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Abstract

The object of this paper is to produce distributional forecasts of physical volatility
and its associated risk premia using a non-Gaussian, non-linear state space approach.
Option and spot market information on the unobserved variance process is captured
by using dual ‘model-free’ variance measures to define a bivariate observation equation
in the state space model. The premium for diffusive variance risk is defined as linear
in the latent variance (in the usual fashion) whilst the premium for jump variance risk
is specified as a conditionally deterministic dynamic process, driven by a function of
past measurements. The inferential approach adopted is Bayesian, implemented via
a Markov chain Monte Carlo algorithm that caters for the multiple sources of non-
linearity in the model and the bivariate measure. The method is applied to empirical
spot and option price data for the S&P500 index over the 1999 to 2008 period, with
conclusions drawn about investors’ required compensation for variance risk during the
recent financial turmoil. The accuracy of the probabilistic forecasts of the observable
variance measures is demonstrated, and compared with that of forecasts yielded by
more standard time series models. To illustrate the benefits of the approach, the
posterior distribution is augmented by information on daily returns to produce Value
at Risk predictions, as well as being used to yield forecasts of the prices of derivatives
on volatility itself. Linking the variance risk premia to the risk aversion parameter in
a representative agent model, probabilistic forecasts of relative risk aversion are also
produced.
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1 Introduction

Volatility estimates play a central role in financial applications, with accurate forecasts of
future volatility being critical for asset pricing, portfolio management and Value at Risk
(VaR) calculations. Along with the information on volatility embedded in historical returns
on a financial asset, the prices of options written on the asset also shed light on the option
market’s assessment of the volatility that is expected to prevail over the remaining life of
the options. As such, many forecasting exercises have used both sources of market data
to extract information on future volatility, with the relative accuracy of the options- and
returns-based forecasts being gauged via a variety of means (e.g. Blair, Poon and Taylor,
2001, Martens and Zein, 2004, Pong, Shackleton, Taylor and Xu, 2004, Jiang and Tian, 2005,
Koopman, Jungbacker and Hol, 2005, and Martin, Reidy and Wright, 2009).

Crucially, as option pricing occurs under the risk-neutralized measure for the underlying
asset, price process, any systematic disparity between returns- and option-implied volatility
forecasts can be viewed as evidence of the option market having factored in non-zero prices
for various risk factors, including variance risk. A recent literature has evolved in which
this disparity has been used - in one way or another - to extract information on variance
risk premia (e.g. Guo, 1998, Chernov and Ghysels, 2000, Pan, 2002, Jones, 2003, Eraker,
2004, Forbes, Martin and Wright, 2007, Eraker, 2008, Bollerslev, Tauchen and Zhou, 2009,
Bollerslev, Sizova and Tauchen, 2009, Bollerslev and Todorov, 2009, Carr and Wu, 2009,
Bollerslev, Gibson and Zhou, 2011, Duan and Yeh, 2010). However, in none of this work has
the primary focus been the extraction of the risk premia for the purpose of improving the
accuracy with which objective volatility can be forecast from the dual data source.

The primary aim of this paper is to combine option and spot price information with a
view to producing accurate forecasts of the objective volatility process of the underlying. A
non-Gaussian, non-linear state space framework is used to model volatility and its associated
(time-varying) risk premia as latent state variables. Rather than link market price informa-
tion to the state variables via complex theoretical option price formulae, we use direct non-
parametric measures of volatility (see Britten-Jones and Neuberger, 2000, Barndorff-Nielsen
and Shephard, 2002, Andersen, Bollerslev, Diebold and Labys, 2003, Jiang and Tian, 2005)
to define a bivariate observation equation.

A secondary aim is to forecast the variance risk premia factored into the options-based
measure. Motivated by empirical evidence, the state space representation is based on a model
in which random jumps can occur contemporaneously in the asset price and the variance. By
making appropriate adjustments to the observable volatility measures, variation in the price

jumps is modelled non-parametrically. An explicit parametric model is then adopted for the



latent variance, including its two associated risk premia: one that compensates for small
and regular movements in the variance (the diffusive variance risk premium), and the other
compensating for rare jumps (the jump variance risk premium). The diffusive risk premium
is parameterized in the conventional way, as proportional to the latent variance itself. The
jump variance risk premium is also allowed to be time varying. Specifically, a conditionally
deterministic process, driven in part by the past ‘observed’ risk premium, is used to capture
the dynamic behaviour of this component of the model. This aspect of our approach is
somewhat similar in spirit to the analysis of Todorov (2010), in which past realized jumps
are allowed to affect the compensation for future jump risk demanded by investors.

Probabilistic forecasts of the latent variance, the variance risk premia and the observable
variance measures, are produced using Bayesian methods. This focus on probabilistic fore-
casting, whilst inherent to the Bayesian inferential paradigm, is also consistent with more
general developments in the recent forecasting literature, in which distributional forecasts
per se are viewed as the primary object of interest. (See, for example, Corradi and Swanson,
2006, Gneiting, Balabdaoui and Raftery, 2007, Gneiting, 2008, Geweke and Amisano, 2010,
McCabe, Martin and Harris, 2010). The Bayesian predictive distributions are produced via
a Markov chain Monte Carlo (MCMC) algorithm that caters for the non-linearities in the
model and that allows for multi-move sampling of the latent variances. The conditionally
deterministic specification for the jump risk premium is computationally convenient, with
the posterior distribution of the risk premium at any time point - including future time points
- able to be estimated from the MCMC draws of the parameters to which the premium is
functionally related.

The method is applied to empirical spot and option price data for the S&P500 index over
the 1999 to 2008 period. Distributional forecasts are produced for all latent and observable
quantities of interest, for an evaluation period including both the lead up to the recent global
financial crisis and the peak of the crisis at the end of 2008. Most notably, the extraction
of forecasts for the variance risk premia enables a picture to be constructed of the extent
to which investors’ expectations of future risks - and, correspondingly, their demand for
compensation - is affected by extreme daily movements in the market. The accuracy of
the probabilistic forecasts of the (observable) measures of variance is compared with that of
forecasts produced by standard time series models for these quantities, using predictive log
scores.

Illustrations of how the predictions can be used in financial applications are provided.
First, the model is augmented by observations on daily returns to produce probabilistic
forecasts of returns themselves, from which VaR predictions are extracted. Secondly, we

illustrate how the predictions of the latent variance may be used to estimate the prices of



futures written on volatility itself. Finally, coupled with a particular form of representative
agent model, forecasts of the variance risk premia are transformed into probabilistic forecasts
of the relative risk aversion of the representative investor.

The remainder of the paper is organized as follows. Section 2 describes the model assumed
to underlie both the spot and option price data, including the variance risk premia that form
part of that model. Section 3 outlines the state space approach that we use to analyze the
model, including the dynamic risk premia that we embed within it. A description of the
MCMC algorithm used to estimate the latent variables and static parameters and to produce
the forecasts is provided in Section 4, with all details of the component of the algorithm that
relates to the sampling of the latent variances provided in Appendix A. The results of an
extensive empirical investigation of intraday spot and option price data for the S&P500 index
from July 1999 to December 2008 are reported in Section 5. Some conclusions are given in

Section 6.

2 Objective and Risk Neutral Distributions

The spot price P, and objective stochastic variance V; are assumed to evolve according to

the following bivariate process,

v
dln P, = (u — é)dw VVdBP + dJ? (1)
AV, = k[0 — V}]dt + o,\/VidB! + d.J?, (2)

where dJ} = ZjdNy, i = {p,v}, Z/|Z} ~ N(u, + p;Z;,02), Z{ ~ Exp(p,), P(dN; =
1) = §,dt and P(dN; = 0) = (1 —0,)dt. Under this specification, random jumps in the
price and variance occur contemporaneously at rate ¢;, but with magnitudes determined
respectively by a normal and an exponential distribution. The magnitudes of jumps in
the price and variance processes are assumed to be correlated, governed by p;. The two
Brownian increments dBY and dB} are correlated with a coefficient p; however dB; and d.J;
are assumed to be independent, for i = {p, v} . This model is often referred to in the literature
as the stochastic volatility with contemporaneous jumps (SVCJ) model (e.g. Duffie, Pan and
Singleton, 2000, Eraker, Johannes and Polson, 2003, Eraker, 2004, Broadie, Chernov and
Johannes, 2007).!

Based on this particular dynamic model, equilibrium arguments can be used to produce

IBates (2000) and Pan (2002) have proposed extentions of this model in which the jump frequency (§;)
depends on the level of variance.



the following risk-neutral distribution,

V ES * *
AP, = (r— )dt+ VB + dJ? — it (3)
AV, = K*[0° = Vidt + 0u\/VidB + dJ}, (4)

under which options on the underlying asset are priced, where r denotes the risk-free interest
rate (assumed constant), d.J;' = Z;dNy, i = {p,v}, Z" ~ N(u},02), Z;" ~ Exp(u;) and
we impose 0; = ;. The term —p7d;dt on the right hand side of (3) compensates the jump
process.

Implicit in the move from (2) to (4) is the transformation
K*[0* — Vi = k[0 — Vi] — Ap V4,

where

0
K" =K+ Ap; g =" (5)

I{/*
and Ap is a scalar parameter. The term ApV, represents the premium associated with
diffusive variance risk, with the value of A\p determining the magnitude (and sign) of the
premium factored into option prices for the risk associated with small and regular changes

in the non-traded state variable, V;. We interpret

ft, — Hp and (6)

as the premia for price and variance jump (size) risk respectively. As outlined below, our
approach to estimating the model is such that iy — p,, in (6) is not identified, with our focus
being solely on the identification and estimation of the variance risk premium parameters
Ap and pf — p,, with the latter denoted by A\, hereafter. The specification in (7) for A\,
amounts to the assumption that investors factor into their option pricing a premium that
equals the difference between the risk neutral expected mean jump size (for the variance)
and the corresponding objective mean.?

