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A Model Validation Procedure

Abstract

Statistical models can play a crucial role in decision making. Traditional model validation tests

typically make restrictive parametric assumptions about the model under the null and the

alternative hypotheses. The majority of these tests examine one type of change at a time. This

paper presents a method for determining whether new data continues to support the chosen

model. We suggest using simulation and the kernel density estimator instead of assuming a

parametric distribution for the data under the hull hypothesis. This leads to a more versatile

testing procedure, one that can be applied to test different types of models and look for a

variety of different types of divergences from the null hypothesis. Such a flexible testing

procedure, in some cases, can also replace a range of tests that each test against particular

alternative hypotheses. The procedure’s ability to recognize a change in the underlying model

is demonstrated through AR(1) and linear models. We examine the power of our procedure

to detect changes in the variance of the error term and the AR coefficient in the AR(1) model.

In the linear model, we examine the performance of the procedure when there are changes in

the error variance and error distribution, and when an economic cycle is introduced into the

model. We find that the procedure has correct empirical size and high power to recognize the

changes in the data generating process after 10 to 15 new observations, depending on the type

and extent of the change.

Keywords: Chow test, model validation, p-value, multivariate kernel density estimation, struc-

tural break.
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A Model Validation Procedure

1 Introduction

Statistical models are widely used as an aid to decision making. Prior to using a model as a

decision tool, it is carefully selected from a range of alternative models using various criteria,

such as the ability to minimize the sum of squared errors or a cost function, having the lowest

AIC or BIC value or having the best forecast performance over a testing sample. In addition,

different parts of the model are examined, such as the residual behavior, the significance of

coefficients, the logic of included and excluded explanatory variables and so on.

In this paper we look at the model, which already has been selected, and examine whether it is

still supported by new data that has become available. We do not aim to select a model from

several competing models, but to evaluate the selected model’s likelihood to have generated the

new data.

Once the best possible model is selected and ‘brought down to production’, there are few

statistical tools to clarify its adequateness under the changing conditions of reality. Moreover,

most of these tools are designed to detect specific types of change, require making restrictive

assumptions on the data generating process (DGP) or a long waiting period before they can be

applied.

One of the best known tools for model validation is the test proposed by Chow (1960), known

as the Chow test. This test examines whether the m additional observations belong to the

same data generating process as the previous n observations. The Chow test is widely used

in testing for structural breaks. Although it provides a statistic with a known distribution, it

has some limitations. The statistic follows a standard F distribution only for linear models

where the errors are independently and normally distributed with a constant variance. For

example, Ghilagaber (2004) provided a numerical examination of the performance of Chow

test in the presence of heteroscedasticity. He found that the test shows very poor performance

in this case unless the sample sizes before and after the break point are equal and the form of

heteroscedasticity remains the same.

During the past half a century, many Chow-type tests have been proposed. Each test deals with

some limitations of the Chow test, such as the poor performance in small samples, the effect of

an increasing number of explanatory variables, the presence of autocorrelation in the residuals

or heteroscedasticity, non-linear models and non-continuous data. See Ghilagaber (2004) for a

comprehensive review. When the change time is unknown, but assumed to happen in a certain
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A Model Validation Procedure

time interval, the tests proposed by Andrews (1993) and Andrews and Ploberger (1994) are very

commonly used.

Another frequently used tool is to define confidence intervals. A plot of the confidence interval

provides a good visualisation of the uncertainty level about the proposed statistic in the sense

that wide intervals are associated with a high level of uncertainty. A special issue of the

International Journal of Forecasting on time series monitoring published in 2009, summarizes

the most influential developments in this area (see Gorr and Ord, 2009, for details). The majority

of the existing methods for confidence interval calculation deals with one observation at a time.

Two popular approaches to construct the confidence interval non-parametrically are the boot-

strap approach (see for example Hall, 1991; Diciccio and Romano, 1988) and the empirical

likelihood (introduced by Owen, 1988, 1990, as the alternative to the bootstrap approach).

Research by Chen (1994a,b) and Chen (1996) showed the advantages of the empirical likelihood

confidence intervals over the bootstrap confidence intervals. Chen and Van Keilegom (2009)

provides a review of empirical likelihood confidence interval methods and links the constructed

confidence intervals to hypothesis testing.

This paper presents a very general model validation procedure (MVP). The aim of the MVP

is to answer the question of whether the model under test is supported by new data. The

most important property of this tool is its ability to provide an answer with only a few new

observations using an approach developed by King, Zhang, and Akram (2011) for multiple

hypothesis testing. A further advantage is that it does not require an alternative hypothesis to

be specified.

