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Abstract

This paper investigates the accuracy of bootstrap-based inference in the case

of long memory fractionally integrated processes. The re-sampling method is

based on the semi-parametric sieve approach, whereby the dynamics in the

process used to produce the bootstrap draws are captured by an autoregres-

sive approximation. Application of the sieve method to data pre-filtered by

a semi-parametric estimate of the long memory parameter is also explored.

Higher-order improvements yielded by both forms of re-sampling are demon-

strated using Edgeworth expansions for a broad class of statistics that includes

first- and second-order moments, the discrete Fourier transform and regression

coeffi cients. The methods are then applied to the problem of estimating the sam-

pling distributions of the sample mean and of selected sample autocorrelation

coeffi cients, in experimental settings. In the case of the sample mean, the pre-

filtered version of the bootstrap is shown to avoid the distinct underestimation of

the sampling variance of the mean which the raw sieve method demonstrates in

finite samples, higher order accuracy of the latter notwithstanding. Pre-filtering

also produces gains in terms of the accuracy with which the sampling distrib-

utions of the sample autocorrelations are reproduced, most notably in the part

of the parameter space in which asymptotic normality does not obtain. Most

importantly, the sieve bootstrap is shown to reproduce the (empirically infea-

sible) Edgeworth expansion of the sampling distribution of the autocorrelation

coeffi cients, in the part of the parameter space in which the expansion is valid.
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1 Introduction

Many empirical time series have been found to exhibit behaviour characteristic of long

memory, or long-range dependent, processes, and the class of fractionally integrated

(I(d)) processes introduced by Granger and Joyeux (1980) and Hosking (1980) is

perhaps the most popular model used to describe the features of such processes. I(d)

processes can be characterized by the specification

y(t) =
∞∑
j=0

k(j)ε(t− j) =
κ(z)

(1− z)d
ε(t), (1.1)

where ε(t), t ∈ Z, is a zero mean white noise process with variance σ2, z is here

interpreted as the lag operator (zjy(t) = y(t − j)), and κ(z) =
∑

j≥0 κ(j)zj. The

behaviour of this process naturally depends on the fractional integration parameter d;

for instance, if the “non-fractional”component κ(z) is the transfer function of a stable,

invertible autoregressive moving-average (ARMA) and |d| < 0.5, then the coeffi cients

of k(z) are square-summable,
∑

j≥0 |k(j)|2 < ∞, and y(t) is well-defined as the limit

in mean square of a covariance-stationary process. More pertinently, for any d > 0

the impulse response coeffi cients of k(z) in the representation (1.1) are not absolutely

summable and the autocovariances decline at a hyperbolic rate, γ(τ) ∼ Cτ 2d−1, rather

than the exponential rate typical of an ARMA process. For a detailed description of

the properties of long memory processes see Beran (1994).

Statistical procedures for analyzing fractional processes are discussed in Hosk-

ing (1996), and techniques for estimating fractional models have ranged from the

likelihood-based methods studied in Fox and Taqqu (1986), Dahlhaus (1989), Sow-

ell (1992) and Beran (1995), to the semi-parametric methods advanced by Geweke

and Porter-Hudak (1983) and Robinson (1995a,b), among others. These techniques

typically focus on obtaining an accurate estimate of the parameter governing the long-

term behaviour of the process, and the asymptotic theory for these estimators is well

established. In particular, we have consistency, asymptotic effi ciency, and asymptotic

normality for the maximum likelihood estimator (MLE), and the semi—parametric es-

timators are consistent and asymptotically pivotal with particularly simple asymptotic

normal distributions.

Concurrent with the development of the asymptotic theory associated with the

estimation of long memory models, focus has also been directed at the production of

more accurate estimates of finite sample distributions in this setting. An explicit form

for the Edgeworth expansion for the sample autocorrelation function of a stationary

Gaussian long memory process is derived in Lieberman, Rousseau and Zucker (2001),

and Lieberman, Rousseau and Zucker (2003) establish the validity of an Edgeworth

expansion for the distribution of the MLE of the parameters of such a process, with a
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zero mean assumed. The unknown mean case is covered in Andrews and Lieberman

(2005), with the estimator defined by maximizing the log-likelihood with the unknown

mean replaced by the sample mean (referred to as the “plug-in”MLE, or PML). An-

drews and Lieberman (2005) also derive results for the Whittle MLE (WML) and for

the plug-in version (PWML). Giraitis and Robinson (2003) derive an Edgeworth ex-

pansion for the semi-parametric local Whittle estimator of the long memory parameter

(Robinson, 1995a) (SPLW), whilst Lieberman and Phillips (2004) derive an explicit

form for the first-order expansion for the MLE of the long memory parameter in the

fractional noise case.

From the point of view of practical implementation, evaluation of the terms in

such expansions, for general long memory models, is no trivial task and typically

requires knowledge of the values of population ensemble parameters. These expansions

are also usually only valid under more restrictive assumptions than are required for

first-order asymptotic approximations; see, for example, Lieberman et al. (2001) and

Giraitis and Robinson (2003). Accordingly, much attention has also been given to the

application of bootstrap-based inference in these models. Building on the Edgeworth

results of Lieberman et al. (2003) and Andrews and Lieberman (2005), Andrews,

Lieberman and Marmer (2006) derive the error rate for the parametric bootstrap for

the PML and PWML estimators in Gaussian autoregressive fractionally integrated

moving average (ARFIMA) models. In contrast, Poskitt (2008) proposes a semi-

parametric approach, based on the sieve bootstrap, and provides both theoretical and

simulation-based results regarding the accuracy with which the method estimates the

true sampling distribution of suitably continuous linear statistics. To the authors’

knowledge Andrews et al. (2006) and Poskitt (2008) are amongst the earliest papers

in the literature to have examined the theoretical properties of bootstrap methods in

the context of fractionally integrated (long memory) processes.

The current paper builds upon the results presented in Poskitt (2008) and produces

new results regarding error rates for sieve-based bootstrap techniques in the context

of fractionally integrated processes. Using Edgeworth expansions, it is shown that

the procedure we here refer to as the “raw”sieve bootstrap can achieve an error rate

of Op(T
−(1−d′)+β) for all β > 0 where d′ = max{0, d}, for a class of statistics that

includes the sample mean, the sample autocovariance and autocorrelation functions,

the discrete Fourier transform and ordinary least squares (OLS) regression coeffi cients.

We also present a new methodology based on a modified form of the sieve bootstrap.

The modification uses a consistent semi-parametric estimator of the long memory pa-

rameter to pre-filter the raw data, prior to the application of a long autoregressive

approximation which acts as the “sieve”from which bootstrap samples are produced.

We refer to this as the pre-filtered sieve bootstrap. We establish that, subject to

appropriate regularity, for any fractionally integrated processes with |d| < 0.5 the er-
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ror rate of the pre-filtered sieve bootstrap is Op(T
−1+β) for all β > 0. These results

generalize those of Choi and Hall (2000) who show that, for linear statistics charac-

terized by polynomial products, double sieve bootstrap calibrated percentile methods

and sieve bootstrap percentile t confidence intervals evaluated in the short memory

case converge at a rate arbitrarily close to that obtained with simple random samples,

namely Op(T
−1+β) for all β > 0.

Choi and Hall (2000) argue that for short memory processes the sieve bootstrap is

to be preferred over the block bootstrap (Künsch, 1989). In particular they note that

although the block bootstrap accurately replicates the first-order dependence structure

of the original times series it fails to reproduce second-order effects, because these are

corrupted by the blocking process. Use of an adjusted variance estimate to correct

for the failure to approximate second-order effects results, in turn, in an error rate

of only Op(T
−2/3+β) for the block bootstrap. In contrast, the second-order structure

is shown to be preserved by the sieve. Choi and Hall (2000) demonstrate that the

performance of the sieve is robust to the selected order for the autoregressive approx-

imation, whilst noting that the choice of block length and other tuning parameters

can be crucial to the performance of the block bootstrap. Moreover, as these authors

also remark, the use of an automated method such as Akaike’s information criterion

(AIC) to determine the autoregressive order offers obvious practical advantages, again

in contrast with the situation that prevails for the block bootstrap, whereby generic

selection rules for the block length are unavailable. These deficiences identified in the

block bootstrap technique are likely to be manifest with long range dependent data

a-fortiori, suggesting that the sieve bootstrap is likely to be even more favoured for

fractionally integrated processes. For a review of block and sieve bootstrap methods

and further discussion of their associated features see Politis (2003).

We illustrate our proposed methods by means of a simulation study, in which we

examine the sieve bootstrap approximation to the sampling distribution of two types

of statistic that satisfy the relevant conditions for the convergence results to hold.

Firstly, we compare and contrast the performance of the raw and the pre-filtered sieve

bootstrap in correctly characterizing the known finite sample properties of the sample

mean under long memory. In particular, we investigate the previously noted tendency

of bootstrap techniques to underestimate the true variance of the sample mean in

this setting (Hesterberg, 1997). The pre-filtering is shown to correct for the distinct

underestimation of the sampling variance still produced by the raw sieve, the higher-

order accuracy of the latter notwithstanding. Secondly, we document the performance

of the two bootstrap methods in estimating the (unknown) sampling distributions of

selected autocorrelation coeffi cients. We undertake two exercises here. We begin by

comparing the estimates of the sampling distributions produced by the (raw) sieve

bootstrap with those produced via an Edgeworth approximation, in the region of the
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parameter space where such an approximation is valid (see Lieberman et al., 2001).

The bootstrap method is shown to produce distributions that are visually indistin-

guishable from those produced by the second-order Edgeworth expansion which, in

turn, replicate the Monte Carlo estimates. Encouraged by the accuracy of the boot-

strap method in the case in which an analytical finite sample comparator is available,

we then proceed to assess the relative performance of the two alternative sieve boot-

strap methods - raw and pre-filtered - in the part of the parameter space in which it is

not. The pre-filtered method (in particular) is shown to produce particularly accurate

estimates of the “true” (Monte Carlo) distributions in this region, augering well for

its general usefulness in empirical settings.