Empirical estimates of A\p and \; reported in the literature are (not surprisingly) model
dependent. In pure stochastic volatility models (in which no jumps or jump premia are
parameterized), estimates of \p are typically negative (see, for example, Guo, 1998, Forbes

et al., 2007, Bollerslev et al., 2011), which implies slower reversion (k* < k ) to a higher

2Eraker (2008) considers a parameterization of the risk neutral distribution in which the intensity pa-
rameter 0 differs between the objective and risk neutral processes and, hence, incorporates the premium.
Duan and Yeh (2010) adopt a parameterization that allows the jump risk premium to reflect a premium for
both jump size and jump timing.



mean level (§* > ) under the risk neutral distribution. However, as outlined in some detail
by Broadie et al. (2007), empirical conclusions regarding the significance and sign of Ap are
less clear cut once jumps (and associated premia) are included in the model specification.
Overall, current empirical evidence points to A; being significantly greater than zero, with
the significance of A\p tending to be reduced accordingly. A significantly positive value for
Ay leads to the same qualitative result as a significantly negative value of A\p. That is, either
numerical outcome leads to a higher long run mean under the risk-neutral measure than

under the objective measure, given that the two long-run means are given respectively by

KO + (fty, + X))oy

B (V) =
( t> K+)\D
and 0+ 116
K: v
B(V;) = —1=L

This implies, in turn, that (call) options are priced higher under the risk-neutral process,
on average, than if they had been priced under the objective measure. That is, these signs
for the risk premium parameters (Ap < 0 and A; > 0 respectively) imply that investors are
willing to pay a premium for options, as a hedge against movements in the spot price that
result from either the diffusive or jump components of the random variance (or both).

As is clear from (5) and (7), observed option prices, assumed to be priced according
to (3) and (4), can be used to identify the parameters of the objective process, and the
risk premia, Ap and Ay, only if additional information on the objective parameters and/or
Ap and Ay, is introduced. Previous analyses (based on a variety of versions of the model
presented here) have solved this identification problem: by jointly estimating the objective
and risk-neutral processes using option and spot price data (e.g. Chernov and Ghysels,
2000, Pan, 2002, Polson and Stroud, 2003, Eraker, 2004, Forbes et al., 2007, Johannes,
Polson and Stroud, 2009); by using option price data only to estimate (3) and (4), and
extracting estimates of the risk premium parameters via separate return-based estimates of
the objective parameters (e.g. Guo, 1998, Broadie et al., 2007); or by imposing theoretical
restrictions on the risk premia (Bates, 2000). Most importantly, in all of these studies, the
link between observed market option prices and the underlying model in (3) and (4) occurs
indirectly, via a parametric theoretical option price formula derived as the expected value of
the discounted payoff of the option under the risk-neutral measure. In contrast, we link the
observed option price data to the model in (3) and (4) directly, by using a non-parametric
estimate of expected integrated variance over the life of the option, evaluated according to
the risk-neutral process in (4). (See also Eraker, 2008, and Duan and Yeh, 2010, for recent

applications of option-implied volatility measures in state space settings). Analogously, the



observed spot data is linked to the objective process in (1) and (2) by using high frequency
returns to estimate the integrated variance associated with the objective process.

In the following section we outline the state space model based on the observed volatility
measures, with both risk premium parameters, Ap and \;, assumed to be constant. In
Section 3.2 we extend the model to allow for a dynamic model for \;. In common parlance,
the model we adopt for \; is observation-driven, with the value of \; at time t, Ay, given
by a deterministic function of Aj;_; and the ‘observed’ value of \j;_1, denoted by l;;_1. In
specifying [ j;_1, we exploit recent theoretical developments in Carr and Wu (2009) (amongst
others) to link the difference between the two observed measures of variance over the option

maturity period to A ;.

3 A State Space Model Based on Spot Price and Option-
Implied Volatility Measures
3.1 Constant risk premium parameters

Given the objective variance process in (2), we define quadratic variation over the horizon
t — 1 tot (call this day t) as

t N
QVi 1, = / Vds + S (272
t—1

t—1<s<t

That is, QV,;_1, is equal to the sum of the integrated variance of the continuous sample path

¢
th,t:/ Vids,
t—1

and the sum of the N;—N;_; squared jumps that occur on day ¢. Denoting r;, = In P, —In P, |

component of P,

as the ith transaction (logarithmic) return, it is now standard knowledge (Barndorff-Nielsen
and Shephard, 2002, and Anderson et al., 2003) that

M
RV,= ) 15 QVi, (8)

ti€t—1,t]

where RV, is referred to as realized variance and M is equal to the number of intraday returns

on day t. On the other hand, bipower variation,

Tt (9)

T M
BV, = 5 > el

t;€[t—1,t]



is a consistent estimator of V;_; in the presence of price jumps (Barndorff-Nielsen & Shep-
hard, 2004).3

With a view to avoiding the need to explicitly model the price jump process - and its
associated risk premium - in the state space framework, we adopt BV, (rather than RV}) as a
spot-price-based measure of the latent variance. With the value of M used in the calculation
of BV, assuming a finite value in practice, we view BV, as a noisy measure of the unobserved

integrated variance by specifying
BV, =V, 14 +upy; upy, ~ N(0,0%, V), (10)

where the latent variance underlying V;_1, evolves according to (2). The adoption of a
Gaussian measurement error (conditional on the volatility path) is motivated, in part, by
computational convenience, whilst the use of a state-dependent measurement error variance is
motivated by the clear need for such a specification in the case of the empirical data analyzed
in Section 5. However, the form of measurement error in (10) also has some additional
justification, by being broadly consistent with existing asymptotic theory regarding BV, in
a more limited setting. Specifically, Barndorff-Nielsen and Shephard (2006) demonstrate
that under the assumption of no jumps, as M — oo, BV, converges to a normal distribution
with a variance that is an increasing function of integrated quarticity, 1Q;_1+ = ftt—1 VZ2ds.
As well as having spot-price based observations on the latent variance, we have option-
based measurements via the following logic. Bollerslev and Zhou (2002) and Garcia, Lewis,
Pastorello and Renault (2011), amongst others, derive a set of conditional moments for the
integrated variance of Heston’s (1993) stochastic volatility model, which corresponds to (2)
above, with dJ! set to zero. Defining F; = o{V;;s < t} as the sigma-algebra generated by
the point-in-time variance process, and using E(-|F;) to denote a conditional expectation
with respect to the objective measure, the conditional mean for integrated variance under
the physical measure, over the period from ¢ to t+ 7, in this case can be expressed as a linear

function of the point-in-time variance,

t+7
E(VyrlF) = E ( / Vds ft) — 4, Vi + b, (11)
t
where . )
ay = — (1 — e_m) and b, =710 — — (1 — e‘”‘) ) (12)
K K

Extending these existing results to cater for the distribution in (4), and using E*(:|F;) to

denote a conditional expectation with respect to the risk neutral measure, the risk-neutral

3Implicit in the results in (8) and (9) is the assumption that microstructure noise effects are absent.
The formal incorporation of microstructure noise in the assumed process for intraday returns has led to
modifications of RV; and BV, that are consistent estimators of QV;_1: and V;_1: respectively, in the
presence of such noise; see Martin et al. (2009) for a recent summary.
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expectation of integrated variance over the horizon t to ¢t 4+ 7 is given by

t+7
E*(Vt7t+fyft) = aj‘/; + b;k_ -+ E* (/ Z;de:
t

f) | (13)

where ) o
A —TK* d br=76—(1— —TK*
ar /4;*( e ™) and bl=r1 H*( e ™),
and where §* and k* are defined in (5). With the assumed independence of d.J;V over time,

plus the contemporaneous independence between Z7” and dN;, then

t+7 t+7
E* ( / Z: AN} J-}) - E ( / Z;“dN;)
t t

t+T1
- [ e
t

t+7
= / /LZ(SJdS
t

= 7, + ] 0,

given pf = p, + Ay from (7).

As shown by Jiang and Tian (2005) and Carr and Wu (2009) (and as based on the
earlier work of Britten-Jones and Neuberger, 2000), the risk-neutral expectation of quadratic
variation is implied by a continuum (over strike K') of option prices with maturity 7 > 0,
Ct+r7,K), as

Nijr
E*(QVir| ) = E*(Vt,t+7|}"t)+E*{ > (25)2}
t<s<t+T1
_ 2/ C(t—i—nli{)ﬂ—(](t,K)dK (14)
0

Hence, E*(QVi14-|F:) is referred to as ‘model free’ implied variance. Importantly, this
measure eschews the dependence of the ubiquitous Black-Scholes option-implied variance on
the empirically invalid assumption of geometric Brownian motion for the underlying asset
price.