The remainder of the paper is organized as follows. Section 2 formally describes the proposed

procedure. Section 3 provides a simulation study to demonstrate the capabilities of the sug-

gested procedure on several simple but very commonly used examples. The study includes an

examination of the size and power of the proposed procedure. Finally, Section 4 concludes the

paper.

2 The Model Validation Procedure (MVP)

Statistical models are typically fitted using the available data, the learning data set. Many

different models can be fitted to the same data. During the fitting process we aim to approximate

the DGP that generated the learning data set in the best possible way. Many statistical tools are
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available to examine how well the selected model fits the data. However, the further in time we

get from the model fitting, the higher the probability of a change in reality1. As long as the DGP

stays unchanged, the selected model keeps its desirable properties. Therefore, given a short

sequence of new observations, we are in fact interested in being able to examine if the same

DGP generated the data used for model development and the new sequence.

Supposed the chosen statistical model is of the form

yt =m(xt , γ , εt), t = 1, . . . ,T , (1)

where m is a known function, xt is a vector of explanatory variable, γ is a vector of unknown

parameters and εt is a parameter-free disturbance term2. Typically γ is unknown and is

estimated by an appropriate estimation method based on observations t = 1, . . . ,T , so the

working model becomes

yt =m(xt , γ̂ , εt). (2)

We assume that N additional observations on yt and xt have become available and we wish to

check whether our model is still supported by this new data. In what follows, let yNT denote

the vector of new observations of yt, namely yNT = (yT+1, . . . , yT+N )′ and let ỹNT denote the actual

observed value of yNT . If the new observations were generated by the working model, they would

be drawings from the joint distribution of yNT implied by the working model whose density we

will denote by f (yNT ).

Our approach is to ask if the new observations could have come from this joint distribution. As

noted by King, Zhang, and Akram (2011), the p-value is a useful device to use to answer this

question. In our case, it is the probability under f (yNT ) of finding a vector of observations of yNT

as or more extreme than ỹNT . In other words, it is the probability under f (yNT ) that f (yNT ) < f (ỹNT )

(see Hyndman, 1996).

Typically f (yNT ) is unknown but we can readily simulate values of yNT by using an appropriate

random number generator to generate εt, t = T + 1, . . . ,N , values which are then substituted

into equation (2) to obtain simulated values3 of yNT . Any number of yNT can be independently

simulated which we will denote by yNT ,i , i = 1, . . . ,M. f (yNT ) can then be estimated by any of a

1The original DGP that in fact generated the observed data.
2For example, if ut ∼N (0,σ2) is an error component of the model then εt = ut/σ is the parameter-free disturbance

term and ut can be replaced by σεt in our characterisation of the model.
3 We are effectively assuming that the distribution of εt is known. This assumption could be weakened to the

distribution being unknown with this simulation step being replaced by an appropriate bootstrap sampling step.
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number of density estimators. We favour the use of a multivariate kernel density estimator

whose general form is

f̂M,K (yNT ) =
1
M

M∑
i=1

|H |−1/2K
(
|H |−1/2(yNT − y

N
T ,i)

)
where K(·) is a kernel function and H is an N ×N positive definite matrix of bandwidths known

as the bandwidth matrix (see for example Wand and Jones, 1995).

Our proposed procedure involves calculating an estimated p-value, p̂, by the relative frequency

of

f̂M,K (yNT ,i) < f̂M,K (yNT )

within the M independent drawings of yNT based on the working model. p̂ can be interpreted as

a p-value for a test (with no particular alternative) of the null hypothesis that ỹNT was generated

by the working model (2). The smaller the value of p̂, the less confidence we have in the

proposition that ỹNT is compatible with working model (2). A reasonable interpretation would

be that if p̂ ≥ 0.05, then the new data has validated the working model. Because of how the

test is constructed, it is optimal in the sense that it has the largest possible rejection region and

therefor the smallest acceptance region with in yNt space for the desired level of significance.

Some users will wait for only a few new observations to become available and will choose a

relatively high confidence level. Others will be more conservative, choosing to wait longer and

using a lower confidence level before considering any changes in their models.

To develop some intuition about the procedure, we use a graphical illustration. Let’s focus on the

examination of the model’s prediction capability after two new observations (N = 2). Figure 1

shows 100 potential realizations of a model (round and square dots) on a two dimensional plane,

where values on the X axis denote one-step ahead potential realizations {m(xT+1, γ̂ , εT+1)n}

and values on the Y axis denote two-step ahead potential realizations {m(xT+2, γ̂ , εT+2)n}. The

3-dimensional mesh is the estimated joint density of the potential realizations. The asterisk

denotes the actual new observation (ỹT+1, ỹT+2). The round dots represent potential realizations

with higher estimated density than that of the actual observation. Similarly, square dots

represent potential realizations with lower estimated density than that of the actual observation.