The paper proceeds as follows. Section 2 briefly outlines the statistical properties

of autoregressive approximations to fractionally integrated processes, and summarizes

the properties of the raw sieve bootstrap in this context. In Section 3 we present

relevant Edgeworth expansions for a given class of statistics, and exploit these rep-

resentations to establish the stated error rates for the raw sieve bootstrap technique.

Section 4 outlines the methodology underlying the pre-filtered sieve bootstrap and

presents the associated theory indicating the improvement obtained thereby. Details

of the simulation study are given in Section 5. Section 6 closes the paper with some

concluding remarks.

2 Long memory processes, autoregressive approx-

imation, and the sieve bootstrap

Let y(t) for t ∈ Z denote a linearly regular, covariance-stationary process with repre-
sentation as in (1.1) where the innovations and the impulse response coeffi cients satisfy

the following conditions:

Assumption 1 The innovation process ε(t) is ergodic and,

E
[
ε(t) | Et−1

]
= 0 and E

[
ε(t)2 | Et−1

]
= σ2 , (ass1)

where Et denotes the σ-algebra of events determined by ε(s), s ≤ t. Furthermore,

E
[
ε(t)4

]
<∞.

Assumption 2 The transfer function k(z) =
∑

j≥0 k(j)zj in the representation of

the process y(t) is given by k(z) = κ(z)/(1 − z)d where |d| < 0.5 and κ(z) satisfies

κ(z) 6= 0, |z| ≤ 1, and
∑

j≥0 j|κ(j)| <∞.

Assumption 1 imposes a classical martingale difference structure on the innovations,

the critical property of such a process that drives the asymptotic results being that
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a martingale difference is uncorrelated with any measurable function of its own past.

Assumption 2 rules out the possibility of a root at unity in κ(z) canceling with (1 −
z)d and implies that the underlying process admits an infinite-order autoregressive

(AR(∞)) representation. Assumptions 1 and 2 incorporate quite a wide class of linear

processes, including the popular ARFIMA family of models introduced by Granger

and Joyeux (1980) and Hosking (1980).

Under Assumptions 1 and 2 y(t) = ȳ(t) + ε(t) where the linear predictor

ȳ(t) =

∞∑
j=1

π(j)y(t− j) ,
∞∑
j=1

π(j)zj = 1− k(z)−1 ,

is the minimum mean squared error predictor (MMSEP) of y(t) based on the infinite

past. The MMSEP of y(t) based only on the finite past is then

ȳh(t) =

h∑
j=1

πh(j)y(t− j) ≡ −
h∑
j=1

φh(j)y(t− j), (2.1)

where the minor reparameterization from πh to φh allows us, on also defining φh(0) = 1,

to conveniently write the corresponding prediction error as

εh(t) =
h∑
j=0

φh(j)y(t− j). (2.2)

The finite-order autoregressive coeffi cients φh(1), . . . , φh(h) can be deduced from

the Yule-Walker equations

h∑
j=0

φh(j)γ(j − k) = δ0(k)σ2
h , k = 0, 1, . . . , h, (2.3)

in which γ(τ) = γ(−τ) = E[y(t)y(t − τ)], τ = 0, 1, . . . is the autocovariance function

of the process y(t), δ0(k) is Kronecker’s delta (i.e., δ0(k) = 0 ∀ k 6= 0; δ0(0) = 1), and

σ2
h = E

[
εh(t)

2
]

(2.4)

is the prediction error variance associated with ȳh(t).

The use of finite-order autoregressive models to approximate an unknown (but

suitably regular) process therefore requires that the optimal predictor ȳh(t) deter-

mined from the autoregressive model of order h (AR(h)) be a good approximation

to the “infinite-order”predictor ȳ(t) for suffi ciently large h. The asymptotic validity

and properties of AR(h) models when h → ∞ with the sample size T under regular-

ity conditions that admit non-summable processes were established in Poskitt (2007).

Briefly, the order-h prediction error εh(t) converges to ε(t) in mean-square, the esti-

mated sample-based covariances converge to their population counterparts, though at
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a slower rate than for a conventionally stationary process, and the least squares and

Yule-Walker estimators of the coeffi cients of the AR(h) approximation are asymptoti-

cally equivalent and consistent. Furthermore, order selection by AIC is asymptotically

effi cient in the sense of being equivalent to minimizing Shibata’s (1980) figure of merit,

discussed in more detail in Section 5 in the context of the simulation experiment re-

ported therein. The sieve bootstrap, which works by “whitening”the data using an

AR(h) approximation, with the dynamics of the process captured in the fitted au-

toregression, is accordingly a plausible semi-parametric bootstrap technique for long

memory processes. Details of its application to fractional processes are given in Poskitt

(2008).

For convenience we present here the basic steps needed to generate a sieve boot-

strap realization of a process y(t) (referred to as the sieve bootstrap (SBS) algorithm

hereafter):

SB1. Given data y(t), t = 1, . . . , T , calculate the parameter estimates of the AR(h)

approximation, denoted by φ̄h(1), . . . , φ̄h(h) and σ̄2
h, and evaluate the residuals,

ε̄h(t) =
h∑
j=0

φ̄h(j)y(t− j) , t = 1, . . . , T ,

using y(1 − j) = y(T − j + 1), j = 1, . . . , h, as initial values. From ε̄h(t),

t = 1, . . . , T , construct the standardized residuals ε̃h(t) = (ε̄h(t)− ε̄h)/sε̄h , where
ε̄h = T−1

∑T
t=1 ε̄h(t) and s

2
ε̄h

= T−1
∑T

t=1(ε̄h(t)− ε̄h)2.

SB2. Let ε+
h (t), t = 1, . . . , T , denote a simple random sample of i.i.d. values drawn

from

Uε̄h,T (e) = T−1

T∑
t=1

1{ε̃h(t) ≤ e} ,

the probability distribution function that places a probability mass of 1/T at

each of ε̃h(t), t = 1, . . . , T . Set ε∗h(t) = σ̄hε
+
h (t), t = 1, . . . , T .

SB3. Construct the sieve bootstrap realization y∗(1), . . . , y∗(T ) where y∗(t) is gener-

ated from the autoregressive process

h∑
j=0

φ̄h(j)y
∗(t− j) = ε∗h(t) , t = 1, . . . , T ,

initiated at y∗(1 − j) = y(τ − j + 1), j = 1, . . . , h, where τ has the discrete

uniform distribution on the integers h, . . . , T .

Crucially, in the fractional case the rate of convergence of the coeffi cient estimates

φ̄h(1), . . . , φ̄h(h) evaluated in Step SB1 is dependent upon the value of the fractional

index d.
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Theorem 3 Let
∑h

j=0 φ̄h(j)z
j denote the Burg, least squares or Yule-Walker estima-

tor of
∑h

j=0 φh(j)z
j. If y(t) is a stationary process that satisfies Assumptions 1 and 2

(given below) then for all h ≤ HT = a(log T )c, a > 0, c <∞,

h∑
j=1

|φ̄h(j)− φh(j)|2 = O

{
h

(
log T

T

)1−2d′
}

a.s.

where d′ = max{0, d}.

Proof : For the least squares and Yule-Walker estimators see Poskitt (2007, Theorem
5 and Corollary 1) and the associated discussion. For the Burg estimator the result

then follows from Poskitt (1994, Theorem 1).

Now consider a statistic sT = (s1T , . . . , smT )′, where siT = si(y(1), . . . , y(T )) and

each si(·) for i = 1, . . . ,m is a suitably smooth function of the time series values

y(1), . . . , y(T ). Let FsT (s) denote the distribution function of sT under (Ω,F, P ),

the original probability space. Let s∗T be defined as for sT but with the observed

realization replaced by y∗(1), . . . , y∗(T ), a realization obtained from the SBS algorithm,

so that s∗T = (s∗1T , . . . , s
∗
mT )′ where s∗iT = si(y

∗(1), . . . , y∗(T )). Let Fs∗T (s) denote the

distribution of s∗T under (Ω∗,F∗, P ∗), the bootstrap probability space. As with FsT (s),

the analytical determination of Fs∗T (s) is generally intractable, but by simulating a large

number, B, of independent bootstrap realizations and calculating s∗T,b for b = 1, . . . , B,

we can approximate Fs∗T (s) by the bootstrap empirical distribution function

F̄s∗T ,B(s) = B−1

B∑
b=1

1{s∗T,b ≤ s} . (2.5)

By the (strong) Glivenko-Cantelli Theorem

lim sup
B→∞

√
B

2 log logB
sups|F̄s∗T ,B(s)− Fs∗T (s)| ≤ 1

2
a.s.

and we can approximate Fs∗T (s) arbitrarily closely by taking the number of bootstrap

realizations suffi ciently large. The idea behind the bootstrap is that the distribution

of s∗T under (Ω∗,F∗, P ∗) should mimic that of sT under (Ω,F, P ) and we can there-

fore anticipate that F̄s∗T ,B(s) will also approximate FsT (s) closely provided Fs∗T (s) is

suffi ciently near to FsT (s).

That the autoregressive sieve bootstrap provides a valid approximation to FsT (s)

under the current assumptions can be established by generalizing the arguments of

Kreiss, Paparoditis and Politis (2011) using the extension of Baxter’s inequality due

to Inoue and Kasahara (2006). It can be shown (Poskitt, 2008) that for the class of

linear statistics considered in Künsch (1989, Section 2.1) and Bühlmann (1997, Section

3.3) we have η(Fs∗T , FsT ) = o(T−1/2(1−2d′)+β) for all β > 0, wherein d′ = max{0, d} and
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η(FX , FY ) denotes Mallow’s measure of the distance between two probability distribu-

tions FX and FY . Mallows metric is equivalent to weak convergence (Bickel and Freed-

man, 1981, Lemma 8.3) and in conjunction with a convergence rate of T−1/2(1−2d′)+β

this intimates that use of the sieve bootstrap may be little better than applying a cen-

tral limit approximation. However, in what follows we show that for a more restricted

range of statistics (albeit one that intersects with the linear class) the convergence rate

can be improved upon, and that the rate established by Choi and Hall (2000) in the

short memory case can in fact be generalized to long memory processes.