Given an estimate of E*(QV;44.|F:) in (14), based on a finite set of observed option

prices on day t and denoted by M FtQV, we define the following option-based measurement

equation,
—~ Niqr
MF, = MF? —E* { (25)2}
t<s<t+T1
= E*Visr|Fo) +umr; unr, ~ N(0,0%,2V), (15)



where u ), captures both the error associated with the discretization and truncation of the
~ Niyr
integral in (14) and the measurement error in E* [ > (Zg’)ﬂ. As with (10), a (condi-
t<s<t+r
tionally) Gaussian measurement error is adopted for convenience, with a state-dependent

measurement error variance motivated again by empirical considerations. We follow Boller-

slev et al. (2011) in estimating E* [ NiT (25)2} as some constant proportion (c¢) of the
e

estimated objective expectation, { > (Zg’)ﬂ , measured as follows.? Following Tauchen

and Zhou (2011), we identify the ptrfa:gge of a significant price jump on any day t by the

realization of the statistic,

RJ,
Zy = : : (16)
\/(2.61 —2) M~ max (1, 25 )
where R.J; = Wﬁ;‘fvﬁ, and where tri-power quarticity, T P;, serves as a consistent estimator

of the integrated quarticity, ZQ,_; ;. Realized price jump variation on day ¢ is then extracted
by means of
JV,=1(Zy > Z,) x max (0, RV, — BV;), (17)

with a time series of values for JV; produced accordingly.® As is consistent with the bulk of
the empirical literature and with the theoretical assumption of independent jumps over time,
JV; (as based on the empirical data analyzed in Section 5) exhibits little autocorrelation.®

Hence, a short-memory autoregressive model of order one is used to produce point predic-
[ Negr
tions, conditional on data up to time ¢, of JV; 11, JViii9, ooy JViigr, With E { > (Zg)ﬂ
t<s<t+1

given as the aggregate of these 7 predictions. The (modified) option-implied measure used
in (15) is then

v oal 2

MF, = MF®Y —¢E { ST (2P) } : (18)

t<s<t+T1

*See Bollerslev and Todorov (2009) for an alternative method of estimating the risk-neutral expectation
of jump variation, using short-maturity out-of-the-money options.
. .. . _3 M 4/3 4/3 4/3
STri-power quartricity is computed as TP, = Mpys > el 76, |77 ||, where Hass =
ti€lt—1,t]
22/31 (%) r (%)_1 and TP, — ZQ;_1; as M — oo. Under the null hypothesis of no price jumps, Z;; is
asymptotically N (0,1) as M — oo. Thus, in testing whether a price jump is present on a particular day,
the a—level critical value from a standard normal distribution (Z,) applies.
6This assumption of independent jumps has been questioned of late, given the tendency for jumps to

‘cluster’ during certain time periods. See, for example, Ait-Sahalia, Cacho-Diaz and Laeven (2010).
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Using an Euler discretization of (2), the full model we estimate is

BV, = Vioii+opvVily, (19)

MF, = E* (Vi |F) +omrVi€s,
= a;Vi+ b+ 7, + A 0s+ omrVily (20)
Vi = kOAt+ (1 — kAL) Viar + 0o VAL Vi ais + Z) AN, (21)

with

& = (&4, 600, E5) BN (05,13) forallt =1,2,...,T. (22)
Z{ ~ FErp(u,) (23)
AN, ~ Bernoulli(§jAt). (24)

Setting At = 1 in (21), the state equation for V; describes the evolution of the point-in-time
(annualized) variance from one day to the next. It is this variance quantity at time ¢ that
enters the function E*(V;,.,|F:), and contributes to the measurement error variance in (19)
and (20). We also assume that the (conditional) mean of BV; in (19) is equal to V;, by
adopting a rectangular approximation to V;_1+ = ftt_1 Vids. The parameter 6 is estimated as
an annualized quantity, matching the annualized magnitude of the point-in-time variance,
V;. The parameter « is treated as a daily quantity, measuring the rate of mean reversion in
the annualized V; per day. In accordance with this treatment of s, 7 = 22 days and M F; is
modelled as an aggregated annualized variance over the trading month.

Finally, we conclude this section by acknowledging that the latent process adopted here
for V, is short-memory, as is typical in this literature. As is now a stylized fact, time series
of measured volatility (both spot-price based and option-implied) exhibit, in contrast, long-
memory characteristics; see Andersen et al. (2003) for an early illustration. Given that
the primary focus of this paper is on producing accurate short-term (specifically, one-day-
ahead) forecasts, we do not view this as a problem. Indeed, anticipating the empirical
results reported in Section 5, the model-based one-day-ahead forecasts of the observable BV,
and M F; out-perform reduced-form models fitted directly to the observable quantities that

explicitly cater for the long-memory features in the latter.

3.2 A dynamic model for the jump risk premium

Carr and Wu (2009) propose a method of quantifying the variance risk premium using
variance swaps. A variance swap is an over-the-counter contract with a payoff equal to the
difference between quadratic variation, defined over the life of the swap contract, and the

so-called variance swap rate, which is determined at time t.

11



Setting t + 7 as the period at which the contract expires and denoting the price of the
variance swap as p; and its payoff as x;. ., the no arbitrage conditions that underlie standard
asset pricing theory imply that p, = kE*(zyy.|F;), where k is a constant (risk-neutral)
discount factor. Defining the variance swap rate as SW; ., we have ;1 = QV; 107 —SW, 14r.

Given that the variance swap has zero market value at time ¢, it follows that p;, = 0 and
SWigsr = B (QVip4r|F) (25)

as a consequence. As is consistent with the result in (14), Carr and Wu (2009) show that
SWi 4. can indeed be synthesized by a linear combination of 7—maturity option prices
observed on day t.

In addition to the equality in (25), asset pricing theory allows the zero price of the

variance swap to be linked to its payoff via the objective measure as
0= E(mt,t+T$t+T|ﬂ)7 (26)

where my s = My s/ E(Mytr|Ft) is the normalized stochastic discount factor (or pricing
kernel), with E(M;+.|F;) = e”"" under the assumption of a constant risk-free interest rate.
Given that SW; ., is known at time ¢, and using F(m;;4.|F;) = 1, (26) can be re-written

as

SWt,H-T = E(mt,t+TQVt,t+T|f;f)
= E<mt,t+r|ft)E(QVt,t+T’ft) + COU(mt,t+T7 QVt,t+T|«7:t)
= E(Qvt,t+7|f;f) + COU(mt,t+T7 QVt,t+r|-7:t)-

Dividing through by SW, ., we produce an expression for the expected excess return on

the variance swap investment

Qvt,t+7'
SWt,t+T

Visir
|ft> —1= —cov(mm_w, Mk/tt)

E
( SWt,t+T

Alternatively, we can define the premium in variance payoff units as
E(QVipr|Ft) = SWigsr = —cov(mygir, QVrir | T),

and estimate the premium via an average of QV;1r — SWi sy r.
Importantly, the above analysis highlights the fact that under the model outlined in
Section 3.1, and with a focus on integrated variance only, the conditional variance risk

premium defined over the maturity period 7 is given by the following linear function of the

12



point in time latent variance V/,

Nijr

E(Vt,mm)—(swt,m—fz*{ S ()

t<s<t-+r

FD BV F) — B (Vs F)

=a Vi +b; — (alVi+ 0. +TA56y),
(27)
with the terms on the R.H.S. of (27) following from (11) and (13).” The conditional risk
premium is also seen to be a linear function of A\;, the premium for jump variance risk, and
a non-linear function of Ap, the parameter influencing the risk premium for diffusive risk,
ApV;. Bollerslev et al. (2011) - adopting a model that does not include variance jumps -
propose a dynamic model for Ap driven by observable low-frequency macro-finance variables.
With the link made, via a particular equilibrium model, to the risk aversion parameter of
a representative investor (referenced also in Section 5), they produce (indirectly) a model
for time-varying risk aversion. Crucially, however, the analysis of Bollerslev et al. is based
on monthly observations on option-based and realized variance measures, with conclusions
drawn about the time variation of Ap also linked to the monthly frequency. In addition,
their model does not, by construction, include any premium for variance jump risk, so that
the dynamic behaviour discerned in A\p may well be confounded by variance jumps.
In contrast, our focus is on high-frequency (daily) variance data, with \; an explicit
component of the specification. Based on the assumption that significant daily variation
in Ay, most notably in response to recent observed jumps in volatility, is more plausible,

from a behavioural point of view, than daily variation in Ap, we hypothesize that \; follows

= E[E Vil Ft) = B Viprr|Fr)]
= E[(arVi + b + 711,67) = (a7 Vi + b7 + 7 (1, + As) 65)]
= (ar —a7) E[Vi] + (by — b7) — 7657,

= (a, — a¥) (9 n 5"”) 4 (br — b)) — 705N;

K

"Note that the unconditional risk premium is given by

Nijr

> (2p)?

t<s<t+T1

E

E (Vt»t+’r|-7:t) - (SWt,t+r - E*

=(ar —al)0+ (by — b))+ (a; —al) (6‘]'%) —T05N;
K

9)\D 1 ( * (SJ
= T— — 1—6_7”) — kA + (al —ar) p
e e pll (a7 —ar) p,]
Negative if Ap<0 Positive if A;>0 and Ap<0 (= a*>a,)

Hence, the unconditional mean of the aggregate risk premium (over 7) defined in this way is negative if the
risk premia have the anticipated signs. This result corresponds correctly to the spot price-based measure,

Niyr
> (2p)? ft].

t<s<t+7

Vi t+r, being less, on average, than the option-price-based measure, SW; ¢4, — E*
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a dynamic process, whilst Ap is held constant. (See also Todorov, 2010). Note, however,
that even with a constant value for Ap, the diffusive risk premium over dt, ApV,dt, is still
a dynamic process via the assumed linear relationship with V;. On the assumption that
short memory dynamics drive A, we specify a conditionally deterministic specification that
mimics a generalized autoregressive heteroscedastic structure for volatility (Bollerslev, 1986),
namely,

Ase = Ao (1 —oq — ag) + a1 A1 + ol g1, (28)

where [;,_; denotes the ‘observed’ value of \j; at time ¢t — 1. It is this value of Aj; that feeds
into the risk-neutral expected integrated variance over the time to maturity, E*(V; .| F?),
in (20).%