In this example, the number of square dots is two which leads to a p̂ of 0.02. Based on this p̂ and

choosing a significant level of 5%, we can conclude that it is likely the two new observations

(ỹT+1, ỹT+2) do not belong to the same DGP as the estimated model. We have only two sequences
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Figure 1: Model validation procedure visualization - 2 steps ahead.
The asterisk represents the real observation (ỹT+1, ỹT+2). The 3-dimensional mesh represents the es-
timated density of the potential realizations. The round dots represent the potential realizations with
higher estimated density than the density of the actual new observation. The square dots represent
the potential realizations with lower estimated density than the density of the real observation.

of potential realizations with estimated densities lower (and therefore more extreme) than the

density of (ỹT+1, ỹT+2). In other words, we can say that 98 out of 100 potential realizations being

more likely than the actual two observation, is evidence against the model still being a good fit

to the DGP.

3 Simulation Experiments

In order to evaluate the small sample properties of the MVP, we conducted a simulation study

based on two models, the linear regression model and the autoregressive model of order one

(AR(1)). The size and the power of the MVP was compared with that of Chow test (Chow, 1960)

and the AveLM and ExpLM tests (Andrews and Ploberger, 1994). Because the basic assumptions

of the standard Chow test do not hold for the AR(1) model, we followed Diebold and Chen

(1996) and used a bootstrapped version of Chow test.
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The AveLM and ExpLM tests are asymptotically optimal in the sense of maximizing weighted

average power. They test for structural change at an unknown time point assumed to be within

a certain interval. The p-values for each of those two tests was calculated by a two-stage

approximation technique suggested by Hansen (1997). All four tests were applied by first

calculating the (approximate) p-value and using it to determine acceptance or rejection of the

null hypothesis at the desired significance level.

The linear model used takes the form

yt = α + βx1,t + δx2,t + σεt , t = 1, . . . ,T , (3)

where α = 3, β = 0.4, δ = 0.6, σ = 0.25, x1,t ∼ t(2), x2,t ∼ χ2(4) and εt ∼N (0,1). In the context of

model (1), m is the linear function, xt = (1,x1,t ,x2,t)′ and γ = (α,β,δ,σ )′.

We examined three changes in this DGP starting at time T + 1, namely

HA
1 : yt = α + βx1,t + δx2,t + 0.6 sin(0.3πt) + σεt , t = T + 1, . . . ,T +N,

which incorporates a new economic cycle explanatory variable into the model;

HB
1 : yt = 5 + βx1,t + δx2,t + εt , t = T + 1, . . . ,T +N,

where εt + 2 ∼ χ2(2) thus incorporating a shift in the intercept plus a change in disturbance

distribution; and

HC
1 : yt = α + βx1,t + δx2,t + σεt , t = T + 1, . . . ,T +N,

where σ = 0.5 which means the standard deviation of the error term (σ ) has been doubled.

The linear model simulation experiment involved N = 2,5,10 and T = 100,200,500,1000. The

[π1,π2] for Hansen’s (1997) approximation technique were chosen so that represent the starting

point for the structural break search window is t = T + 1 and ending point of this window at

t = T +N −4. This search window is comparable with the procedure that assumes that the break

may happen only after T + 1. Also the window leaves at least four data points to re-estimate the

model after the last potential break points in the window. We ended up choosing this particular

window after trialling a range of different windows. It means that the AveLM and ExpLM tests
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were not applied for N = 2 which does question the suitability of these procedures when there

are only two new observations.

The AR(1) model used took the form

yt = ρyt−1 + σεt ,

where ρ = 0.6, σ2 = 0.25 and εt ∼N (0,1). In the notation of model (1), m is the linear function

xt = yt−1 and γ = (ρ,σ )′. The changes in the DGP that the four tests were compared against

involved two changes in the error variance, namely

H I
1 : σ2 = 0.5

and

H II
1 : σ2 = 1

and two in which the autoregressive coefficient changes, namely

H III
1 : ρ = 0.9

and

H IV
1 : ρ = −0.9.

For these simulations, we used N = 2,5,10,15,20,30 and T = 100,200,500,1000.