3 Higher Order Improvements for the Sieve Boot-

strap

Let us suppose that FsT (s) is absolutely continuous with respect to Lebesgue measure,

differentiable for all s, and that the following assumptions are satisfied.

Assumption 4 There exists a function MT (possibly stochastic) and a constant M <

∞ such that

‖s∗T − sT‖2 ≤ mMTT
−1

T∑
t=1

(y∗(t)− y(t))2,

where MT is bounded (in probability) by M .

Whilst defining a more restrictive class (overall) than the linear class, it remains

the case that a broad range of statistics used in the analysis of time series satisfy

Assumption 4, see (Poskitt, 2008, Lemma 1). As highlighted in the latter, this set

includes the sample mean and the sample autocovariances, autocorrelations and partial

autocorrelations. Further examples include the discrete Fourier transform and OLS

regression coeffi cients. The former follows on setting

s∗T − sT =
1

(2πT )
1
2

T∑
t=1


y∗(t)− y(t)

(y∗(t)− y(t)) exp(−ı2πt/T )
...

(y∗(t)− y(t)) exp(−ı2π(T − 1)t/T )

 ,

with the validity of Assumption 4, using M = 1/(2π), now a direct consequence of

Parseval’s theorem. For the latter, let x(t) = (x1(t), . . . , xk(t))
′ denote a vector of

regressors that satisfy lim infT→∞ λmin[T−1
∑T

t=1 x(t)x(t)′] ≥ λ > 0 and set k(t) =

(
∑T

t=1 x(t)x(t)′)−1x(t). Then

‖s∗T − sT‖2 = ‖
T∑
t=1

k(t)(y∗(t)− y(t))‖2 ≤
T∑
t=1

‖k(t)‖2

T∑
t=1

(y∗(t)− y(t))2
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and Assumption 4 holds because
∑T

t=1 ‖k(t)‖2 ≤ k/λT . As a point of interest, applying

the immediately preceding regression inequality to the log-periodogram regression esti-

mator of d (Geweke and Porter-Hudak, 1983) and using the inequalities log(1+x) ≤ x,

x ≥ 0, and ||z|− |z∗|| ≤ |z−z∗| for any pair of complex numbers z and z∗, we also find
that the log-periodogram regression estimator satisfies Assumption 4 on application

of the bound on the discrete Fourier transform.

The following assumption implicitly characterizes moment conditions under which

a valid Edgeworth expansion exists for statistics in the class described by Assumption

4.

Assumption 5 Let ψT (τ ) = E[exp(ıτ ′sT )] denote the characteristic function of sT

where τ = (τ 1, . . . , τm)′ and let ∂j logψT (τ )/∂τ j denote the vector of jth-order partial

derivatives corresponding to ∂j logψT (τ )/∂τ j11 · · · ∂τ jmm for all non-negative integers

j1, . . . , jm satisfying
∑m

l=1 jl = j. Then firstly, for any δ > 0 and some integer r ≥ 3

the conditions∫
‖τ‖>δ

√
T

|ψT (τ )|2dτ = o(T 2−r) and
∫
‖τ‖>δ

√
T

∣∣∣∣∂sψT (τ )

∂τ sl

∣∣∣∣2 dτ = O(T 1−r), l = 1, . . . ,m,

hold where s = [m/2] + 1. Secondly, ∂q logψT (τ )/∂τ q exists for all τ in a neigh-

bourhood of the origin and lim‖τ‖→0 T
−1∂q logψT (τ )/∂τ q exists as T → ∞ for all

q = 1, . . . , q′ = max{s, r + 1}.

Here E denotes expectation taken with respect to the probability measure induced

by the original probability space (Ω,F, P ). Assumption 5 summarizes Assumptions

1 and 2 of Taniguchi (1984), which in turn encompass Assumptions 2 through 4 of

Durbin (1980), to which we refer for an in depth discussion. In any particular instance,

satisfaction of the conditions in Assumption 5 must be ascertained and may occur

only in particular parts of the parameter space, such as in the case of the sample

autocorrelation function investigated in Section 5.3 (See the Appendix for details).

Let VT = T−1E [(sT − E[sT ])(sT − E[sT ])′] and set ζT = V
−1/2
T T−

1
2 (sT − E[sT ]).

If we suppose that VT = V + o(1) where V is positive definite, then Assumption 5

ensures the validity of the Edgeworth approximation

P (ζT ≤ z) = G(z) +

r∑
j=3

T 1−j/2pj(z,Kr)g(z) + o(T 1−r/2) (3.1)

uniformly in z, where G(z) denotes the distribution function of a Gaussian N(0, Im)

random vector, g(z) the corresponding density, and pj(z,Kr) is a polynomial function

of degree j in z whose coeffi cients are polynomials in the elements of the cumulants

Kr = (k′1, . . . ,k
′
r)
′, kr = ı−r∂r logψT (0)/∂τ r. See Theorem 1 of Taniguchi (1984) and
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Durbin (1980).1

Similarly, if E∗ denotes expectation taken with respect to the probability space

(Ω∗,F∗, P ∗) and ζ∗T = V
∗−1/2
T T−

1
2 (s∗T−E∗[s∗T ]) whereV∗T = T−1E∗ [(s∗T − E∗[s∗T ])(s∗T − E∗[s∗T ])′],

then under appropriate regularity

P ∗(ζ∗T ≤ z) = G(z) +
r∑
j=3

T 1−j/2pj(z,K
∗
r)g(z) + o(T 1−r/2), (3.2)

where K∗r = (k∗′1 , . . . ,k
∗′
r )′, k∗r = ı−r{∂r logψ∗T (0)/∂τ r}, ψ∗T (τ ) = E∗[exp(ıτ ′s∗T )].

A comparison of (3.1) and (3.2) for r ≥ 4 now indicates that

sup
z
|P ∗(ζ∗T ≤ z)− P (ζT ≤ z)| = T−1/2O(‖K∗r −Kr‖) + o(T−1) . (3.3)

Noting that P ∗ depends on P so the elements of K∗r, which are constants relative

to P ∗, are random variables relative to P , we see that if ‖K∗4 −K4‖ = op(T
−1/2%T )

then (3.3) implies that the bootstrap probability will have an error rate of Op(T
−1%T ).

In their investigation of coverage accuracy Choi and Hall (2000, Appendix A.2) used

this type of argument when analyzing the subset of linear statistics characterized by

polynomial products; and it was also employed by Andrews et al. (2006) to show

that the parametric bootstrap based on the (approximate) MLE of parameters in a

Gaussian long memory model achieves an error rate of order T−1 log T for a one sided

confidence interval. Using this approach we can establish analogous results for the

sieve bootstrap in the long memory case, and for the class of statistics encompassed

by Assumption 4.

Theorem 6 Suppose that the statistic sT satisfies Assumption 4 and Assumption 5

with r ≥ 4 when calculated from a process y(t) that also satisfies Assumptions 1 and

2 . Then for all β > 0

sup
z
|P ∗(ζ∗T ≤ z)− P (ζT ≤ z)| = Op(T

−(1−d′)+β) .

The proof of Theorem 6 relies on the following lemma. The heuristics behind

the proof are straightforward; convergence of Mallow’s metric implies convergence in

distribution and hence, via the Cramér-Levy continuity theorem, convergence of the

characteristic function and the associated moments and cumulants (See Lemma 8.3 of

Bickel and Freedman, 1981).

Lemma 7 Suppose that the process y(t) satisfies Assumptions 1 and 2, and that the

statistic sT satisfies Assumption 4. Then E[E∗[‖s∗T − sT‖2]] = o(T−(1−2d′)+β) for all

1 We have thus far supposed that sT is a continuous random variable. For extension to the lattice
case see Durbin (1980, §5.4)
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β > 0. Moreover, for any ε > 0 and η > 0, no matter how small, there exists a Tε,η
such that

P
(
T−1/2(1−2d′)+β|ψ∗T (τ )− ψT (τ )| < ε

)
> 1− η

for all T > Tε,η uniformly in τ , ‖τ‖ ≤ T β/2.

Proof : Given that sT satisfies Assumption 4, it follows that ‖s∗T−sT‖2 ≤ mMT−1
∑T

t=1(y∗(t)−
y(t))2 where M <∞. Arguing as in the proof of Theorem 2 of (Poskitt, 2008, p.246-

248) we therefore have E[E∗[‖s∗T −sT‖2]] ≤ mME[E∗[(y∗(t)−y(t))2]] = o(T−(1−2d′)+β)

for all β > 0, which yields the first part of the lemma.

To prove the second part of the lemma note that since exp(ıx) is continuous

with a continuous and uniformly bounded derivative it satisfies a Lipschitz condi-

tion. Thus, for all τ such that ‖τ‖ ≤ T β/2 there exists a K < ∞ such that

| exp(ıτ ′x)− exp(ıτ ′y)| ≤ KT β/2‖x− y‖. Then, as in Bickel and Freedman (1981, p.
1212),

E[|ψ∗T (τ )− ψT (τ )|] ≤ E[E∗[| exp(ıτ s∗T )− exp(ıτ sT )|]] ≤ KT β/2E[E∗[‖s∗T − sT‖]] .

But E[E∗[‖s∗T − sT‖]] ≤ E[E∗[‖s∗T − sT‖2]]1/2 = o(T−1/2(1−2d′−β)). Application of

Markov’s inequality completes the proof.

Corollary 8 Suppose that the process y(t) satisfies Assumptions 1 and 2, and that the

statistic sT satisfies Assumptions 4 and 5. Then for all β > 0 we have ‖K∗q −Kq‖ =

op(T
−1/2+d′+β), q = 1, . . . , q′ = max{[m/2] + 1, r + 1}.