Motivated by (27), we set

EVipsr|F) = MF, = a,V, + by — [V, + b5 + 7A 6]

and solve for the observed value of \j; as

[(a, Vi + b,) — (a*V; + b)] = | E (Visr| F) — MF,

2

Ly =

at each point ¢, within the estimation algorithm. As a model-based estimate of the objective
conditional expectation, E(V;;1.|F:), needed to evaluate the right-hand-side of (29) at each
t, we use the following linear function of BV,

~ ar, ar (b + vé
E(Vt7t+7|./ft) = a—lBV;g + <(bT + mvéj) — M) , (30)

ay

where a; and b; are simply those functions a, and b, in (12), evaluated at 7 = 1, respectively.
The estimate in (30) is unbiased for E(V; .| Ft), as

i (b1 1,0
E(a—BVt + <(b7 + Tu,dy) — ar (b + 1,0,) J>> | F:)
a1 a1
] by + 1,0
= Z— (a1 Vi + by + 11,05) + <(bT +7p,0,) — a(+“‘]>>
1 1

- aTV;f + bT + T,LLU5J

From (28), (29) and (30) it is seen that Ay is a function only of a small number of static

parameters, plus lagged values of the latent V; and the observed BV, and M F;. This dynamic

8This specification for Aj; also mimics the structure of the autoregressive conditional duration model
for durations (Engle and Russell, 1998) and the observation-driven model for count data analysed in Jung,
Kukuk and Leisenfeld (2006) and Feigen, Gould, Martin and Snyder (2008).
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specification for the jump risk premium is thus advantageous from an inferential point of
view. It also has the advantage of avoiding the (potential) need to price an additional random

risk factor in the model.

4 MCMC Algorithm and Priors

Given the complexity of the state space model represented by (19) to (24) (with A, now
replaced by Aj; on day ¢, as modelled by (28)), the joint posterior distribution for all un-
knowns is analytically intractable. Hence, an MCMC algorithm is applied to produce draws
from the joint posterior and those draws then used to estimate inferential quantities of
interest, including predictive densities, in the usual way. To reduce notation, we define
the vectors Vi, = (Vi,Va,.... Vi), 20, = (Z2¢, 73, ..., Z})", ANy, = (AN, ANs, ..., AN,)",
BViy = (BVy,BV,,...,BV,) and MFy, = (MF,,MF,,...,MF,), fort =1,2,...,T, and
with M Fy., and BVi,, empty. Using this notation, the joint posterior density for all un-
knowns is given by p (Vi.p, ZV.7, AN1.1, ¢| M Fy.1, BVi.r), where the vector of static parame-
ters is given by ¢ = (k,0,0pv,0MmF, Oy, AD, by, 07, AJo, @1, @2). The joint posterior density

satisfies
p (Vir, Zip, ANvr, 9| M Fr.p, BVir)
(8 tlzllp(MFt|MF1:t—1,BV1:t—1,W,%,Q,UMF,AD,HMCSJ,AJO,M,O@)
x p(BVi\Vy,o8v) x p(Vi|Viey, Z0, ANy, K, 0, 0,)
X p(Z/|AN, p,) X p(ANd,5)] x p(9),

where it is assumed that Vj = 0+ %. The conditioning of M F; on lagged values of M Fy.; 1

and BVy.;_1 derives from the assumed structure for A in (28).

The Gibbs-based MCMC algorithm is implemented in four main steps:

1. Generating V. from

p (‘/I:T‘Zf;Ta A]Vl:Ta ¢7 MFI:T) B‘/I:T)

s

X p(MFt’MFI:tth‘/l:tfl’ ‘/t; K7970-MF7 )\Dulu’v75J7 >\J07a17a2)
1

o~
Il

Xp (B‘/;H/;UO-BV) X p(‘/;iﬂ/;—la ZZ)7ANt7 I€797O'U) ;

2. Generating 27 from

T
p (Zi};T“/l:Ty ANI:T? ¢7 MFI:T; B‘/IT) X H p (‘/;|‘/;717 ZZ)7 ANt; H; 97 O-’U)X p (ZZ)|AN157 ,uq)) 9

t=1

(T truncated normal random variables);
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3. Generating ANy.p from

T
p(AN1:T|V1:T>Zf;T7¢7 MFl:TaB‘/l:T) X Hp(‘/”‘/;f—laZ;]aANtyl{)Gagv) X p(ANt|5J>7

t=1

(T Bernoulli random variables);

4. Generating ¢ (with elements of ¢ blocked conveniently) from
b (¢|V1:T, Zf;T, ANy, MFy.p, BVLT)
X tﬁlp (MF;IV|MF1I;Y—1» BVi4 1, Vi, K, 0,00, AD, s 075 Ajo, Q14 az)
%p (BVilVisopy) % p(VilVis, 28, ANy, 5,0,0,)] X p(6).

Obtaining draws of Vi.7 is the most challenging aspect of the simulation scheme, due to
the presence of the state dependent errors in (19), (20) and (21). Whilst the algorithm of
Stroud, Muller and Polson (2003) is used as the basis of our approach, we are not aware
of this algorithm having been applied to a model with multiple sources of state dependence
and a bi-variate measure. In brief, V;.1 is drawn (in blocks) via a Metropolis Hastings (MH)
sub-step involving augmentation by a pair of mixture indicator vectors, one associated with
the state equation and the other associated with the bivariate measurement equation. F'irst,
the augmentation variables are drawn from their respective full conditional distributions,
given a previously sampled value of Vj.7. Then, a candidate vector XN/LT is obtained from an
approximating linear Gaussian model having error variances dependent upon the mixture
indicator vectors, using the forward filter backward sampling (FFBS) method of Carter and
Kohn (1994) and Frithwirth-Schnatter (1994). Further details of the mixture-based algorithm
used to draw V.7 are provided in Appendix A.

The variance jumps, which occur with probability d; on any day ¢, shift the intercept
term in (21) by an amount Z;, where (by assumption) a variance jump on day t occurs
contemporaneously with a price jump. Given the absence of raw price information in the
model, we introduce information on the probability of price (and variance) jumps via the
prior distribution, as follows. For a given sample period (details of which are given in Section
5) we identify the presence of significant price jumps on any day ¢ by the realizations of the
statistic described in (16) above. The prior for ¢, is then specified as a beta distribution
with mean equal to the proportion of days throughout the sample on which significant jumps
are found to occur. The variance of this distribution is used as a tuning parameter in the
algorithm.

In a similar fashion, the prior for p, is specified as inverse gamma, with a mean value

proportionate to the average magnitude of

JV, I (ry < 0) (31)
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over the sample of days on which significant large price falls are in evidence (indicated by
I (r, <0), where r, is the daily logarithmic return), with JV; as defined in (17). That is, a
priori, we assume that the magnitude of the average jump in variance is some proportion of
the average magnitude of the square of negative price jumps, reflecting the prior belief of a
negative value for the parameter (p;) relating the price and variance jumps (Eraker et al.,
2003, and Eraker, 2004). Once again, both the (a-priori) proportionate relationship between
i, and the average of the sample quantity in (31), plus the variance of the prior distribution
for u,, are viewed as tuning parameters in the algorithm.

With non-informative priors being invoked for the standard deviation parameters, ogy
and o)/, simulation of these parameters is standard, via inverted gamma distributions. The
volatility of volatility parameter, o,, is produced analogously, with the restriction o2 < 2x6
ensuring the positivity of the latent variance processes. The joint prior for x, 8 and A\p is uni-
form, subject to k6 > 02/2 and Ap < 0, with the associated univariate conditional posteriors
being non-standard due to the fact that the conditional mean function in (20) is non-linear
in all three parameters. We use the structure of the model to define Gaussian kernels and
produce candidate draws for each of x, # and \p with separate MH sub-steps. The para-
meters of the jump premium process are also uniform a priori, subject to Ay > 0, a; > 0,
as > 0 and a3 + a3 < 1, resulting in a joint normal posterior truncated by the inequality
constraints. Draws of the vector \ji.r = (Ay1, Ay, ..., Ayr)" are produced automatically
from (the degenerate) p (Aj1.7|Vir, Z7.p, AN1v.p, ¢, M Fy.p, BVy.p) via the conditionally de-
terministic relationship in (28), with [y = Ajo. Given the form of independent, informative
priors invoked for y, and 0, (as described above), inverse gamma and beta candidates are

adopted for the respective MH sub-steps for these two parameters.

5 Empirical Application

5.1 Data description

In this section we report results of the application of the algorithm to daily variance measures
constructed from intraday spot and option price data for the S&P500 index, for the period
July 26, 1999 to December 31, 2008.° The first 1961 observations (corresponding to daily
variance measures for the period July 26, 1999 to June 21, 2007) are used as the initial
dataset for estimation, with the remaining 386 observations being reserved for the evaluation
of the one-step-ahead probabilistic forecasts, based on an expanding sample window. The

evaluation period covers: the period immediately preceding the global financial crisis (June

9The numerical results reported in this section have been produced using the JAVA programming lan-
guage.
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22,2007 to July 27, 2007); the early period of the crisis - during which defaults on sub-prime
mortgages began to impact on the viability of financial institutions and the availability of
credit (late July 2007 to August 2008); and the period of historically unprecedented high
levels of stock market volatility (towards the end of 2008). All index data has been supplied by
the Securities Industries Research Centre of Asia Pacific (SIRCA) on behalf of Reuters, with
the raw index data having been cleaned using the methods of Brownlees and Gallo (2006).°
The raw option-implied measure (corresponding to M FtQV) is based on the publicly available
VIX}?, associated with day ¢, constructed by the Chicago Board Option Exchange (CBOE)
using the model-free methodology. See the CBOE website (www.cboe.com) for more details.

