. In addition, we used the two–stage CV

described previously to choose bandwidths for the NW estimator, as well as the bandwidth

for the kernel density estimator of residuals, and the chosen bandwidths are (0.6926,0.5513)′

and 0.2070, respectively. The derived error density is also presented in Figure 2.

The kernel–form error density with its bandwidth estimated through Bayesian sampling

is slightly fatter than the density estimator with bandwidths chosen through the two–stage

CV in the area with the return value being from −2.5% to −2%. Apart from this area, the two

density functions are quite similar to each other. The location–scale mixture error density

with its parameters estimated through Bayesian sampling is clearly different from the former
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two. The Gaussian error density with its variance parameter estimated through Bayesian

sampling differs obviously from the former three. It has a lower peak and a slightly thinner

left tail than each of the former three density estimators.

According to the four forecasted density functions of the Aord return on the 2nd October

2012, we computed the one–day VaRs for holding a $100 investment on the Aord index. At

the 95% confidence level, the one–day VaRs are respectively, $1.3450, $1.3099, $1.3017 and

$1.3419 through the kernel–form density, Gaussian, location–scale mixture density, and the

two–stage method. At the 99% confidence level, the corresponding VaRs are $2.4513, $1.9917,

$2.4300 and $2.4741.

The kernel–form error density leads to the largest VaR regardless whether Bayesian sam-

pling or the two–stage method is used. Because the overnight FTSE and S&P 500 indices

dropped by respectively, 0.6475% and 0.4488%, the VaRs derived through the kernel–form

error density reflected the high risk in the Australian stock market.

The performance of each error–density assumption in forecasting VaR was examined by

the corresponding relative frequency of exceedance derived through rolling samples. The

concept of exceedance refers to the fact that the actual daily loss for holding the underlying

asset exceeds the estimated VaR. The sample for estimating bandwidths has a fixed size of

1,000 observed vectors of the Aord, FTSE and S&P 500 returns, and the first sample starts from

the 5th January 2007 to 17th February 2011. After the one–day–ahead VaR is forecasted, the

sample is rolled forward for one day and is used for estimating bandwidths and forecasting

VaR. The last sample finishes at the 1st October 2012, and there are a total of 374 samples for

calculating the relative frequency of exceedance.

At the 99% confidence level, the relative frequencies of exceedance are respectively, 1.07%,

2.90%, 0.80% and 2.67% under the kernel–form, Gaussian, location–scale mixture error

densities, and the kernel density with bandwidths derived trough the two–stage CV. At the

95% confidence level, these relative frequencies are respectively, 5.61%, 7.61%, 5.61% and

7.75%. These calculations suggest that when the confidence level is 99%, the kernel–form
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error density with bandwidths estimated through Bayesian sampling leads to more accurate

VaR estimates than the other three density estimators. When the confidence level is 95%, this

error density works well with its bandwidths estimated/chosen through Bayesian sampling

or the two–stage CV.

5 An application to SPD estimation

Aït-Sahalia and Lo (1998) showed that in a dynamic equilibrium model, the price of a security

is

Pt = exp
{
rt ,λλ

}
E∗

t {Z (ST )} = exp
{
rt ,λλ

}∫ ∞

−∞
Z (ST ) f ∗

t (ST )dST ,

where T = t +λ, λ is the length of time to maturity, rt ,λ is a constant risk–free interest rate

between t and T , E∗
t represents the expectation taken conditional on information available at

date t , ST is the price of the security at date T , Z (ST ) is the payoff of the security at the expiry

date T , and f ∗
t (ST ) is the date–t SPD of ST for the payoff of the security at date T . When

an option is the security of interest, the SPD is the second–order derivative of a call–option

pricing formula with respect to strike price calculated at ST . Aït-Sahalia and Lo (1998) showed

that the date–t price of a call option, is a nonlinear function of (St , X t ,λ,rt ,λ,δt ,λ)′, which can

be estimated through the nonparametric regression technique, where δt ,λ is the dividend

rate at date t .

In order to reduce the number of regressors, Aït-Sahalia and Lo (1998) assumed that the

call–option pricing formula is given by the Black–Scholes (BS) formula except that the date–t

volatility denoted byσt , is estimated by the nonparametric regression of the implied volatility

on z̃t = (Ft , X ,δ), where Ft is the futures price of the underlying asset. The kernel estimator

of the regression function is

σ̂t (Ft , X ,λ|h) =
n−1 ∑n

j=1 Kh(z̃t − z̃ j )σ̃ j

n−1 ∑n
j=1 Kh(z̃t − z̃ j )

,

where σ̃ j is the volatility implied by the price of the call option, andh is a vector of bandwidths.

According to Aït-Sahalia and Lo (1998) and Huynh, Kervella, and Zheng (2002), the SPD and
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the risk measures of delta (∆) and Gamma (Γ) are expressed as

fBS,t (ST ) = 1

ST

p
2πσ2λ

exp

{
−

[
ln(ST /St )− (rt ,λ−δt ,λ−σ2/2)λ

]2

2σ2λ

}
,

∆BS =Φ(d1),

ΓBS = φ(d1)

Stσ
p
λ

.

where d1 =
{
ln(St /X )+ (rt ,λ−δt ,λ+σ2/2)λ

}
/(σλ1/2).