Proof : Using the expression logψ∗T (τ )−logψT (τ ) = log (1 + (ψ∗T (τ )− ψT (τ ))/ψT (τ ))

and the fact that log(1+x) = x+O(|x|2) for x in a neighbourhood of the origin we have

logψ∗T (τ )− logψT (τ ) = (ψ∗T (τ )− ψT (τ ))/ψT (τ ) +O
(
|(ψ∗T (τ )− ψT (τ ))/ψT (τ )|2

)
=

op(T
−1/2(1−2d′)+β) uniformly in τ by Lemma 7.

Now set

ϕ∗T (t; τ ) =
logψ∗T (t)− logψ∗T (τ )

‖t− τ‖ −
(
∂ logψT (τ )

∂τ

)′
t− τ
‖t− τ‖ and

∆∗T (t; τ ) =
logψ∗T (t)− logψ∗T (τ )

‖t− τ‖ − logψT (t)− logψT (τ )

‖t− τ‖ ,

for t 6= τ , and let ε > 0 be given. Then

|ϕ∗T (t; τ )| ≤ |∆∗T (t; τ )|

+

∣∣∣∣ logψT (t)− logψT (τ )

‖t− τ‖ −
(
∂ logψT (τ )

∂τ

)′
t− τ
‖t− τ‖

∣∣∣∣
and by definition of the differential (Apostol, 1960, Section 6.4)

lim
‖t−τ‖→0

|ϕ∗T (t; τ )| ≤ lim
‖t−τ‖→0

|∆∗T (t; τ )|+ ε .
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Since logψ∗T (τ ) − logψT (τ ) = op(T
−1/2(1−2d′)+β) uniformly in τ we can interchange

limiting operations (Apostol, 1960, Theorem 13.3) to give

lim
T→∞

lim
‖t−τ‖→0

|∆∗T (t; τ )| ≤ lim
‖t−τ‖→0

lim
T→∞

| logψ∗T (t)− logψT (t)|+ | logψ∗T (τ )− logψT (τ )|
‖t− τ‖

= op(T
−1/2(1−2d′)+β) .

Hence we can conclude that for all T suffi ciently large lim‖t−τ‖→0 |ϕ∗T (t; τ )| ≤ 2ε and

logψ∗T (τ ) has a differential at τ , since ε is arbitrary, and

lim
T→∞

∣∣∣∣∂ logψ∗T (τ )

∂τ j
− ∂ logψT (τ )

∂τ j

∣∣∣∣ ≤ lim
h→0

lim
T→∞

|∆∗T (τ + huj; τ )| = op(T
−1/2(1−2d′)+β),

where uj = (0, . . . , 0, 1, 0 . . . , 0)′, the jth unit vector, the existence of the gradient

vector ∂ logψ∗T (τ )/∂τ being part of the conclusion (See Apostol, 1960, Theorem 6.13).

Thus, by definition of the first-order cumulant, we have ‖K∗1 −K1‖ = op(T
−1/2+d′+β).

A parallel argument, with logψ∗T (·) and logψT (·) replaced by ∂j logψ∗T (·)/∂τ j and
∂j logψT (·)/∂τ j, respectively, and ∂ logψT (·)/∂τ replaced by ∂j+1 logψT (·)/∂τ j+1,

shows that ∂j+1 logψ∗T (·)/∂τ j+1 exists and ‖K∗j+1−Kj+1‖ = op(T
−1/2+d′+β). Induction

on j = 1, . . . , q′ completes the proof.

Proof of Theorem 6: By construction the bootstrap innovations ε∗h(t) in Step SB2
of the sieve bootstrap satisfy Assumption 1, and the sieve bootstrap process y∗(t)

produced in Step SB3 satisfies Assumption 2. By definition, the statistics sT and s∗T

satisfy Assumption 4 and Assumption 5 with r ≥ 4, and Assumption 5 validates the

formal Edgeworth expansions in (3.2) and (3.1). Corollary 8 (using Lemma 7) implies

that ‖K∗4−K4‖ = op(T
−1/2%T ) where %T = o(T d

′+β) and Theorem 6 then follows from

equation (3.3).

Theorem 6 indicates the refinements that are possible using the sieve bootstrap.

For example, S(q) = {z : z′z ≤ q} is a compact, Borel—measurable set in Rm that has
finite probability measure with respect to both P and P ∗. Now let q∗α be such that

the Lebesgue—Stieltjes integral satifies the following equality,∫
S(q∗α)

dP ∗(ζ∗T ≤ z) = 1− α .

Then S(q∗α) is a raw sieve bootstrap (1− α)100% elliptical percentile set for sT . Now,

from Theorem 6 it follows that

|(1− α)−
∫
S(q∗α)

dP (ζT ≤ z)| ≤
∫
S(q∗α)

|dP ∗(ζ∗T ≤ z)− dP (ζT ≤ z)|

=
(πq∗α)m/2

Γ(m/2 + 1)
Op(T

−(1−d′)+β)
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for all β > 0. This leads to a coverage probability for S(q∗α) of (1−α) +Op(T
−(1−d)+β)

for all β > 0 when d ∈ (0, 0.5), the long memory case, compared to (1−α)+Op(T
−1+β)

when d ∈ (−0.5, 0], the short memory and anti-persistent cases (cf. Choi and Hall,

2000). Calibration of the percentile sets using the double-bootstrap may be possible,

but we will not pursue this here. We will, however, investigate in the following section

an adaptation of the sieve bootstrap that improves the convergence rate by removing

the dependence on the fractional index d.

4 The Pre-Filtered Sieve Bootstrap

Theorem 3 indicates that the convergence of
∑h

j=0 φ̄h(j)z
j to

∑h
j=0 φh(j)z

j is slower

the larger is the value of d, and Theorem 6 shows that this feature is passed on

to the raw sieve bootstrap itself (and the associated coverage probabilities of sets).

Specifically, the closer is d to zero the closer the convergence rate will be to the rate

achieved with short memory and anti-persistent processes, namely Op(T
−1+β). Given

the empirical regularity of estimated values of d in the range (0, 0.5), calculating a

preliminary estimate of d and constructing a filtered version of the data to which

the AR approximation and sieve bootstrap are applied before inverse filtering, may

therefore yield advantages in terms of convergence.

With this in mind, let us suppose that a preliminary estimate d̂ of d is available

such that d̂ − d ∈ Nδ = {x : |x| < δ} where 0 < δ < 0.5. For any d > −1 let

α
(d)
j , j = 0, 1, 2, . . ., denote the coeffi cients of the fractional difference operator when

expressed in terms of its binomial expansion,

(1− z)d =

∞∑
j=0

α
(d)
j zj = 1 +

∞∑
j=1

(
Γ(j − d)

Γ(−d)Γ(j + 1)

)
zj

= 1 +

∞∑
j=1

( ∏
0<k≤j

k − 1− d
k

)
zj ,

and set

w(t) =

t−1∑
j=0

α
(d)
j y(t− j) , t = 1, . . . , T .

Using the preliminary estimate d̂, pre-filtered sieve bootstrap realizations of y(t) can

now be generated as follows:

PFSBS1. Calculate the coeffi cients of the filter (1 − z)d̂ and from the data generate the

filtered values

ŵ(t) =
t−1∑
j=0

α
(d̂)
j y(t− j)

for t = 1, . . . , T .
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PFSBS2. Fit an AR approximation to ŵ(t) and generate a sieve bootstrap sample ŵ∗(t),

t = 1, . . . , T , of the filtered data as in Steps SB1—SB3 of the SBS algorithm.

PFSBS3. Using the coeffi cients of the (inverse) filter (1 − z)−d̂ construct a corresponding

pre—filtered sieve bootstrap draw

ŷ∗(t) =
t−1∑
j=0

α
(−d̂)
j ŵ∗(t− j) (4.1)

of y(t) for t = 1, . . . , T .

We will refer to this as the PFSBS algorithm.

Note that the process

(1− z)d̂y(t) =
κ(z)

(1− z)d−d̂
ε(t)

has fractional index d − d̂. By assumption |d − d̂| < δ and the error in the AR

approximation fitted in Step PFSBS2 will accordingly be of orderO(h (log T/T )1−2δ) or

smaller (Theorem 3). That this level of accuracy is transferred to the pre—filtered sieve

bootstrap realizations ŷ∗(t) of y(t), via the sieve bootstrap draws ŵ∗(t) of ŵ(t), and

hence to the pre-filtered sieve bootstrap approximation to the sampling distribution

of the statistic sT , rests upon the following proposition.

Proposition 9 Suppose that the process y(t) satisfies Assumptions 1 and 2. Let d̂ be

such that d̂ ∈ (−0.5, 0.5(1− ε)) for some ε > 0. Then there exists a constant G <∞,
independent of d̂, such that E[E∗[(ŷ∗(t)− y(t))2]] ≤ GE[E∗[(ŵ∗(t)− ŵ(t))2]].

Proof : By construction

y(t) =
t−1∑
j=0

α
(−d̂)
j ŵ(t− j) ,

and subtracting on the left and right hand sides in (4.1) it follows that

ŷ∗(t)− y(t) =

t−1∑
j=0

α
(−d̂)
j {ŵ∗(t− j)− ŵ(t− j)} t = 1, . . . , T (4.2)

for all possible pairs (y(t), ŷ∗(t)), t = 1, . . . , T , in the product space generated by

(Ω ⊗ Ω∗,F ⊗ F∗, P (P ∗)) with joint distribution corresponding to the marginal and

conditional probability measures P and P ∗.

Now let ZT
{ŵ∗−ŵ}(λ), λ ∈ [0, 2π], denote the finite sample spectral measure associ-

ated with the process ŵ∗(t)− ŵ(t), t = 1, . . . , T , which we define to be

ZT
{ŵ∗−ŵ}(λ) =

1

2π

T∑
t=1

e−ıλt − 1

ıt
{ŵ∗(t)− ŵ(t)} =

1

2π

∫ λ

0

zT{ŵ∗−ŵ}(ω)dω
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where zT{ŵ∗−ŵ}(ω) =
∑T

t=1{ŵ∗(t)− ŵ(t)}e−ıωt. Then we have

ŵ∗(t)− ŵ(t) =
1

2π

∫ 2π

0

eıλtdZT
{ŵ∗−ŵ}(λ)

=
1

T

T−1∑
s=0

eı
2πs
T
tzT{ŵ∗−ŵ}(2πs/T ) , t = 1, . . . , T ,

and direct substitution into equation (4.2) yields the equivalent representations

ŷ∗(t)− y(t) =
1

2π

∫ 2π

0

t−1∑
j=0

α
(−d̂)
j eıλ(t−j)dZT

{ŵ∗−ŵ}(λ)

=
1

T

T−1∑
s=0

t−1∑
j=0

α
(−d̂)
j eı

2πs
T

(t−j)zT{ŵ∗−ŵ}(2πs/T ) , t = 1, . . . , T .