The realized bipower variation measure in (9) is based on fixed five minute sampling, with
a ‘nearest price’ method used to construct artificial returns five minutes apart. Note that the
various forms of microstructure noise-adjusted measures that have appeared in the literature
have their prime motivation in the case of data on traded assets, rather than observations
on a constructed index. However, one could argue that the presence of stale prices in the
index at the point of any recorded up-date, plus the inherent discreteness in the underlying
prices, induce a form of noise. With this view we use a subsampled (or averaged) version of
the five-minute based measure as an additional form of noise adjustment (i.e. in addition to
sampling the observations at fixed five minute intervals).

In Figure 1 we reproduce plots of BV; and MF, for ¢ = 0,1, 1.2 and 1.5 (Panels A
to D respectively) for the full sample period. The plot of MF; in Panel A (with ¢ = 0)
corresponds to the raw CBOE measure MF;, = M FtQV = VIX?. The area highlighted
in grey at the end of each plot represents the period reserved for the evaluation of the
probabilistic forecasts. The empirical regularity of the option-implied variance exceeding
(in the main) the realized variance is in evidence in all panels. Despite the option-implied
measure being much less noisy than the (daily) returns-based measure, both measures exhibit
broadly similar fluctuations, with there being only a slight tendency for the peaks in MF,
to lag those in BV;. The magnitude and variability of the realized variance and the option-
implied measures increased significantly during the global financial crisis, demonstrated here
with the sharp increase in both series towards the end of the sample. The plots in Panels
B to D show a reduction in the extreme movements in the option-implied measure, relative
to the raw measure, M FtQV, as befits an adjustment that removes from M FtQV (an estimate
of) the risk neutral expectation of price jump variation. However, there is little discernible
difference in the three M F} series, across the different values of ¢ employed in adjusting the

raw M FtQV for price jump variation.

10The authors would like to acknowledge the excellent research assistance of Chris Tse in producing the
realized variance and bipower series.
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Figure 1: Plots of BV, and MFtQV (Panel A) and BV, and M F; for ¢ = 1.0, 1.2 and 1.5
(Panel B, C and D, respectively).
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5.2 Empirical Estimates

In Table 1 we report the results based on estimation of the model in (19) to (24) and (28),
for the initial sample period, July 26, 1999 to June 21, 2007. Marginal posterior means
(MPM) and 95% interval estimates are calculated from 50,000 MCMC draws, following a
50,000 draw burn-in period. We report the results based on BV; and M F; for three different
values of ¢, ¢ = 1.0,1.2,1.5. The first value of ¢ implies that the risk neutral expectation
of jump variation is equivalent to the objective expectation, while the second and third
values (respectively) imply that the risk neutral expectation is 20% and 50% larger than the
objective expectation.!’ Convergence of the algorithm is assessed using the visual inspection
of cumulative sum statistics; see, for example, Bauwens and Lubrano (1998).

Both point and interval estimates of the parameters are very robust overall to the value
of c. Most notably, for all values of ¢, the results indicate a high level of persistence in both
the latent variance process (small value of x) and the process for Aj; (high values of ay
and aw). The latter result supports the decision to model the variance jump premium as a
dynamic process and to produce distributional forecasts for this quantity. As anticipated,
the (time series) average of Ay, s, (as estimated here by the average of the 7" MCMC
draws of each Aj;) is positive, whilst the (constant) value of Ap is negative. The magnitude
of Ap is small, consistent with values reported by Eraker (2004), indicating a slight increase
in the persistence in volatility under the risk neutral measure. However, the magnitude of
s is large, in particular in comparison with the estimated magnitude of the mean of the
actual variance jumps, p,, over the period. This result indicates the extreme sensitivity of
the market to this aspect of the latent variance, with the implied risk neutral expectation of
(variance) jump size (1)) being many orders of magnitude larger than the actual mean jump
size. The point (and interval) estimates of ¢ ; indicate that the probability of a variance jump
occurring on any one day ranges from approximately 2% to 5%. These magnitudes slightly
exceed those reported in previous studies (based on different model specifications and for
earlier sample periods), as summarized by Broadie et al. (2007), where point estimates of
the probability of variance jumps vary from 0.3% to 2%. The estimates of the mean of
the variance jumps reported in Broadie et al., p,, range from 0.018 to 0.037 (in annualized
decimal form), and are thus are slightly higher than the magnitudes for this parameter

recorded in Table 1, but are broadly consistent nevertheless.

INote that that the a priori assumption being adopted here is that price jump premium is non-negative,
i.e. that ¢ > 1.
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Table 1: Empirical results for the S&P500 stock index for July 26, 1999 to June 21, 2007,

based on the measures, BV, and M F;. The value of ¢ recorded is that used in the
production of M F} in (18).

c=1.0 c=1.2 c=1.5
Parameter MPM MPM MPM
(95% HPD) (95% HPD) (95% HPD)
0.01706 0.018246 0.01707
m (0.01309, 0.02091) (0.01386, 0.02259) (0.01300, 0.02110)
0 0.00881 0.00870 0.00885
(0.00529, 0.01215) (0.00542, 0.01183) (0.00507, 0.01249)
0.00815 0.00809 0.00891
v (0.00761, 0.00867) (0.00746, 0.00885) (0.00828, 0.00951)
0.60822 0.59575 0.59418
oBV (0.58624, 0.63073) (0.57292, 0.61979) (0.57166, 0.61844)
0.26501 0.24634 0.24424
oMF (0.19478, 0.46334) (0.18140, 0.43857) (0.17803, 0.43837)
0.00756 0.00868 0.00800
Ho (0.00597, 0.00977) (0.00683, 0.01110) (0.00633, 0.01037)
5 0.03713 0.03684 0.03778
(0.02495, 0.05202) (0.02421, 0.05097) (0.02482, 0.05308)
A\ -0.00710 -0.00804 -0.00759
b (-0.01727, -0.00027) (-0.01876, -0.00028) (-0.01765, -0.00026)
A\ 0.07668 0.08782 0.08129
Jo (0.00382, 0.15897) (0.00446, 0.18314) (0.00415, 0.16924)
o 0.38226 0.38545 0.38403
! (0.01803, 0.87587) (0.01799, 0.87734) (0.01778, 0.87614)
o 0.28115 0.26495 0.26627
2 (0.01148, 0.67120) (0.01026, 0.64011) (0.00997, 0.61428)
A 0.36964 0.36047 0.34810
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5.3 Probabilistic forecasts of latent variables

Bayesian predictions of the latent variance, Vr,;, and the dynamic jump risk premium,
Asri1, are produced by estimating the (marginal) predictive densities, p(Vry1|M Fi.r, BVi.7)
and p(Ajri1|MFy.r, BVi.r), respectively. In the usual fashion, the marginal predictives are
estimated by taking draws from the respective conditional predictives (for Vyi1 and Aj71),
given MCMC draws of the relevant conditioning quantities. The predictive density of the
diffusive risk premium, p(ApVry1|MFi.r, BVi.r), is estimated via draws of the product,
Ap Vi1, composed from the posterior draws of Ap and V.

Recursive forecasts of Vi1, Ajri1 and A\pVpyq (based on expanding windows) are pro-
duced over the evaluation period: June 22, 2007 to December 31, 2008. Given the robustness
of the results to the value of ¢ (in (18)), we summarize the predictive results for ¢ = 1.5
only. The three predictive densities are estimated using every 10" of the 50,000 draws of
all unknowns (after a 50,000 draw burn-in). The draws of ¢ are only updated every 60 days
(approximately) throughout the evaluation period!? In Figure 2, plots of both the marginal
predictive means and 95% predictive intervals for V1, Ajry1 and A\pVpr, 1 are given respec-
tively in Panels A, B and C. As is clear, as the crisis deepens, both the level of the latent
variance itself and the premium demanded by investors for variance risk (of both the diffu-
sive and jump type), increases. The degree of uncertainty associated with all three latent
variables, as measured by the magnitude of the prediction intervals, is also markedly larger

in the extreme crisis period, in late 2008, than in the earlier (and pre-) crisis period.

5.4 Probabilistic forecasts of observables

Using the hierarchical structure of the state space model, the Bayesian predictives for the
observable variance quantities, namely p(BVry1|M Fy.r, BVy.r) and p(M Fryq|M Fy.r, BVi.1),
are estimated using the MCMC draws of all unknowns, including Vr,; and Ajr.;. These
predictive distributions are summarized in Figure 3, with the observed values also displayed.
Over the full evaluation period, the empirical coverage of the 95% prediction intervals for
BV, and M Fr,; are 94.82% and 92.28%, respectively, with these figures highlighting the
accuracy with which our approach predicts the observable variance measures (most notably
the objective measure), even during the height of the financial crisis.
Given the current practice of producing forecasts of these measures via univariate, observation-

driven time series models, it is of interest to also compare the accuracy of our method with

such simpler alternatives. With an extensive comparative evaluation of the accuracy of al-

12The (static) parameter estimates are very robust across sub-periods, justifying this attempt to ease the
computational burden associated with the production of the forecasts.
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Panel A: Latent Variance

Panel B: Jump Variance Risk Premium Parameter

tyfin

R L

'
",

L goas0 g
- 20 Aon Ol
mm_u o el
C 20 des 51
a0 Bre g1
Feoinr Lz
- eounr ez
Fenfew 22
L an iy oz
a0 e e
Fooem o
- e0ded ¥
Feouer ¢
- £0=9a 0L
F 20 Aop EL
L s0 w0 5L
wn_u_ dag £1
- 20 Bre 0z
mB Inr g%