In all cases, the MVP was applied using the kernel density estimation method with diagonal

bandwidth matrix (H) selected through the normal reference rule (NRR). See for example,

Scott (1992, p.152)4. Because the generated disturbance was normally distributed, the normal

distribution assumption required by the NRR is very reasonable. M = 10,000 simulations from

the working model were used to compute the kernel distribution required to apply the MVP.

The four tests’ sizes and powers were compared using 1000 Monte Carlo replications at the

nominal 5% and 1% significance levels.

The size and the power results for the four tests procedures, namely the MVP, Chow test, ExpLM

and AveLM tests in the context of the linear regression are presented in Tables 1 and 2.

4An alternative data-driven bandwidth selector is given by Zhang et al. (2006).
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Table 1: Size and power under HA
1 of the MVP, bootstrap Chow, exponential LM and average LM

tests (linear model).

Test Size Power under HA
1

N = 2 N = 5 N = 10 N = 2 N = 5 N = 10
5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%

Sample size = 100
MVP 0.060 0.017 0.073 0.019 0.073 0.022 0.768 0.564 0.895 0.738 0.969 0.912
Chow 0.051 0.014 0.047 0.007 0.043 0.009 0.741 0.533 0.579 0.409 0.457 0.277
ExpLM - - 0.052 0.007 0.044 0.006 - - 0.672 0.414 0.587 0.308
AveLM - - 0.046 0.008 0.044 0.005 - - 0.626 0.369 0.484 0.240

Sample size = 200
MVP 0.057 0.017 0.063 0.014 0.066 0.015 0.782 0.559 0.877 0.713 0.957 0.881
Chow 0.051 0.018 0.058 0.014 0.054 0.008 0.766 0.555 0.565 0.401 0.554 0.333
ExpLM - - 0.051 0.010 0.047 0.010 - - 0.721 0.468 0.700 0.438
AveLM - - 0.047 0.012 0.043 0.009 - - 0.698 0.423 0.600 0.336

Sample size = 500
MVP 0.055 0.015 0.054 0.012 0.061 0.015 0.781 0.555 0.902 0.752 0.976 0.904
Chow 0.056 0.019 0.055 0.011 0.043 0.007 0.791 0.563 0.646 0.462 0.560 0.380
ExpLM - - 0.050 0.008 0.040 0.008 - - 0.729 0.495 0.734 0.491
AveLM - - 0.054 0.007 0.038 0.006 - - 0.69 0 0.459 0.646 0.373

Sample size = 1000
MVP 0.050 0.009 0.057 0.011 0.047 0.009 0.749 0.540 0.923 0.766 0.962 0.889
Chow 0.047 0.012 0.046 0.011 0.039 0.005 0.751 0.534 0.646 0.473 0.570 0.385
ExpLM - - 0.055 0.010 0.057 0.010 - - 0.764 0.535 0.752 0.506
AveLM - - 0.052 0.011 0.055 0.009 - - 0.729 0.497 0.655 0.397

H0: yt = 3 + 0.4x1 + 0.6x2 + et with x1 ∼ t2, x2 ∼ χ2
(4) and et ∼N (0,0.252).

HA
1 : yt = 3 + 0.4x1 + 0.6x2 + 0.6sin(0.3πt) + et with x1 ∼ t2, x2 ∼ χ2

(4) and et ∼N (0,0.252).
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Table 2: Powers under HB
1 and HC

1 of the MVP, bootstrap Chow, exponential LM and average LM
tests (linear model).

Test Power under HB
1 Power under HC

1
N = 2 N = 5 N = 10 N = 2 N = 5 N = 10

5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%

Sample size = 100
MVP 0.942 0.918 0.997 0.996 1.000 1.000 0.493 0.329 0.749 0.571 0.900 0.811
Chow 0.935 0.919 0.998 0.996 1.000 1.000 0.473 0.317 0.535 0.358 0.467 0.291
ExpLM - - 0.980 0.971 0.999 0.999 - - 0.586 0.391 0.646 0.430
AveLM - - 0.980 0.970 0.998 0.994 - - 0.571 0.357 0.567 0.339

Sample size = 200
MVP 0.949 0.917 0.998 0.997 1.000 1.000 0.476 0.310 0.704 0.535 0.904 0.807
Chow 0.947 0.916 0.998 0.997 1.000 1.000 0.457 0.317 0.515 0.369 0.527 0.351
ExpLM - - 0.799 0.753 0.999 0.997 - - 0.628 0.429 0.715 0.499
AveLM - - 0.980 0.970 0.998 0.997 - - 0.605 0.403 0.642 0.407