The Cauchy-Schwartz inequality now gives us

|ŷ∗(t)− y(t)| =

∣∣∣∣∣ 1

T

T−1∑
s=0

(
t−1∑
j=0

α
(−d̂)
j e−ı

2πs
T
j

)
eı

2πs
T
tzT{ŵ∗−ŵ}(2πs/T )

∣∣∣∣∣
≤

 1

T

T−1∑
s=0

∣∣∣∣∣
t−1∑
j=0

α
(−d̂)
j e−ı

2πs
T
j

∣∣∣∣∣
2
1/2

·
(

1

T

T−1∑
s=0

|zT{ŵ∗−ŵ}(2πs/T )|2
)1/2

and from Parseval’s equality we have

1

T

T−1∑
s=0

∣∣∣∣∣
t−1∑
j=0

α
(−d̂)
j e−ı

2πs
T
j

∣∣∣∣∣
2

=
t−1∑
j=0

|α(−d̂)
j |2 ≤

∞∑
j=0

|α(−d̂)
j |2

=
Γ(1− 2d̂)

(Γ(1− d̂))2
<

Γ(ε)

(Γ(0.5(1 + ε)))2
.

From the equality

1

T

T−1∑
s=0

|zT{ŵ∗−ŵ}(2πs/T )|2 =
1

T

T∑
t=1

{ŵ∗(t)− ŵ(t)}2

it follows that

1

T

T∑
t=1

|ŷ∗(t)− y(t)|2 ≤ Γ(ε)

(Γ(0.5(1 + ε)))2

1

T

T∑
t=1

{ŵ∗(t)− ŵ(t)}2 .

The foregoing relationships hold for all possible pairs (y(t), ŷ∗(t)), t = 1, . . . , T ,

with probability one with respect to (Ω ⊗ Ω∗,F ⊗ F∗, P (P ∗)) and we can therefore

conclude that

E[E∗[
1

T

T∑
t=1

|ŷ∗(t)− y(t)|2]] ≤ GE[E∗[
1

T

T∑
t=1

{ŵ∗(t)− ŵ(t)}2]],
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where G = Γ(ε)/(Γ(0.5(1 + ε)))2.

Now let ŝ∗T = (ŝ∗1T , . . . , ŝ
∗
mT )′, where ŝ∗iT = si(ŷ

∗(1), . . . , ŷ∗(T )), i = 1, . . . ,m, denote

the value of the statistic of interest when calculated from a pre-filtered sieve bootstrap

realization. Let ψ̂
∗
T (τ ) = E∗[exp(ıτ ′ŝ∗T )] and set ζ̂

∗
T = V̂

∗−1/2
T T−

1
2 (ŝ∗T − E∗ [̂s∗T ]) where

V̂∗T = T−1E∗ [(ŝ∗T − E∗ [̂s∗T ])(ŝ∗T − E∗ [̂s∗T ])′].

Lemma 10 Suppose that the process y(t) satisfies Assumptions 1 and 2, and that

the statistic sT satisfies Assumption 4. Then for all d̂ such that d̂ − d ∈ NδT where

δT → 0 as T → ∞, and d̂ ∈ (−0.5, 0.5(1 − ε)) where ε > 0, E[E∗[‖ŝ∗T − sT‖2]] =

exp(2δT log T )o(T−1+β) for all β > 0. Furthermore, if δT log T → 0 as T →∞ then for

all τ such that ‖τ‖ ≤ T β/2, it follows that |ψ̂
∗
T (τ )−ψT (τ )| = exp(δT log T )op{T−1/2+β}

uniformly in τ .

Proof : Since sT satisfies Assumption 4 there exists a constant M < ∞ such that

‖ŝ∗T − sT‖2 ≤ mMT−1
∑T

t=1 |(ŷ∗(t) − y(t)|2, from which it immediately follows that

E[E∗[‖ŝ∗T − sT‖2]] ≤ mME[E∗[T−1
∑T

t=1 |(ŷ∗(t) − y(t)|2]]. But by Proposition 9

E[E∗[T−1
∑T

t=1 |(ŷ∗(t) − y(t)|2]] ≤ GE[E∗[T−1
∑T

t=1 |(ŵ∗(t) − ŵ(t)|2]] where G <

∞, and a repetition of the argument used in the proof of Lemma 7 shows that
E[E∗[|(ŵ∗(t)− ŵ(t)|2]] = o(T−(1−2δ̂

′
)+β) where δ̂

′
= max{0, d− d̂} < δT for all β > 0.

We are therefore lead to the conclusion thatE[E∗[‖ŝ∗T−sT‖2]] = exp(2δT log T )o(T−1+β).

This proves the first part of the lemma. The proof of the second part of the lemma

now follows that used in Lemma 7 in an obvious manner.

Theorem 11 Suppose that the statistic sT satisfies Assumption 4 and Assumption 5

with r ≥ 4 when calculated from any process y(t) that satisfies Assumptions 1 and 2.

Then for all d̂ such that d̂− d ∈ NδT where δT log T → 0 as T →∞,

sup
z
|P ∗(ζ̂

∗
T ≤ z)− P (ζT ≤ z)| = exp(δT log T )Op(T

−1+β)

for all β > 0.

Proof : Apart from minor notational changes and an allowance for the filtering that

occurs at Steps PFSBS1 and PFSBS3, the argument leading from Lemma 10 to The-

orem 11 is almost identical to that leading from Lemma 7 to Theorem 6. The details

are therefore omitted.

In practice, of course, the preliminary estimate d̂ will be constructed from the data,

and from Theorem 11 we can see that if d̂− d ∈ NδT as T →∞, where δT log T → 0,

then the error of the pre—filtered sieve bootstrap will be Op(T
−1+β) for all β > 0. Thus,

if |d̂− d| log T → 0 a.s. as T →∞ then the pre—filtered sieve bootstrap will achieve a

convergence rate arbitrarily close to the rate obtained with simple random samples.
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To establish the required convergence result for d̂ requires the establishment of

both consistency and the appropriate (limiting) tail behaviour for the standardized

estimator N1/2(d̂− d), where N is a monotonically increasing function of T such that

N/T → 0 as T →∞. In particular, ifN1/2(d̂−d) wereN(0, υ) then it would follow from

the tail area properties of the normal distribution that limT→∞ P (|d̂−d| > εN−1/2+δ) ≤
exp(−ε2N2δ/2υ) for any δ, 0 < δ < 0.5 and ε > 0. Since exp(−εN δ/2υ) < |r|Nδ

for all r such that exp(−ε/2υ) < |r| < 1 we could then conclude from the Borel-

Cantelli lemma that N1/2−δ|d̂ − d| converged to zero almost surely and hence that
|d̂ − d| log T = o(1) a.s. if log T/N1/2−δ → 0. Note that asymptotic Gaussianity

(associated with a
√
N—CAN estimator of d) would not be suffi cient here, as departures

of N1/2(d̂− d) from zero that are negligible in the sense of weak convergence need not

be so for large-deviation probabilities. Large-deviation type results can, of course,

be formally established on a case by case basis. In particular, a corollary of Giraitis

and Robinson (2003, Lemma 5.8) is that the semi-parametric local Whittle (SPWL)

estimator satisfies P (|d̂−d| log T > ε) = o(N−p), where p > 1/ε andN , the bandwidth,

satisfies T ε < N < T 1−ε for some ε > 0.

In the simulation exercise that follows we apply a PFSBS algorithm based on a

pre-filtering value of d that is produced by bias correcting the SPWL estimator. The

correction incorporates a combination of the analytical adjustment of Andrews and

Sun (2004) and a sieve bootstrap-based bias adjustment, the latter justified on the

basis of the Edgeworth expansion of Giraitis and Robinson (2003). In support of this

choice of pre-filtering value we invoke the Monte Carlo evidence in Poskitt, Martin and

Grose (2012) that demonstrates the accuracy of (different versions of) a bias-adjusted

SPWL estimator, most notably in comparison with the raw SPWL estimator; see also

the discussion in Nielsen and Frederiksen (2005). The simulation design adopted in the

current paper is identical to that adopted in Poskitt et al. and the bias-adjusted SPWL

estimator that minimized mean squared error across the Monte Carlo replications

there, in any given design setting, is used here as the pre-filter.

5 Simulation Exercise

In this section we examine the performance of the sieve bootstrap techniques via

a simulation experiment. Specifically, we investigate the accuracy with which both

the raw and pre-filtered sieve algorithms approximate the sampling distributions of

the sample mean, ȳT , and the kth-order sample autocorrelation coeffi cient, ρ̂(k), for

k = 1, 3, 6 and 9.