12

L0 UNE S22

Fe02=2a g
- 20 A0r Ol
F80 ko EL

=, L endaz 51
Fls06my g1
& Laomr 1z

% Foounrcz
i andew sz
.m_ F 20 ity a7
£ L ensew s
% Feodew e

FE0 994 +
a0 uer £

AL zooea o
% | 2o non z1
3L 0 w0 s
i 2odag 21
40 B 07

F L0 0nr 22

A0 uUnp SE

a0

Panel C: Diffusive Variance Risk Premium

Fanasa B
- o0 Aop O
L oo wo s
wm__u_ dag 51
20y 21
L eoinr 1z
koo unr ez
Fandew 2z
a0ty 82
- an e Le
Fonae ©
- o0 ged ¢
Leouer 2
BT
L 20 ~op 21
L 0p0 5L
L sodeg 21
40 B 0z
L 20 ez

: - sounr sz

-002

- 004

-006

-008 1

= =

Predictive Mean
---- 90% Pradiction Intarval

Figure 2: One-step-ahead predictive means and 95% predictive intervals of V1 (Panel A),

Asr+1 (Panel B) and A\pVzy; (Panel C) for June 22, 2007 to December 31, 2008.
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Panel A: Bipower Variation Panel B: Option Implied Volatility
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Figure 3: One-step-ahead predictive means, 95% predictive intervals and observed values of
BV, (Panel A) and MF; (Panel B) from June 22, 2007 to December 31, 2008.

ternative volatility forecasts being beyond the scope of this paper, we compare our state
space-based forecasts with forecasts from a single model only for each of BV, and M F;.
Specifically, for BV; we consider the heterogeneous autoregressive (HAR) specification intro-
duced by Corsi (2004) and used by Andersen, Bollerslev and Diebold (2007) and Bollerslev,

Kretschmer, Pigorsch and Tauchen (2009), amongst many others,
BV, = By + BpBVic1 + BywBVi—ss + By BVieas + €4, (32)

where BV,_j; = h=1 2?21 BV,_;. In order to best replicate typical statistical practice in the
area, we estimate this model using quasi-maximum likelihood estimation (QMLE), based
on Gaussian errors. For MF; we adopt a second-order autoregressive model for the first

differenced series,
AME, = By + J1AMF,_y + By AMEF, 5 + 1, (33)

where AMF, = MF, — MF,_;, and a Gaussian distributional assumption is again adopted
and QMLE applied. (See Ahoniemi, 2006, for discussion of time series models for option
implied volatility).

Following Geweke and Amisano (2010), we compare the accuracy of the Bayesian mar-
ginal predictive densities for BV; and M F;, p(BV?|M Fy.4—1, BV1.4—1) and p(M F?|M Fy.4q,
BVi.4_1), with that of the predictive densities produced by the competing univariate models,
P(BVP|MFyy_q, BW:tAﬁQMLE,tq) and p(MF?|MFy,_1, B‘/i:tq,@QMLE,t—l), respectively.
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Here the competing predictive densities are constructed using the QMLE of the unknown
parameter vector of the model being assessed, EQ MLE+—1, as based on data up to and includ-
ing period t — 1. To mimic the approach adopted for ¢ in the state space model, EQ MLEt—1 18
up-dated only every 60 days (approximately). The height of each predictive density is eval-
uated at the observed realization, BV,° or M FY?, over the evaluation period ¢ = 1,2, ..., 386,

with the cumulative difference in log scores (CLS),

74386 .
BV\MF,,_ 1. BVj.,_
CLSpy = Z In | — p(BVY| Lit—1, D Vit 1) and
i | P(BV2IMFyyq, BVig1,00mLE-1)
= BIMFZ|MFyy 1, BVis 1)
CLSyr = Y In|= L :
i | PIMEFPIMFyy o, BViy 1, 0gmies—1)

used to measure the relative performance of the two methods. A positive CLS value indicates
that the Bayesian marginal predictive outperforms the competitor.

Over the full evaluation period, C'LSgy = 1381.05 and C'LSy;r = 445.34, indicating
that the state space model provides superior predictions of both BV, and MF;. Plots of
the cumulative sums of both CLSpy and CLSyp (fromt = T+ 1 tot = T + k, for
k =2,3,...,386) are produced in Figure 4 to gauge relative predictive performance over the
crisis period as each new observation contributes to the cumulative difference in log scores.
From the plot in Panel A, it is clear that the state space model for BV, consistently dominates
the HAR specification over the full sample period. In the case of the predictions of M F;,
despite the early inferior performance of the state space model, as the extreme period of
the global financial crisis starts to unfold towards the end of 2008, the state space model
completely dominates the simple univariate alternative, yielding the large positive value for
CLS)yr for the full period.

5.5 Applications of the volatility and risk premia forecasts

Whilst the (overall) accuracy of the state space-based forecasts of the observed variance
measures themselves is certainly worthy of note, a more convincing testimony to the (pre-
dictive) worth of any model comes from its ability to produce accurate forecasts of financial
quantities into which volatility is an input. With this in mind, we conduct two exercises.
First, in Section 5.5.1, we use our bi-variate state space model, augmented by an additional
measurement equation based on daily returns (r;), to produce recursive predictive distribu-
tions for 77,4, from which the daily 5% and 1% VaRs are extracted. Conventional statistics
for both unconditional coverage and independence of exceedances are reported for the evalu-
ation period, and compared with corresponding statistics based on a univariate HAR model

for realized variance. Secondly, in Section 5.5.2 we document the accuracy of estimates of
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Figure 4: Cumulative sum of the CLSpy (Panel A) and the C'LSyr (Panel B) for June 22,
2007 to December 31, 2008.

the settlement prices of VIX futures, as based on our state space-based forecasts of the
latent variance. In this case the comparator is a series of forecasts produced by fitting the
model in (33) to the observed VIX? ( = MFRY) itself. Accuracy is gauged by comparing
the empirical coverage of the relevant probability intervals with the nominal level, as well as
comparing the mean squared errors associated with the relevant point predictions.

Finally, in the spirit of that Bollerslev et al. (2011), in Section 5.5.3 predictions of the
latent variance and the variance risk premia are used to extract a sequence of one-step-ahead
predictions of the relative risk aversion of the representative agent. Whilst it is not possible
to conduct an assessment of accuracy in this case, due to the absence of ‘observations’ on
risk aversion, it is still of interest to document this outcome of our model and to calibrate

the results with comparable results recorded in the literature.

5.5.1 Value at risk (VaR) prediction

Predicting the one-day-ahead 5% and 1% VaR for the market portfolio associated with the
S&P500 index is equivalent to calculating the 5% and 1% quantile, respectively, for the
predictive distribution for the portfolio return. Although our state space model does not
explicitly model the return, we provide a method for augmenting the inferences drawn from
the model based on the variance measures to produce, in turn, forecast distributions for
the future return. Specifically, draws from the posterior distribution of the volatility model,
conditional upon the spot- and option-based variance measures, are resampled to reflect
additional conditioning on observed end-of-day returns. The model for the logarithmic price
return, r, = In (P,) —In (P,_,), conditional on (V, V;_1, Z’, AN,)’, is based on an initial Euler
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approximation of (1),

Vi
- (M_§> L (Vo= k0 — (1= 5) Vis — ZPAN,)
(05 Z8) AN+ Vi (1= p2) + 02ANE,, (34)

itd

with {£,,} ~ N (0, 1), assumed to be independent of {&5,}, {€5,} and {£;,} in (19), (20) and
(21) respectively. In order to render the resampling method computationally efficient, we
make the simplifying assumption that 012, = 0, and introduce an unknown scale parameter,
0., absorbing all constant factors in the error variance, so that the error term in (34) collapses
to 0,4/ Vi€, In addition, we introduce an additional regression parameter, 3, resulting in a
final model for returns given by

Vi—k0— (1 —k) Vi1 — ZV AN,

Oy

Tt:///—i_ﬁv‘/t_p( >+/’LpANt+pJZZ}ANt+O-T\/Vt§4t (35)

Draws of V.7, Z1., ANy.1, 0, k and 0, , produced via the application of the MCMC algorithm
described in Section 4, are resampled (as per the description in Appendix B), with draws of
the return-specific parameters in (34), u, 3,, p, it,, p; and o, then produced by exploiting
the regression structure in (35) in the usual way. With standard informative priors used for
the return-specific parameters, the resampling method exploits the (closed-form) solution for
the marginal likelihood for the vector of returns r1.0 = (71,79, ...,77)’, conditional on Vi.p,
ZVry ANy, 0, k and o,,.

In Table 3 we report the empirical coverage statistics for the 5% and 1% VaR predictions
produced by our (augmented) state space approach, along with the corresponding statistics
associated with an HAR model fitted to realized variance (HAR-RV). As with the HAR
model adopted above for the bipower measure, we assume a Gaussian distribution for the
innovations and estimate the model using QMLE. We also report, for both approaches, the
p-values associated with the tests of correct unconditional coverage and independence of ex-
ceedances of the VaR (Christoffersen, 1998). The former test assesses whether the empirical
coverage differs significantly from the nominal level, while the latter tests for independence
in the sequence of returns that exceed the VaR. An acceptable series of VaR predictions
should fail to reject both of these hypotheses. Results are reported for an evaluation period
that excludes the final four months of 2008, and for the full evaluation period. Overall, the
state space approach provides more accurate coverage than the HAR-RV model, with em-
pirical coverages that are a good deal closer to the nominal levels than those of the HAR-RV
model. Its empirical coverages over the June 22, 2007 to August 31, 2008 period, for both
the 5% and 1% VaR, are also not significantly different from their respective nominal levels

(at the 5% significance level). In addition, the state space approach accurately captures
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the dynamics in returns - over both periods considered and for both VaR levels - as the null
hypothesis of independence in the exceedances is not rejected in all four cases. The HAR-RV
model, on the other hand, fails the independence test in both periods, and for both the 5%
and 1% VaR cases.