Sample size = 500
MVP 0.941 0.921 0.998 0.996 1.000 1.000 0.483 0.336 0.720 0.573 0.908 0.815
Chow 0.940 0.921 0.999 0.997 1.000 1.000 0.472 0.332 0.566 0.417 0.547 0.366
ExpLM - - 0.406 0.394 1 1 - - 0.658 0.476 0.715 0.536
AveLM - - 0.995 0.993 1 1 - - 0.630 0.442 0.645 0.459

Sample size = 1000
MVP 0.951 0.919 0.999 0.999 1.000 1.000 0.449 0.303 0.725 0.544 0.902 0.792
Chow 0.949 0.919 1.000 0.999 1.000 1.000 0.456 0.308 0.589 0.425 0.587 0.404
ExpLM - - 0.329 0.318 0.999 0.999 - - 0.617 0.468 0.752 0.558
AveLM - - 0.995 0.990 1 1 - - 0.593 0.444 0.676 0.455

HB
1 : yt = 5 + 0.4x1 + 0.6x2 + et with x1 ∼ t2, x2 ∼ χ2

(4) and et ∼ χ2
(2) − 2.

HC
1 : yt = 3 + 0.4x1 + 0.6x2 + et with x1 ∼ t2, x2 ∼ χ2

(4), et ∼N (0,0.52).
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Looking initially at the size results, for sample sizes T = 200, 500 and 1000, all estimated sizes

are within three standard deviations of the nominal size. In the case of the smallest sample size,

namely T = 100, we see evidence of the MVP having slightly higher than nominal size for 5 and

10 new observations.

Turning to the power results for HA
1 , the case in which a business cycle variable has been

introduced into the relationship at time T + 1, the MVP has the best overall power, particulary

for N = 5 and 10 when it is often more than 50% above the corresponding power of the other

tests for smaller sample sizes. As one would expect, the power of the MVP increases as N

increases. The Chow test is relatively competitive with the MVP for N = 2 but shows an

unfortunate tendency to lose power as the number of new observations increases. The ExpLM

test is the next best performer for N = 5,10 with the Chow test having the lowest power.

Both the MVP and Chow test have excellent power against HB
1 , particularly for the larger values

of N . The main change for this alternative is the shift in the intecept which the Chow test is

designed to pick up. The AveLM test has the next best power which rises to one (like the MVP

and the Chow test) when N increases to 10. The power of the ExpLM test declines as T increases

when N = 5 but it largely behaves like those of the other three tests when N = 10.

Against HC
1 in which the standard deviation of the regression errors jumps from 0.25 to 0.5 at

time T + 1, the MPV clearly has the best power, particularly for N = 5 and 10. There are a small

number of occurrences for N = 2 when the Chow test has best power. As might be expected,

the power of the MPV test clearly improves as N increases. This is also true of the ExpLM

and AveLM tests but not necessarily true of the Chow test. The ExpLM test is the second most

powerful for the N = 5 and N = 10 with the Chow test being the least powerful.

In summary, the MVP has a slight question mark against its size for large N and small T but

otherwise is the best test overall in terms of power, in many cases by a very big margin. The

extra computational required to apply the MVP seems to be well rewarded.

The size results for the MVP, Chow, ExpLM and AveLM tests in context of the AR(1) model are

presented in Table 3. For the two largest sample sizes T = 500 and 1000, all estimated sizes

of the MVP and Chow tests are within three standard deviations of the nominal size as are all

estimates sizes of the Chow test for T = 100 and 200. The MVP shows a tendency to have larger

than nominal sizes for small T values and large N values, although there is a clear pattern of

this tendency diminishing as T increases. On the other hand, the AveLM test and particularly
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Table 3: Sizes of MVP, bootstrap Chow, exponential LM and average LM tests (AR model)

Test N = 2 N = 5 N = 10 N = 15 N = 20 N = 30
5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%

Sample size = 100
MVP 0.062 0.015 0.065 0.018 0.085 0.030 0.086 0.029 0.104 0.042 0.118 0.043
Chow 0.056 0.011 0.048 0.012 0.054 0.012 0.054 0.012 0.047 0.014 0.047 0.008
ExpLM - - 0 0 0.010 0.001 0.013 0.003 0.018 0 0.024 0.002
AveLM - - 0 0 0.015 0.001 0.022 0.003 0.028 0.003 0.041 0.003