Regarding ȳT =
∑T

t=1 y(t)/T , various properties of this statistic are well known,

and in the investigation of any bootstrap procedure an examination of its ability to

mimic these is a natural focal point. In particular, theoretical (asymptotic) properties
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notwithstanding, it is of interest to investigate the nature of the finite sampling per-

formance of the sieve-based estimators of this important sampling distribution, and

to document the extent of the improvement yielded by the pre-filtering process. The

characteristics that are of particular interest in the context of fractionally integrated

data are, first, that

V ar[ȳT ] =
1

T

T−1∑
k=1−T

(1− |k|
T

)γ(k), (5.1)

second, that V ar[ȳT ] ∼ T 2d−1ω2 where

ω2 =
{σκ(1)}2Γ(1− 2d)

(1 + 2d)Γ(1 + d)Γ(1− d)
(5.2)

as T →∞, and third, that the re-normalized mean T 1/2−d(ȳT − µ)
D→ N(0, ω2), where

E[yt] = µ; see Hosking (1996, Theorem 8). In the case where the simulated data

is Gaussian all semi-invariants of ȳT of order greater than two are zero, of course,

and the terms in the Edgeworth expansion in (3.1) beyond the first are null. Given

knowledge of the true sampling variance of the mean in (5.1), the representativeness of

the Monte Carlo (MC) distribution, the relevance of the asymptotic approximation and

the accuracy of the bootstrap methods can all be assessed against the exact Gaussian

sampling distribution.2

With regard to the kth sample autocorrelation coeffi cient, defined here as3

ρ̂(k) =

∑T−k
t=1 (y(t)− ȳT )(y(t+ k)− ȳT )∑T

t=1(y(t)− ȳT )2
, (5.3)

the finite sample distribution under long memory is unknown. However, the rele-

vant asymptotic results are documented in Hosking (1996), with asymptotic normality

shown to hold for the appropriately standardized statistic for d ≤ 0.25, and Hosk-

ing’s “modified”Rosenblatt distribution being the relevant limiting distribution for

0.25 < d < 0.5. Hence, it is of interest to explore the performance of the sieve-based

techniques in replicating (Monte Carlo estimates of) the finite sampling distributions

in the two regions of the parameter space in which the asymptotic behaviour of ρ̂(k)

differs.

Further, Lieberman et al. (2001) (“LRZ”hereafter) provide the analytical details

2 Andrews et al. (2006) remark that in the Gaussian case “the sample mean is an unbiased estimator
of µ with an exact normal distribution, which can be used to develop inference concerning µ”, but
they make no mention of issues associated with estimating the sampling variance of ȳT . We should
perhaps point out that the sample mean is not the best linear unbiased estimator of µ for a
fractional process, see Adenstedt (1974). Adenstedt (1974, Theorem 5.2) presents an alternative
estimator that is asymptotically effi cient, albeit infeasible in practice because it is a function of
the unknown d. We thank the Editor for bringing this paper to our attention.

3 There are several closely-related ways to define the sample autocorrelation; we have used Hosking’s
(1996) specification in our work here.
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of the Edgeworth expansion for the distribution of
√
T (ρ̂0(k)− ρ(k)), where

ρ̂0(k) =

∑T−k
t=1 y(t)y(t+ k)∑T

t=1 y(t)2
(5.4)

and the mean µ is known to be zero. As well as being derived for a statistic that both

assumes and imposes a known zero mean, the LRZ expansion is dependent on the true

(unknown) values of the ARFIMA parameters, as well as being valid only for very small

values of d; all such features limiting its empirical applicability. However, in the current

experimental setting it serves as a very useful check of the performance of the bootstrap

method. A good match in the case where the expansion is applicable suggests that the

bootstrap method(s) may also perform well in the parts of the parameter space in which

the Edgeworth approach is inapplicable, and in empirical scenarios in which parameters

are (of course) unknown. For convenience, and to facilitate the reproducibility of our

results, we document in the Appendix the details of the Edgeworth formula applied

here.

5.1 Simulation Design

Data are simulated from a zero-mean Gaussian ARFIMA(p, d, q) process, with autore-

gressive lag order p = 1 and moving average lag order q = 0,

(1− L)d(1− φL)y(t) = ε(t) , (5.5)

where 1− φz is the operator for a stationary AR(1) component and ε(t) is zero-mean
Gaussian white noise. The theoretical autocovariance function (ACF) for this process

can be computed using the procedures of Sowell (1992). The process in (5.5) is simu-

lated R = 1000 times for d = 0.0, 0.2, 0.3, 0.4; φ = 0.3 and 0.6; and for various sample

sizes T , via the Levinson recursion applied to the ACF of the desired ARFIMA(1, d, 0)

process and the generated pseudo-random ε(t) (see, for instance, Brockwell and Davis,

1991, §5.2). The ARFIMA ACF for given T , φ and d is calculated using Sowell’s

(1992) algorithm as modified by Doornik and Ooms (2001).

For each realization r of the process we compute the relevant statistic, sT,r, plus

B = 1000 estimates s∗T,r(b), constructed using b = 1, . . . , B bootstrap re-samples ob-

tained via the relevant bootstrap algorithm. Each realized value sT,r thus has asso-

ciated with it a “bootstrap distribution”based on the B bootstrap resamples s∗T,r(b),

b = 1, . . . , B, with each such distribution serving as an estimate of the sampling dis-

tribution of sT . In order to assess the R bootstrap distributions against a comparator

distribution of sT —whether that be the known finite sample distribution (as in the

case of yT ), the finite sample distribution estimated from the Monte Carlo draws, or

an Edgeworth approximation —we first compute an “average”bootstrap distribution
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by sorting the B bootstrap draws for each MC replication into ascending order, then

averaging these ordered bootstrap values across the Monte Carlo draws. The B aver-

aged draws are then used to produce a kernel density estimate, which we refer to as

the average bootstrap distribution. This bootstrap estimate, when plotted against (a

representation of) the true distribution of sT , allows for a direct visual assessment of

the overall accuracy of the bootstrap distributions4.

Following common practice (Politis, 2003, §3), the order of the autoregressive ap-

proximation in the sieve was set to h = ĥT = argminh=0,1,...,MT
log(σ̂2

h)+2h/T , where σ̂2
h

denotes the residual mean square obtained from an AR(h) model andMT = [(log T )2].

Let h̄T = argminh=0,1,...,MT
LT (h) where LT (h) = (σ2

h − σ2) + hσ2/T and σ2 and σ2
h

are as defined in (1) and (2.4) respectively. The function LT (h) was introduced by

Shibata (1980) as a figure of merit and the AR(ĥT ) model is asymptotically effi cient

in the sense that LT (ĥT ) = LT (h̄T ){1 + o(1)} a.s. as T →∞ (Poskitt, 2007, Theorem

9). It follows that ĥT/h̄T → 1 a.s. as T → ∞, so as T increases ĥT behaves almost
surely like a deterministic sequence that satisfies the previous technical requirements.

We can therefore conclude that, although the use of AIC introduces an added element

of randomness, the results of Section 3 and Section 4 —in which h is treated as fixed

—will still hold true.

In the case of ȳT we supplement the graphical results by tabulating the ratio of

the average bootstrap estimate of the sampling variance of ȳT (for both bootstrap

methods) to its true sampling variance as per (5.1). For the sample autocorrelations

— for which the finite sample distribution is completely unknown —we focus on the

accuracy with which the bootstrap methods reproduce the distribution as a whole;

measuring the “closeness” of the averaged bootstrap distribution (in any particular

case) to the chosen comparator distribution using three goodness of fit measures. For

example, denoting the ordinates of the Monte Carlo comparator and the (averaged)

bootstrap-based probability density functions (pdfs) at the jth (sorted) Monte Carlo

realization value as pmc(sj) and pbs(sj) respectively, we calculate

RMSD =

√√√√ 1

R

R∑
j=1

(pmc(sj)− pbs(sj))2

4 To document the extent of the variation in the bootstrap samples (and hence density estimates)
across Monte Carlo draws, we also produced kernel density estimates based on the quartiles of the
ordered bootstrap iterates. That is, if s∗T,r(bj), r = 1, . . . , R, is the set of R jth-largest bootstrap

values, for which we calculate the qth quantile, then the collection of B such quantiles is an estimate
of the “distribution”to the left of which proportion q of the R BS distributions lie. Inspection of
these bootstrap quantiles did not indicate a great deal of variation in the bootstrap distributions
across Monte Carlo draws.
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and the Kullback-Leibler divergence

KLD =
R∑
j=1

pmc(sj) ln
pmc(sj)

pbs(sj)
' 1

R

R∑
j=1

ln
pmc(sj)

pbs(sj)
,

where this last follows given sj is by definition a random draw from the Monte Carlo

distribution of sT . We also produce a “GINI”-style statistic by estimating the cumula-

tive distribution functions, Pmc(sj) and Pbs(sj), j = 1, 2, ..., J, in the same manner as

the pdfs above, then calculating the area between the resulting PP-plot and the line

of equality via a numerical (trapezoidal) estimate of

A =

∫ 1

0

|Pbs(s)− Pmc(s)| dPmc(s).

The GINI coeffi cient is then just 2A.

5.2 Simulation results: sample mean

Figure 1 graphs the distribution of T 1/2−d(ȳT − µ) (where µ = 0) observed across the

Monte Carlo draws (denoted by MC), the averaged (raw) sieve bootstrap distribution

of T 1/2−d(ȳ∗T − ȳT ) (denoted by SBS), and the exact N(0, ω2) distribution, with ω2 =

T 1−2dV ar[ȳT ], for T = 500, φ = 0.6, and d = 0, 0.2, 0.3, 0.4. We have suppressed the

plot of the asymptotic N(0, ω2) distribution of T 1/2−d(ȳT −µ) since at this sample size

it is virtually indistinguishable from the exact.

When d = 0 we can see that all three distributions are very nearly identical. When

d > 0, however, it is clear that the variance of ȳT is substantially underestimated by

the bootstrap procedure. This result is further confirmed by inspection of Table 1,

which reports the ratio of the average SBS estimate of the standard deviation of ȳT to

the exact standard deviation given by the square root of (5.1), for T = 100 and 500,

and for φ = 0.3 and 0.6. The underestimation for d > 0 is very marked for both values

of φ and both sample sizes with, indeed, the degree of underestimation increasing with

φ and there being no uniform tendency for improvement as the sample size increases5.