Table 3: Empirical coverage and p-values for the unconditional coverage (UC) and
independence (IND) tests for 5% and 1% VaR predictions

Excluding the extreme period Overall period
June 22, 07 to Aug 31, 08 June 22, 07 to Dec 31, 08
State Space HAR-RV State Space HAR-RV
Empirical 7.31% 13.29% 10.10% 14.51%
5% Coverage
VaR UC Test 0.0845 0.0000 0.0000 0.0000
IND Test 0.0619 0.0006 0.5816 0.0046
Empirical
0.33% 7.97% 2.59% 7.77%
1% Coverage
VaR UC Test 0.1762 0.0000 0.0088 0.0000
IND Test 0.9348 0.0409 0.4652 0.0243

5.5.2 Pricing VIX futures

The Chicago Board of Exchange (CBOE) introduced trading on futures contracts based on
the VIX in March 2004. For a given futures contract with maturity date T}, the settlement
price quoted on day ¢, used for marking-to-market purposes, reflects the market’s expectation
of the VI X value at the time of maturity. The square of the VIX (= M F%V in our notation)
at time T}y is, in turn, a representation of the risk neutral expectation of QVr,, 1,,+-, namely,

quadratic variation over the period 7 dated from T);. It is thus of interest to ascertain the

degree to which a model-based prediction of \/E* (QVr,, 1,,++|Fr,,) accords with observed
settlement prices on the VIX.
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Under our assumed model,

E [E* (QVTM7TM+T|fTM) |ft] = Lk [E*(VTM,TM-FT’fTM”Ft]
_ Nty ir _
+E | B ( > (zy J-“TM) |7
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= aiE (VTM‘:Ft) + bj,k- + 7-5J [Mv + E(/\JTM|ft)]
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where E (Vr,,|F;) and E(A\yr,,|F:) are (Ths—t)-steps-ahead point predictions of the stochastic
variance and the jump variance risk premium, respectively. These two quantities can be

obtained via our assumed models for V; and Ay, (21) and (28) respectively, whilst

FT]VI) “Ft]

is produced from the univariate time series modelling of price jump variation as described

E =K
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E” >, (Z40)
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cE >, (4D)

Ty <s<Tpr+T1

fT]\/]) ’ft

in Section 3.1), with ¢ = 1.5 imposed.

Using posterior draws of all unknowns, draws of \/E [E* (QVr,, 1y,++|Fr,,) | F:] can be
produced for ¢t = 1,2, ...,386, over the evaluation period: June 22, 2007 to December 31,

2008, for futures contracts with the closest maturity (i.e. the smallest value of T); at any

given point in time t). A point estimate of \/E [E* (QVr,, 1y++|Fr,, ) |Fi] is given by the
sample mean of the draws and the 95% probability interval produced from the draws in
the usual way. As a comparator, the model in (33) is fitted to the observed VIX? (with a
Gaussian distributional assumption adopted for the error term) and used to produce predic-
tions of VIX. As reported in Table 4, the 95% interval constructed for the state space-based
prediction covers approximately 82% of the observed daily settlement values, whilst the
univariate time series model produces a coverage of only 66%. Further, the accuracy of
the (estimated) posterior mean of \/E [E* (QVr,, 14,4+ Fry, ) | 4] as a point predictor of the

settlement price - as measured by the mean squared error - is also superior to that of the

univariate comparator.

5.5.3 Prediction of Risk Aversion

In modelling both variance risk premia (diffusive and jump) as dynamic processes, we are
effectively modelling time variation in the risk aversion of the representative investor. In
the spirit of Bollerslev et al. (2011), we link the risk aversion parameter, 7, associated with
the power utility function for a representative investor, to both ApV; and Aj;. As per the

analytical demonstration in Appendix C, this leads to the following relationship between risk

29



Table 4: Prediction of VIX future prices: empirical coverage of 95% prediction intervals
and mean squared error of point predictions

State Space Time Series

95% Interval
Coverage

82.12% 65.80%

Mean Squared Error 18.66 27.20

aversion in period 7'+ 1, vy, the two risk premia, ApVr41 and Ajryq, and certain other

unknowns in the model,

ApVrir — 05\

pVry1 —0g JT+21' (36)
pouVri1 + p 04
Thus, draws of all unknowns on the right hand side of (36) (with draws of the full set of

these unknowns, including p and p;, obtained as part of the resampling exercise in Section

Yr+1 =

5.5.1) can be used to produce draws of v, ; and those draws used, in turn, to estimate the
predictive density of v, ;. Similar to the plots presented in Figure 2, a plot summarizing the
predictive distribution of v, is produced in Figure 5. In the earlier period, in particular,
the mean values of v, fluctuate around values that are broadly consistent with the range
of estimates - produced via very different means - that have been reported for this parameter
in the literature (see Cochrane, 2005 and Bollerslev et al., 2011 for some recent discussion
and documentation of these values). However, as is to be expected, given the relationship
between v, and the variance risk premia, the implied risk aversion of the representative
investor increases dramatically during the extreme crisis period towards the end of 2008,
together with a widening of the predictive bounds. In particular, the widening bounds can
be interpreted as an increased dispersion in the behaviour of investors during the crisis. That
is, the confusion that all investors suffer during such a period can be seen as translating here
into uncertain estimates of the risk aversion level associated with a rational representative

investor. (See Bollerslev and Todorov, 2009, for related discussion).

6 Conclusions

This paper is the first to combine non-Gaussian, non-linear state space techniques with
the Bayesian inferential methodology for the purpose of producing probabilistic predictions
of objective volatility and its associated risk premia, using both option and returns-based

volatility measures. In the usual fashion, the premium for diffusive variance risk is linear
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Figure 5: One-step-ahead predictive mean and 95% predictive interval of v, (the relative
risk aversion parameter for a representative investor with power utility) for June 22, 2007 to
December 31, 2008.

in the latent variance, while a conditionally deterministic process driven by a past function
of the measurements is adopted for the premium for jump variance risk. An empirical
investigation using the S&P 500 market portfolio sheds light on the changes in the predictive
distributions of the latent quantities of interest, including the latent objective variance, over
the period of the recent global financial crisis. Our state space approach is shown to provide
highly accurate predictive coverage over the full out-of-sample period, most notably for the
observable objective measure. Our method also yields superior predictions of the observable
measure of objective variance to those of a widely-used univariate time-series model. More
accurate predictive performance (overall) is demonstrated for the case of the option-implied
variance measure, with the predictive performance of the state space model, relative to that
of a univariate time series specification, becoming completely dominant as the market itself
becomes more volatile. The accuracy with which latent volatility is predicted translates
into relatively accurate predictions of related quantities - namely the VaR on the market
portfolio and the market prices of futures written on the VIX index. Via a particular
form of representative agent model, we link the dynamic risk premia to the risk aversion
parameter, enabling probabilistic forecasts of the risk aversion of a representative investor
to be produced. Our model quantifies the changes in investor risk aversion over the financial
crisis period, where, as might be anticipated, risk aversion is seen to increase dramatically
in both level and variability as the crisis deepens. Most notably, the results point to the

fact that extreme values for this behavioural parameter would have been predicted, with
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non-negligible probability, during the height of the stock market turmoil.
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Appendix A: Generation of Vi.r|¢, M Fy.r, BVi.r. As the state variable, V;, appears in
the error terms of the state equation in (21) and the measurement equations in (19) and
(20), a closed form representation of the conditional posterior distribution for the stochastic
variance vector, Vi.r, is not available. In this paper we extend an approach suggested by
Stroud et al. (2003) and augment the state space model with two mixture indicator vectors,
2= (20,28, ..., 2%) associated with the latent variance vector, and z{,, = (29, 25, ..., 2%’
associated with the observed bivariate variance measure. Note that, by assumption, the
value of Vj is fixed with V; = 6 + % and, hence, a mixture indicator variable is not
required for Vy. Each component of a mixture indicator vector takes on the value of an
integer from 1 to K, and defines a suitable linearization of the relevant state or observation
equation. The mixture indicator vectors are then used to establish a candidate draw, within
a MH subchain, given the previously sampled latent variance vector, Vi.p, conditional upon
all other parameters ¢, jump occasions ANy.r and variance jump sizes Z].,.. The algorithm
essentially constructs an expanded state variable, {z!,, 20, Vi.r}, and produces MCMC
draws from p (2.7, 207, Vip| BVip, M Fy.py ANy.p, Z7.0, &), so that after discarding the draws
of 2., and 27, the latent volatilities are seen as draws from the desired full conditional
posterior distribution, p (Vi.r|BVi.p, M Fy.0, ANv.r, Z3 1, §).

Prior to sampling, a grid of values over the space of plausible stochastic variance values,
{74y, Ty, -, B }, along with a set of associated bandwidth parameters, {71,79,...,0x}, are

established. These values provide prior probability weights for the indicator elements, with

——1 r—Vi—1
V= K|V, —0k¢( ) k=12, K
p(zt - | t—l)_ C(W—l) ’ T Ly Hy ey
and
——1 [ Bx=Vi
o V) = - (") k=12, K
p(Zt_ | t)_ C(‘/;) ) — Ly &y ’

where ¢ (-) denotes the probability density function for the standard normal distribution and

K
Az
C(Vi)=> 7.'¢ (%) Jforallt=0,1,2,..,T.
Ok
k=1
It is possible to generalize to different locations and/or bandwidth grids for each of the state
and observation indicators; however, to keep the algorithm as simple as possible we have
chosen them to be the same here. In addition, to keep the expressions uncluttered, in what
follows the requisite conditioning on {BVi.;, M Fy.1, ANy, Z{.+, ¢} has been suppressed.