Sample size = 200
MVP 0.055 0.012 0.064 0.014 0.070 0.010 0.080 0.028 0.090 0.017 0.073 0.022
Chow 0.048 0.011 0.056 0.015 0.049 0.007 0.052 0.014 0.051 0.016 0.069 0.015
ExpLM - - 0 0 0.011 0 0.017 0.001 0.010 0 0.020 0.001
AveLM - - 0 0 0.016 0 0.026 0.002 0.023 0.004 0.030 0.003

Sample size = 500
MVP 0.053 0.010 0.053 0.011 0.048 0.005 0.055 0.008 0.044 0.014 0.058 0.009
Chow 0.049 0.008 0.045 0.009 0.048 0.013 0.057 0.011 0.041 0.011 0.036 0.002
ExpLM - - 0 0 0.007 0 0.009 0.001 0.021 0 0.018 0.002
AveLM - - 0 0 0.011 0 0.023 0.001 0.029 0.001 0.029 0.003

Sample size = 1000
MVP 0.059 0.010 0.057 0.011 0.054 0.011 0.055 0.015 0.044 0.013 0.046 0.012
Chow 0.061 0.010 0.049 0.015 0.057 0.013 0.047 0.015 0.056 0.014 0.050 0.009
ExpLM - - 0 0 0.012 0 0.009 0.001 0.023 0.001 0.022 0.001
AveLM - - 0 0 0.019 0 0.028 0.002 0.034 0.002 0.032 0.005

H0: yt = 0.6yt−1 + et with et ∼N (0,0.25).

the ExpLM test tend to have smaller than nominal sizes, often being significantly smaller for

smaller values of N .

Tables 4 and 5 present the powers of the four procedures for H I
1 and H II

1 , respectively. These

two alternatives involve the variance increasing from 0.25 to 0.5 and to 1 and show similar

patterns of power but with powers being higher under H II
1 as would be expected. For all values

of N except N = 2, the MVP is the most powerful test and for medium and large N values, can

be twice as, or even up to ten times more powerful than the next best test which is the Chow

test. The MVP and the Chow test have rather similar powers when N = 2. The MVP increases in

power asN increases while the power of Chow test typically declines asN increases. The ExpLM

and AveLM tests are not designed to detect a change in the variance and not unexpectedly have

power rather similar to their nominal significance levels.
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Table 4: Powers under H I
1 of the MVP, bootstrap Chow, exponential LM and average LM tests (AR

model)

Test N = 2 N = 5 N = 10 N = 15 N = 20 N = 30
5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%

Sample size = 100
MVP 0.218 0.103 0.359 0.194 0.505 0.304 0.607 0.419 0.675 0.443 0.770 0.577
Chow 0.208 0.106 0.222 0.098 0.194 0.084 0.185 0.080 0.158 0.067 0.123 0.035
ExpLM - - 0.002 0 0.008 0.001 0.021 0.003 0.017 0 0.029 0.003
AveLM - - 0.008 0 0.018 0.002 0.027 0.002 0.029 0.001 0.038 0.003

Sample size = 200
MVP 0.212 0.090 0.364 0.185 0.505 0.302 0.579 0.342 0.675 0.446 0.749 0.539
Chow 0.207 0.092 0.214 0.090 0.228 0.093 0.201 0.088 0.175 0.073 0.148 0.060
ExpLM - - 0.001 0 0.016 0 0.029 0.003 0.021 0.004 0.037 0.003
AveLM - - 0.002 0 0.028 0 0.042 0.003 0.032 0.004 0.047 0.009

Sample size = 500
MVP 0.242 0.104 0.367 0.190 0.485 0.271 0.614 0.378 0.663 0.439 0.769 0.554
Chow 0.244 0.105 0.250 0.130 0.229 0.098 0.231 0.095 0.195 0.075 0.212 0.101
ExpLM - - 0 0 0.005 0.001 0.012 0 0.024 0.002 0.025 0.003
AveLM - - 0 0 0.011 0.001 0.019 0 0.033 0.003 0.045 0.005

Sample size = 1000
MVP 0.217 0.099 0.369 0.183 0.478 0.254 0.573 0.458 0.656 0.421 0.765 0.519
Chow 0.213 0.100 0.261 0.126 0.242 0.110 0.202 0.096 0.235 0.111 0.201 0.101
ExpLM - - 0 0 0.014 0 0.014 0 0.025 0.001 0.027 0.002
AveLM - - 0 0 0.022 0 0.024 0 0.039 0.004 0.042 0.005

H I
1: yt = 0.6yt−1 + et with et ∼N (0,0.5).