The reason for the underestimation stems from the fact that the raw sieve bootstrap

variance is

V ar∗[ȳ∗T ] =
1

T

T−1∑
k=1−T

(1− |k|
T

)γ̄h(k),

where γ̄h(k) = γ̂(k), k = 0, 1, . . . , h, and
∑h

j=0 φ̄h(j)γ̄h(k− j) = 0, k = h+ 1, . . ., with

5 The mean and skewness of the re-nomalised difference T 1/2−d(ȳ∗T − ȳT ) are close to zero, and
the kurtosis is approximately 3. Thus it is only the underestimation of variance that presents a
problem. A similar phenomenon with the block bootstrap was observed previously by Hesterberg
(1997). Hesterberg offers no explanation for its occurrence, but simply suggests that estimating
the variance of the sample mean is substantially more diffi cult in the long memory case than it is
for short memory processes.
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Figure 1: Densities of the re-normalized sample mean under
ARFIMA(1, d, 0) with T = 500, φ = 0.6, and d = 0, 0.2, 0.3, 0.4:

Monte Carlo (MC); averaged (raw) sieve bootstrap (SBS) and exact
(N(0, ω2)), where ω2 = T 1−2dV ar[ȳT ], with V ar[ȳT ] as given in

(5.1).

γ̂(k) = 1
T−k

∑T−k
t=1 (y(t)− ȳT )(y(t + k)− ȳT ); and Hosking (1996) shows that the γ̂(k)

can have substantial negative bias relative to the corresponding true values even for

moderate to large samples, particularly when d is large.

This phenomenon is illustrated in Figure 2, which depicts the theoretical autoco-

variance function and the value of γ̂(k) for k = 0, . . . , 100 obtained from samples of

size T = 1000, computed from two fractional noise (ARFIMA(0, d, 0)) processes with

d = 0.3 and d = 0.4, and averaged across the R replications. Hosking (1996, Theorem

3) provides the following formula for the asymptotic bias of the autocovariances

E[γ̂(k)− γ(k)] ∼ −ω2T 2d−1 , (5.6)

(with ω2 as defined in 5.2), which depends on d but is independent of k. This feature is

reflected in the simulated sample bias, computed as the difference between the mean of

the simulated sample autocovariances at each lag k and the corresponding true γ(k).

For T = 1000 this estimated bias is in close accord with the asymptotic approximation
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Table 1
Standard deviation of ȳT : averaged SBS estimate as a percentage of√
V ar[ȳT ], with V ar[ȳT ] as defined in (5.1).

d
0.0 0.2 0.3 0.4

φ T
0.3 100 95.6% 57.2% 42.6% 28%

500 99.2% 48.6% 35.1% 22.8%

0.6 100 93.3% 60.2% 46% 31%
500 99.1% 51.5% 36.8% 23.8%

in (5.6), as can be seen in Figure 26.
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Figure 2: Theoretical autocovariance function (ACF); Monte-Carlo
estimate of the expected sample autocovariance function

(MC-SACF); Monte-Carlo estimate of the bias in the SACF
(MC-Bias); and the asymptotic bias as per (5.6) (Asy-Bias), under

fractional noise with d = 0.3, 0.4 and T = 1000.

It is of interest then to ascertain whether the feasible PFSBS algorithm, in implicitly

producing more accurate estimates of the γ(k) in the process of yielding bootstrap

draws of ȳT , (via the application of the sieve to a shorter memory process) yields

6 Noting that 1
T

∑T−1
k=1−T (1− |k|T ) ≡ 1, it is apparent from equation (5.6) that the addition of ω2T 2d−1

to the bootstrap variance would provide an asymptotically valid (albeit empirically infeasible)
correction that would compensate for the bias of the γ̂(k) and the underestimation of the true
persistence in the observed process.
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an estimated sampling distribution for the mean with a variance that is closer to

the theoretical value. As noted in Section 4, the PFSBS algorithm is based on a pre-

filtering value of d that is deemed to be “optimal”in the matching experimental design

in Poskitt et al. (2012).

Figure 3 graphs the Monte Carlo distribution of T 1/2−d(ȳT − µ), the PFSBS dis-

tribution of T 1/2−d(ȳ∗T − ȳT ), and the N(0, ω2) distribution, for T = 500, φ = 0.6,

and d = 0, 0.2, 0.3, 0.4. We see that, despite a tendency to over-estimate V ar(ȳT ) for
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Figure 3: Densities of the re-normalized sample mean under
ARFIMA(1, d, 0) with T = 500, φ = 0.6, and d = 0, 0.2, 0.3, 0.4:
Monte Carlo (MC); averaged pre-filtered sieve bootstrap (PFSBS)
and exact (N(0, ω2)), where ω2 = T 1−2dV ar[ȳT ], with V ar[ȳT ] as

given in (5.1).

d = 0 and under-estimate for large d (d = 0.4), the PFSBS results are far superior to

those associated with the raw SBS, and reasonably close overall to the true sampling

distribution. The averaged PFSBS estimate of
√
V ar (ȳT ) as a percentage of the true√

V ar (ȳT ) is presented in Panel A of Table 2, for the two values of φ, φ = 0.3 and

0.6, and for T = 100 and 500. The reasonable accuracy observed visually in Figure 3

for φ = 0.6, for the larger sample size in particular, is broadly replicated for φ = 0.3,

T = 500, augering well for the automated use of the pre-filtering method in practice.

As a final point here, it is of interest to ascertain the performance of the PFSBS

technique in which we simply assign a value to d with which to pre-filter, rather
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Table 2
Standard deviation of ȳT : averaged PFSBS and FPSBS estimates as
a percentage of

√
V ar[ȳT ], with V ar[ȳT ] as defined in (5.1).

Panel A: PFSBS

d
0.0 0.2 0.3 0.4

φ T
0.3 100 141.2% 125.3% 109.8% 84.3%

500 116.6% 106.9% 93.4% 69.9%

0.6 100 158.7% 142.9% 127.0% 100.4%
500 117.1% 107.5% 94.0% 70.1%

Panel B: FPFBS

d
0.0 0.2 0.3 0.4

φ T
0.3 100 349.0% 191.1% 127.8% 74.3%

500 573.4% 274.9% 171.6% 88.6%

0.6 100 316.0% 169.5% 115.7% 69.7%
500 582.9% 268.6% 162.5% 84.7%

than selecting a particular estimator for this role.7 A fairly obvious choice is to set

the pre-filtering value (df say) at 0.5; as the true d (in the experimental setting) is

never greater than this it follows that imposing df = 0.5 results in a filtered series for

which the effective fractional integration is always negative, and the filtered process

of intermediate memory as a consequence. The estimates of the sieve parameters will

therefore converge at the best possible rate O (hT−1 log T ) as per Theorem 3, although

df will obviously not satisfy the convergence properties outlined in the discussion

following Theorem 11. We refer to this approach below as the “fixed pre-filtered

bootstrap”(FPFBS).

As we see from Figure 4, the FPFBS, unsurprisingly, works reasonably well when d

is large; i.e., for d = 0.4. For the smaller values for d, on the other hand, it works very

poorly, resulting in an averaged bootstrap distribution for ȳT that is a very inaccurate

match for the true distribution. In particular, as seen in panels (i) —(iii) of the Figure,

and in Panel B of Table 2, the dispersion of the FPFBS-based distribution is much

7 The idea of imposing a “fixed”pre-filter arose out of a referee’s comment on an earlier version of
the paper.
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Figure 4: Densities of the re-normalized sample mean under
ARFIMA(1, d, 0) with T = 500, φ = 0.6, and d = 0, 0.2, 0.3, 0.4:
Monte Carlo (MC); averaged fixed pre-filtered sieve bootstrap
(FPFBS) and exact (N(0, ω2)), where ω2 = T 1−2dV ar[ȳT ], with

V ar[ȳT ] as given in (5.1).

larger than that of the exact distribution, with the discrepancy increasing with the

distance
∣∣d− df ∣∣ . In short, it appears that fixing the pre-filter is not useful as a default

setting, at least as regards estimating the distribution of ȳT .

5.3 Simulation results: sample autocorrelation

We begin by plotting various estimates of the true finite sampling distribution of ρ̂0(k),

for k = 1, 3, 6 and 9, where the subscript 0 is used to emphasize that a mean of zero

(for yt) is both assumed and imposed in the calculation of the statistic (see (5.4)).

We consider this particular version of the autocorrelation coeffi cient(s) in this initial

exercise so as to enable the LRZ expansion (derived for this version) to be used as a

comparator. The expansion is valid for d < 0.1 only (see Appendix); hence we conduct

the comparison for a value of d in this range: d = 0.08. Results for φ = 0.3 and φ = 0.6

are presented in Figures 5 and 6 respectively, with T = 500 in both cases.

As is evident from inspection of the two graphs, the (raw) SBS estimate of the
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Figure 5: Densities of the zero-mean sample autocorrelation
coeffi cient ρ̂0(k), k = 1, 3, 6, 9: under ARFIMA(1, d, 0) with

T = 500, d = 0.08, φ = 0.3: Monte Carlo (MC); averaged (raw) sieve
bootstrap (SBS); Edgeworth approximation (EW). The vertical
dotted line indicates the position of the true value of ρ(k),

k = 1, 3, 6, 9.

distribution of ρ̂0(k) is visually indistinguishable from the Edgeworth distribution8,

with both being very similar to the Monte Carlo based estimate.9 As such, we conclude

that when a finite sample comparator is available (i.e. under the conditions required

for that comparator to be valid) the sieve bootstrap method is remarkably accurate.

This gives one confidence in the ability of the bootstrap to provide an accurate result

in the usual case in which such a comparator is unavailable.

In Figures 7—10 we proceed to document the performance of the two bootstrap

methods, SBS and PFSBS, in regions of the parameter space in which the Edgeworth

expansion is not valid, and the only comparator is the Monte Carlo-based estimate of

the exact sampling distribution. We also include plots of the average FPFBS distrib-

8 The Edgeworth (EW) distribution plotted here has been re-centered on the true ρ(k), and rescaled
to remove the

√
T normalization of the expansion. See the Appendix for details.

9 We have reproduced results here based on 1000 replications in order to have all results comparable
throughout the paper. In particular, due to the computational burden associated with the PFSBS
methods, 1000 was a manageable choice for a general replication number. However, the results
documented in Figures 5 and 6 have also been run using 10,000 replications, at which point the
Monte Carlo estimate of the pdf is visually indistinguishable from the other two estimates.