Zhang et al. (2009) assumed that the errors of the nonparametric regression model of σ̃t

on z̃t are iid and follow the Gaussian distribution with a zero mean and unknown variance. In

this paper, we assume that the iid errors follow an unknown distribution with its density given

by (2). We fitted the model to the same S&P 500 index options data as those investigated by

Aït-Sahalia and Lo (1998) and Zhang et al. (2009). The sample period is from the 4th January to

the 31st December 1993, and the sample size is n = 14,431. The priors of squared bandwidth

parameters are those given by (10) and (11), where hyperparameters are αb = αh = 1 and

βb = βh = 0.05. We applied the sampling procedure proposed in Section 2.2 to sample

the bandwidths from their posterior. Table 10 presents the estimates of the bandwidths

and some associated statistics. The estimated bandwidth vector is clearly different from

(5.6243,5.4831,9.7509)′ derived under the assumption of Gaussian error density, where the

priors of squared bandwidths are the same as those under the kernel–form error density, and

the prior of the error variance is IG(1,0.05).

Table 10: Bandwidth estimates obtained through Bayesian sampling for the S&P 500 index
options data.

Parameter Estimate 95% Bayesian Standard Batch-mean SIF
credible interval deviation standard error

b 0.1935 (0.1820, 0.2065) 0.0433 0.0010 5.9
h1 4.9810 (4.8251, 5.1625) 0.3450 0.0110 10.2
h2 4.7884 (4.5097, 5.0487) 0.5279 0.0237 20.1
h3 13.8418 (13.3231, 14.4532) 1.0790 0.0381 12.5

The Bayes factor of the mixture error density against the Gaussian error density is exp(4210.13),

which is very strong evidence supporting the former. Using the bandwidth vector derived by

Aït-Sahalia and Lo (1998), and the ones estimated through Bayesian sampling under both
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Figure 3: Graphs of the estimated state–price density, risk measures ∆ and Γ based on S&P 500
index options data. The first column is for the maturity of 2 days, and the second column is for
the maturity of 10 days. AL denotes graphs obtained through the bandwidth vector provided
by Aït-Sahalia and Lo (1998).
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error densities, we plotted in Figure 3, the graphs of the SPD, the risk measures ∆ and Γ at

maturities of 2 and 10 days, respectively. At the maturity of 2 days, the SPD and Γ produced

through the bandwidth vector derived under the mixture error density are respectively, differ-

ent from those derived under the Gaussian error density. However, as the time to maturity

increases to 10 days, both densities lead to similar estimates of the SPD and Γ.

Moreover, the SPD,∆ and Γ derived through Bayesian sampling under each assumption of

the error density are clearly different from those derived through the rule–of–thumb reported

by Aït-Sahalia and Lo (1998). However, different assumptions of the error density lead to

similar estimates of the SPD, risk measures ∆ and Γwhen maturity is 25 days or more.

6 Conclusion

We have proposed a nonparametric regression model with a flexible kernel–form error densi-

ties and presented a sampling algorithm for estimating bandwidths in the Nadaraya–Watson

regression estimator and the error density. A series of Monte Carlo simulations reveal that

the sampling approach outperforms the traditional bandwidth selection approaches for the

Nadaraya–Watson estimator (as measured by ASE). Moreover, within the Bayesian sampling

framework, when the true error density is non–Gaussian, the kernel–form error density model

seems to fit the data well and is surprisingly competitive with its parametric rival using the

true error density. Our Bayesian sampling procedure represents a data–driven solution to the

problem of simultaneously estimating bandwidths for the kernel estimators of the regression

function and error density.

Applying it to the nonparametric regression of the All Ordinaries daily return on the

overnight FTSE and S&P 500 returns, we have obtained the bandwidth estimates for the kernel

estimator of the regression under the three error–density assumptions. The assumption of a

kernel–form error density is favored with very strong evidence against the assumptions of the

Gaussian and a location–scale mixture of two Gaussians. The one–day–ahead density forecast

of the All Ordinaries daily return obtained through the kernel–form error density exhibits a
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more reasonable left–tail behavior than that obtained through the two competitors. Moreover,

the kernel–form error density allows for computing a distribution–free value–at–risk, which

gains robustness in terms of different specifications of the error density. We also found that

the kernel–form error density performs best when the relative frequencies of exceedance in

95% and 99% VaRs are calculated from rolling samples using this model.

The proposed nonparametric model and its sampling algorithm for simultaneously esti-

mating bandwidths has also been validated through the nonparametric regression model

involved in the state–price density estimation. The kernel–form error density is favored

with very strong evidence against the Gaussian error density. We have also found that the

state–price density, risk measures ∆ and Γ estimated under this kernel–form error density

are different from the corresponding ones estimated using Gaussian error density at short

maturities of the underlying asset. The application confirms the usefulness of relaxing the

Gaussian assumption of the error density to the kernel–form density in the nonparametric

regression model.
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