The powers of the four procedures against H III
1 and H IV

1 are reported in Tables 6 and 7. This

pair of alternatives involve ρ changing from 0.6 to 0.9 and −0.9. After acknowledging that

powers against H IV
1 are typically higher than the corresponding power against H III

1 , the general

pattern in both cases is as follows. Typically the Chow test is most powerful, particularly against

H IV
1 . For small N (like N = 2), the MVP can sometime be the most powerful test. This is also the

case against H III
1 for T = 100 and 200. The ExpLM and AveLM tests perform relatively poorly

for small N but as N increases, their relative power (and particularly that of AveLM) improves

with the AveLM test typically being the more powerful of the two. When the MVP is not most

powerful, it is typically the second best most powerful against H III
1 . Against H IV

1 , the MVP is
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Table 5: Powers under H II
1 of the MVP, bootstrap Chow, exponential LM and average LM tests (AR

model).

Test N = 2 N = 5 N = 10 N = 15 N = 20 N = 30
5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%

Sample size = 100
MVP 0.478 0.300 0.740 0.591 0.911 0.789 0.948 0.888 0.979 0.928 0.998 0.988
Chow 0.460 0.288 0.467 0.288 0.377 0.222 0.321 0.183 0.289 0.138 0.198 0.090
ExpLM - - 0.013 0.001 0.019 0.002 0.027 0.003 0.024 0.001 0.045 0.005
AveLM - - 0.014 0.001 0.019 0.002 0.036 0.002 0.034 0.001 0.043 0.005

Sample size = 200
MVP 0.476 0.312 0.733 0.563 0.894 0.784 0.965 0.892 0.983 0.956 0.993 0.975
Chow 0.478 0.313 0.477 0.311 0.435 0.283 0.401 0.248 0.339 0.205 0.296 0.145
ExpLM - - 0.006 0 0.024 0.002 0.031 0.003 0.027 0.005 0.044 0.010
AveLM - - 0.008 0 0.029 0.003 0.044 0.003 0.038 0.005 0.050 0.009

Sample size = 500
MVP 0.482 0.345 0.735 0.576 0.915 0.795 0.951 0.894 0.984 0.951 0.997 0.989
Chow 0.476 0.346 0.498 0.353 0.480 0.340 0.435 0.294 0.412 0.269 0.420 0.251
ExpLM - - 0.003 0 0.009 0.002 0.015 0 0.027 0.002 0.028 0.004
AveLM - - 0 0 0.015 0.002 0.016 0 0.036 0.003 0.036 0.005

Sample size = 1000
MVP 0.458 0.308 0.726 0.571 0.900 0.768 0.961 0.889 0.986 0.952 0.997 0.988
Chow 0.454 0.300 0.514 0.358 0.503 0.340 0.459 0.290 0.446 0.310 0.405 0.270
ExpLM - - 0 0 0.014 0.001 0.018 0 0.020 0.001 0.033 0.002
AveLM - - 0 0 0.022 0.002 0.026 0.001 0.038 0.001 0.046 0.004

H II
1 : yt = 0.6yt−1 + et with et ∼N (0,1).

typically the second most powerful test for T = 1000, for N = 2,5,10,15 as well as for N = 20

but only at the 1% significance level.

4 Conclusion

We have proposed a model validation procedure that is able to recognize changes in the underly-

ing model without the need to be specific about the form of the change. The test is optimal in the

sense that it has the smallest acceptance region within the sample space of the new observations.

The simulation experiment reported in the previous section suggests the new procedure has

comparative power against tests designed to look for certain structural changes when these
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Table 6: Powers under H III
1 of the MVP, bootstrap Chow, exponential LM and average LM tests (AR

model).

Test N = 2 N = 5 N = 10 N = 15 N = 20 N = 30
5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%

Sample size = 100
MVP 0.086 0.026 0.167 0.083 0.284 0.180 0.403 0.285 0.469 0.352 0.596 0.487
Chow 0.074 0.021 0.181 0.084 0.273 0.141 0.337 0.214 0.406 0.250 0.495 0.319
ExpLM - - 0.055 0.002 0.202 0.059 0.295 0.132 0.302 0.153 0.450 0.244
AveLM - - 0.064 0.002 0.228 0.065 0.316 0.129 0.296 0.142 0.434 0.210

Sample size = 200
MVP 0.087 0.029 0.157 0.086 0.277 0.173 0.345 0.240 0.485 0.361 0.584 0.489
Chow 0.075 0.027 0.188 0.089 0.293 0.184 0.371 0.241 0.458 0.323 0.591 0.417
ExpLM - - 0.015 0 0.185 0.045 0.283 0.130 0.368 0.193 0.533 0.338
AveLM - - 0.021 0 0.213 0.049 0.303 0.130 0.385 0.185 0.538 0.325