The MH algorithm for the expanded state variable {2}, z{.;-, Vi.r} proceeds as follows:
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1. Sample 2z} given {29, Vi.7} from T independent multinomial distributions, with
— -1 [ Vi—EWVi|Vi_1] Vi1
(000K T) ¢< oo/ )¢< kgk )
1 _ )
K — = Vi—E[Vi|Vi_ Vi
Zj:1 (Gvﬂj\/ Nj) ¢ ( Uv[ /_lﬁ]t 1]> ¢ <uj Ejt 1)

fort =1,2,....,T, where E[V}|V,_1]| =0+ (1 — k) Vo1 + Z/ AN,.

p* (2 = k|2, Vi) =

2. Sample 2{., given {2}, Vi.r} from T independent multinomial distributions, with

(ruvoum) o (B2 o (MEE Wt (k)

OBV OMF R
Nzp = k|z{.+, Vip) =
Pz |21, Viir) S (0 pyonpd;i2) 16 (BYe) ¢ (ME=E Verd ) o (EV ’
j=1\OBVOIMFUjl; oBVE, OMFH; a3

fort =1,2,....,T, where E*(Vy1yr|Ft) = aXVy + b+ 7 [, + Mgt 6.

3. Sample Vy.1 given {2z}, z{.7-} using an FFBS sampling algorithm and a candidate state
space model designed to have a smoothed state distribution that closely approximates
the smoothed state distribution of the augmented model, given {z}..., 2¢}. The can-
didate state space model for day t = 1,2,...,T — 1 is given by the four dimensional

measurement equation

BV 0 1
MF; b+ 7 (1, + M) 04 a*
ﬂz? - 0 + 1 ‘/; + €ty
ﬁz§’+1 0 i 1
0 Uszﬁzg 0 0 0
0 0 ohrhz O 0
“Nllo ] o 0 % 0 ’
0 0 0 0 72
t+1

and, for day t = T, the trivariate measurement equation

BVp 0 1
MFT = b:—i—T[,uv—i-)\JT](SJ + CI:_ VT—l—ET,
ﬁz% 0 1
0 g %vﬁi% 0 0
ep ~ N 01, 0 o3, Fﬂz% 0
0 0 0 T2

T

The candidate state space model uses the scalar state equation
Vi= (1= 1) Vi + (60 + ZPAN) 4w, i~ N (0,077 )
for all t = 1,2..., T, with Vo = 6§ + #22,
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4. Accept Vir with probability determined by the MH acceptance rule

w11

p*(Vi[Vie)p(Vi Vit ) C (Vi) p®(BV;, MF,|Vy)p(BV;, MF,|V,)
vt 1> o(Vi|Vi)p(Vi| Vit ) C(Vi)p(BV:, ME[V,)p (BV;, MFy| Vi)

}

=1

where Vi.7 denotes the previous draw in the Markov chain,

P (VilVir) = c<v;_1>1f{(akavm)

k=1

‘/t - (/439‘1— ZZ)AN,:) — (]_ — I{) ‘/2_1 ﬁk — ‘4_1
X¢< i )¢< 7 )}

-1

and

B Vi— (k0 + ZAN;) — (1 — k) Vi
p(VilVirr) = (o0/Vi1) 1¢( <n+0 Vt>1< k) 1)’

and similarly,

B‘/t_‘/t)

OBV H;
» (ME - E*(Vt,mw) ) (nj - V)]
O'MFﬁj (] ,

BV, — Vi) s <MFt - E*(Vt,t+7|}})>

O-BV‘/t O'MF‘/t

K
p*(BV,, MFE,|V,) = C(W)‘IZ(UBVJMFW?)W(
j=1

and

p(BV,, MF;|V;) = (UB\/<7MFV,g2)_1 ¢ (
5. Discard z{.; and 2{..

Appendix B: Sampling/Importance Resampling from the Augmented State Space
Model Given the specification for returns in (35), the joint posterior density for all un-
knowns, conditional on the three vectors of observed data, ri.7, M Fi.7, and BVi.r, can be

decomposed as follows

P (10 By» s s Py 00 Vir, ANvr, Zip, Slrir, M Frp, BVir)
< p (s Bys Pyt Py Oy |71, Visr, ANvr, Ziip, 0, K, 0
xp (ri.7|Vie, ANvr, ZL 5,0, Ky 0y)
xp Vi, ANv.p, Zy.p, §| M Fy.p, BVy7) . (37)

In order to sample from (37), we first draw from p (Vi.r, ANy.7, Z7.0, | M Fy.7, BVy.7) using
the MCMC algorithm for the volatility model as described in Section 4. Then, given the
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vector of observed returns, 7.7, and using the draws of (Vi.p, ANy, Z{1,0, K, 0,), a draw

is produced from the candidate density,

q (,LL, 51}7 P, :up7 Py, 0r, ‘/I:Ta A]Vl:T? Zi);T7 ¢) xXp (‘/lva A]\]'l:Ta Zf:T? ¢‘MF11T7 B‘/l:T)
Xp (N, 5117 P, ,up, PJ, O-T'|T1:T7 ‘/I:Ta AJVl:Ta Zf;Tv (97 R, Uv) . (38)

Under a standard Gaussian-inverse gamma g—prior framework (Zellner, 1986), the return-
specific parameters, u, 3,, p, i, p;, and .., are sampled from the resulting Gaussian-inverse
gamma posterior, conditional upon the draws of the latent variables, Vi.p, ANy.p, Z7., and
the static parameters contained in ¢, specifically 6, x and o,. Given that, up to a constant
of proportionality, the candidate density in (38) differs from the target density (37) only
by the factor p (ri.r|Vi.r, ANv.p, Z70,0, K, 0,), a feasible sampling/importance resampling
(SIR) algorithm (Smith and Gelfand, 1992) to correct the initial draws is implemented, so
that a sample from the joint posterior distribution in (37) is obtained. Crucially, given the
assumed structure of (35), including the assumption of normality for the innovations, and the
use of a conjugate prior structure, p (r1.7|Vi.r, ANv.7, Z1.1, 0, K, 0,) is known in closed form.
Hence, given M available draws of (Vi.p, ANy.r, Z}.1,0, k,0,) from the MCMC algorithm,
the draws are resampled from the discrete distribution defined by the weights

o P (v AN Z.0,50,00)
w' =

7 ,i=1,2,..., M.

> (raal W ANEL 210950,

k=1
The reweighted draws of Vi.p, ANy, Z7.1,0, K, 0, are used to produce draws from
P (u, Bos s by P, 0|17, Vir, ANV, Zp, 0, 5, av). Each draw of the full set of unknowns
is then used to produce the conditional (Gaussian) predictive distribution for rr,;. The
(marginal) predictive, p(ryi1|ri., M Fy.p, BVy.r) is produced by averaging the conditional

predictives in the usual way.

Appendix C: Transformation to Risk Aversion The equilibrium frameworks of Bree-
den (1979) and Cox, Ingersoll and Ross (1985) lead to factor risk premiums that are equal
to the negative of the covariance between changes in the factor and the rate of change in the
marginal utility of wealth. For the SVCJ model adopted here, this implies that

(ApVy — 0 A;) dt = —cov (—, th) , (39)

where dV;, = dV¢ + dJ?, with dV;? = k[0 — Vj|dt + 0,\/V;dB} representing the diffusive

component of the volatility process. Thus, the variance risk premium can be decomposed
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into the diffusive variance risk premium
dwt d
ApVidt = —cov [ —, dV (40)
Wy
and the jump variance risk premium,
d
—5y\ydt = —cov (ﬂ th”) , (41)
Wy

where w; denotes the marginal utility of wealth for the representative investor. Following
Bollerslev et al. (2011), we adopt the canonical power utility function,

1—
W

Ut_ ) ’Y>Oa
L=y

where 5 denotes the constant subjective discount rate and + is the risk aversion parameter,
from which it follows that,

wy, = e P,

Proxying wealth by the value of the market portfolio and recognizing that, in our empirical

setting, the price process in (1) refers to a market stock index, Ito’s lemma yields

0'(1)15 a’wt 1 @2wt

dw, = 220 qp dt + =
B T R R TR YT
= (=P e dP A+ (v (L +7) B 270 (dR)?

= —vP YwdP, 4+~ (14 7) P 2w, (dP,)?

(dP,)?

that is,
dwt

— = =P ' AP+ (147) P (dR)*. (42)

Wy
Substituting (42) into (40) gives the following relation
ApVidt = —cov (=P P+~ (1+7) P72 (dP,)?, dVy)
= P *cov (dP,,dVy) — v (1 +7) P 2cov ((dP,)* ,dV)
= P cov (dP;,dV), since cov ((dP,)*,dV)) =0,
which implies that
Ap = VPO - (43)
Similarly, substituting (42) into (41) yields
Ss\sdt = cov(—yPtdP +~(1+7) P2 (dR)?,dJy)
= —yP tcov (dP,,dJ}), since cov ((dPt)2 ,dJ}) =0,
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which implies that
SyNg = =8P 400 (44)

Finally, substituting (43) and (44) into (39) and solving for 7, we obtain

Vi
T o Vit po2

We are, of course, adopting a dynamic model for A;, which, combined with dynamics of the

stochastic variance V;, implies a dynamic model for ~.
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