Sample size = 500
MVP 0.109 0.035 0.170 0.078 0.271 0.169 0.360 0.241 0.443 0.318 0.589 0.484
Chow 0.100 0.040 0.210 0.123 0.327 0.204 0.387 0.268 0.487 0.358 0.634 0.492
ExpLM - - 0.003 0 0.169 0.020 0.272 0.105 0.387 0.204 0.524 0.353
AveLM - - 0.004 0 0.210 0.029 0.289 0.119 0.404 0.223 0.547 0.344

Sample size = 1000
MVP 0.090 0.029 0.154 0.103 0.240 0.159 0.344 0.245 0.442 0.330 0.565 0.439
Chow 0.081 0.028 0.193 0.100 0.308 0.201 0.403 0.270 0.475 0.340 0.619 0.484
ExpLM - - 0.001 0 0.177 0.018 0.290 0.096 0.356 0.151 0.531 0.347
AveLM - - 0 0 0.218 0.023 0.319 0.119 0.400 0.180 0.548 0.333

H III
1 : yt = 0.9yt−1 + et with et ∼N (0,0.25).

structural changes occur while also having much higher power than the established test against

other structural changes. The only negative to emerge from the simulation experiment is that

the MVP can have higher than nominal size for small T values and high N values. There could

be two reasons for this. The first is that as N increases, we have greater difficulty accurately

estimating f (yNT ), particulary the tails of this N -dimensional distribution. The second possible

cause of the higher size is that the working model is using estimated parameters and if these are

poor estimates, then the null may be rejected because the estimated parameters are significantly

different from the true values. The fact that this problem goes away as the sample size used for

estimation, T , increases does suggest this latter cause. It also, suggests that if the MPV rejects

the null hypothesis, then one should check, as best one can, whether this rejection might have
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Table 7: Powers under H IV
1 of the MVP, bootstrap Chow, exponential LM and average LM tests (AR

model).

Test N = 2 N = 5 N = 10 N = 15 N = 20 N = 30
5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%

Sample size = 100
MVP 0.442 0.335 0.642 0.556 0.813 0.717 0.880 0.801 0.929 0.868 0.965 0.930
Chow 0.439 0.327 0.702 0.627 0.939 0.886 0.992 0.977 0.999 0.997 1.000 1.000
ExpLM - - 0.128 0.008 0.629 0.298 0.877 0.597 0.968 0.843 0.999 0.990
AveLM - - 0.155 0.007 0.679 0.302 0.898 0.598 0.969 0.849 0.999 0.979

Sample size = 200
MVP 0.444 0.390 0.621 0.528 0.777 0.694 0.883 0.799 0.922 0.850 0.951 0.905
Chow 0.445 0.339 0.706 0.618 0.936 0.880 0.987 0.971 0.998 0.994 1.000 0.998
ExpLM - - 0.062 0.002 0.531 0.166 0.841 0.494 0.955 0.785 0.998 0.979
AveLM - - 0.087 0.002 0.604 0.189 0.878 0.547 0.974 0.810 0.999 0.976

Sample size = 500
MVP 0.462 0.345 0.661 0.549 0.797 0.698 0.862 0.790 0.918 0.838 0.964 0.932
Chow 0.464 0.346 0.752 0.666 0.937 0.892 0.992 0.976 0.998 0.996 1.000 1.000
ExpLM - - 0.015 0 0.485 0.100 0.815 0.380 0.957 0.707 0.997 0.951
AveLM - - 0.026 0 0.590 0.135 0.866 0.417 0.983 0.754 0.997 0.964

Sample size = 1000
MVP 0.437 0.388 0.668 0.557 0.794 0.704 0.863 0.778 0.913 0.856 0.946 0.904
Chow 0.444 0.339 0.728 0.682 0.946 0.909 0.990 0.975 0.999 0.998 1.000 1.000
ExpLM - - 0.004 0 0.470 0.039 0.791 0.335 0.935 0.643 0.998 0.935
AveLM - - 0 0 0.573 0.072 0.859 0.386 0.959 0.701 0.997 0.952

H IV
1 : yt = −0.9yt−1 + et with et ∼N (0,0.25).

been caused by poor parameter estimates. This could involve looking for outliers in the original

sample that are highly influential, or seeing if adding the new observations to the sample used

for estimation clearly improves the fit of the model under investigation. How best to modify

the procedure to mitigate against this problem when T is small and N is large is a topic we are

currently researching and leave for a future paper.
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