Sieve Bootstrap Improvements 28

0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15
(i) ρ̂(1)

 

 
MC
SBS
EW

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8
(ii) ρ̂(3)

 

 
MC
SBS
EW

−0.2 0 0.2 0.4 0.6
0

1

2

3

4

5

6
(iii) ρ̂(6)

 

 
MC
SBS
EW

−0.2 −0.1 0 0.1 0.2 0.3
0

1

2

3

4

5

6
(iv) ρ̂(9)

 

 
MC
SBS
EW

Figure 6: Densities of the zero-mean sample autocorrelation
coeffi cient ρ̂0(k), k = 1, 3, 6, 9: under ARFIMA(1, d, 0) with

T = 500, d = 0.08, φ = 0.6: Monte Carlo (MC); averaged (raw) sieve
bootstrap (SBS); Edgeworth approximation (EW). The vertical
dotted line indicates the position of the true value of ρ(k),

k = 1, 3, 6, 9.

utions calculated using, as in the previous section, df = 0.5. The distribution for the

sample autocorrelation coeffi cient in (5.3) is now the one documented, for k = 1, 3, 6

and 9, and the two scenarios considered are that in which asymptotic normality holds

(d ≤ 0.25), and that in which it does not (d > 0.25), with the modified Rosenblatt

distribution being the relevant limiting form in the latter case. Specifically, in Figures

7 and 8, d = 0.2 and φ = 0.3 and φ = 0.6 respectively, whilst in Figures 9 and 10,

d = 0.4 and φ = 0.3 and φ = 0.6 respectively. In order to supplement these graphical

results, the measures of fit (as described in Section 5.1) are recorded in both panels of

Table 3, in relative terms. That is, in Panel A, each fit measure for PFSBS is presented

as a ratio to the corresponding fit measure for the raw sieve method (SBS); hence, a

value less than one indicates that the pre-filtering yields a distribution that is a better

fit to the Monte Carlo-based distribution. The corresponding results for FPFBS are

presented in Panel B. Results recorded in all four figures and both panels of the table

are for T = 500.

A visual inspection of the graphs in Figures 7 and 8 suggests that when the long
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memory parameter is small (d = 0.2), and for both values of φ, the two bootstrap

methods, SBS and PFSBS, provide reasonable accuracy. There is no clear cut supe-
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Figure 7: Densities of the sample autocorrelation coeffi cient ρ̂(k),
k = 1, 3, 6, 9: under ARFIMA(1, d, 0) with T = 500, d = 0.2,

φ = 0.3: Monte Carlo (MC); averaged (raw) sieve bootstrap (SBS);
averaged pre-filtered sieve bootstrap (PFSBS); averaged fixed
pre-filtered sieve bootstrap (FPFBS). The vertical dotted line
indicates the position of the true value of ρ(k), k = 1, 3, 6, 9.

riority of one method over the other, with the raw sieve method being superior to the

PFSBS method for k = 1 and 9, and the opposite result obtaining for k = 3 and 6.

These visual results on relative performance are confirmed (overall) by the numerical

results in Table 3, Panel A, with virtually all ratios (associated with all three measures

of fit) being greater than one (indicating the superiority of the raw method) for k = 1

and 9, and less than one for k = 3 and 6.

In contrast, for d = 0.4, the performances of the two methods are more distinct,

with all graphs reproduced in Figures 9 and 10 - allied with the numerical results re-

ported in Panel A, Table 3 - confirming the marked superiority of the PFSBS method

in this part of the parameter space. Taken together these two sets of results suggest

that a conservative approach to estimating the sampling distribution of the autocorre-

lation coeffi cients in empirical settings is to undertake the pre-filtering; the increase in

accuracy in the long memory region being worth the slight reduction that may occur
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Figure 8: Densities of the sample autocorrelation coeffi cient ρ̂(k),
k = 1, 3, 6, 9: under ARFIMA(1, d, 0) with T = 500, d = 0.2,

φ = 0.6: Monte Carlo (MC); averaged (raw) sieve bootstrap (SBS);
averaged pre-filtered sieve bootstrap (PFSBS); averaged fixed
pre-filtered sieve bootstrap (FPFBS). The vertical dotted line
indicates the position of the true value of ρ(k), k = 1, 3, 6, 9.

(relative to the raw sieve) if the true value of d is small.

Turning, finally, to the FPFBS, from inspection of Figures 7-10 and the results

recorded in Panel B of Table 3, we see that while it virtually always outperforms the

raw SBS for the larger value of d (d = 0.4), it does very poorly for d = 0.2. In the latter

case we observe a “divergence”(as measured by our three goodness of fit measures)

from the Monte Carlo distribution we are attempting to replicate that is several times

larger than that of SBS; more than 100 times larger in one case. Most importantly,

if we compare the FPFBS directly to the PFSBS (by making the appropriate simple

calculations using the numbers recorded in the two panels of Table 3) we see that the

FPSBS never outperforms the PFSBS, with the goodness of fit measures for the former

ranging from (approximately) twice to seventeen times those of the latter. This poor

performance (overall) of the FPFBS mimics that documented for the sample mean.
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Table 3
Goodness of fit measures for ρ̂(k), k = 1, 3, 6, 9:
measures for PFSBS and FPFBS relative to those for SBS.
All results are for sample size T = 500.

Panel A: PFSBS

d = 0.2 d = 0.4

Lag length k Lag length k
1 3 6 9 1 3 6 9

φ
RMSE 0.3 4.566 0.384 0.616 1.276 0.235 0.173 0.358 0.374

0.6 1.467 0.520 0.682 1.343 0.322 0.233 0.392 0.387
KLD 0.3 12.26 0.733 1.087 1.579 0.302 0.095 0.141 0.163

0.6 6.357 1.304 0.858 1.310 0.500 0.130 0.195 0.231
GINI 0.3 9.006 0.339 0.605 1.128 0.264 0.128 0.234 0.333

0.6 2.679 0.418 0.611 1.211 0.370 0.220 0.290 0.349

Panel B: FPFBS

d = 0.2 d = 0.4

Lag length k Lag length k
1 3 6 9 1 3 6 9

φ
RMSE 0.3 16.52 2.472 3.597 4.486 0.597 0.409 0.567 0.797

0.6 4.385 2.416 2.699 4.257 0.597 0.436 0.530 0.662
KLD 0.3 102.99 10.32 18.79 18.18 0.971 0.380 0.426 0.507

0.6 34.030 13.110 9.644 11.15 1.129 0.447 0.425 0.491
GINI 0.3 36.173 3.239 4.117 5.522 0.743 0.471 0.548 0.794

0.6 9.979 2.946 3.220 4.829 0.759 0.502 0.519 0.655
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Figure 9: Densities of the sample autocorrelation coeffi cient ρ̂(k),
k = 1, 3, 6, 9: under ARFIMA(1, d, 0) with T = 500, d = 0.4,

φ = 0.3: Monte Carlo (MC); averaged (raw) sieve bootstrap (SBS);
averaged pre-filtered sieve bootstrap (PFSBS); averaged fixed
pre-filtered sieve bootstrap (FPFBS). The vertical dotted line
indicates the position of the true value of ρ(k), k = 1, 3, 6, 9.
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Figure 10: Densities of the sample autocorrelation coeffi cient ρ̂(k),
k = 1, 3, 6, 9: under ARFIMA(1, d, 0) with T = 500, d = 0.4,

φ = 0.6: Monte Carlo (MC); averaged (raw) sieve bootstrap (SBS);
averaged pre-filtered sieve bootstrap (PFSBS); averaged fixed
pre-filtered sieve bootstrap (FPFBS). The vertical dotted line
indicates the position of the true value of ρ(k), k = 1, 3, 6, 9.
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6 Summary and Conclusion

This paper has derived new results regarding the convergence rates of sieve-based

bootstrap techniques, in the context of fractionally integrated processes. Both the

raw sieve technique, based on an autoregressive approximation of the long memory

process, and a pre-filtered version of the sieve method, are investigated, for a broad

class of statistics that includes the sample mean and sample second-order moments.

Pre-filtering via an appropriate estimator is shown to yield a convergence rate that is

equivalent to that associated with intermediate and short memory processes, which is,

in turn, arbitrarily close to that associated with independent data.

Using numerical simulation, the distinct (and only rarely noted) problem of un-

derestimating the sampling variance of the sample mean in the long memory case is

shown to be avoided, in large measure, by use of a pre-filtering method based, in turn,

on a (bias-adjusted) semi-parametric estimator of the long memory parameter. In

particular, for moderate values of d the pre-filtered sieve produces very accurate esti-

mates of the (known) exact distribution of the sample mean, and achieves reasonable

accuracy elsewhere in the parameter space. Replacing the data-based pre-filter with

a fixed value may produce a slight improvement, but only when the latter is close to

the true parameter; otherwise the fixed pre-filtering performs very badly in terms of

reproducing the exact distribution.

The (data-based) pre-filtering technique is also shown to produce very accurate

estimates of the true sampling distribution of selected autocorrelation coeffi cients (as

measured by Monte Carlo simulation). Whilst there is no clear cut superiority of

the pre-filtered over the raw sieve method when the fractional integration parameter

is small, as the fractional integration parameter increases the performance of the two

methods becomes more distinct, and the pre-filtering method performs notably better,

reflecting the properties established in the theoretical development. As is the case with

the sample mean, while fixed pre-filtering can outperform the raw method when the

assigned pre-filtering value is close to the true parameter, it does very poorly otherwise,

and in any case never outperforms data-based pre-filtering in terms of reproducing the

(Monte Carlo) sampling distributions of the sample autocorrelations. Finally, for the

narrow region of the parameter space in which an Edgeworth approximation of the

distribution of the sample autocorrelations is valid, the sieve bootstrap reproduces this

analytical result with great accuracy.

With due acknowledgement made of the limited nature of the current experimental

exercise, we conclude that the overall increase in accuracy obtained when using the

data-based pre-filtered sieve bootstrap in parts of the parameter space associated with

moderate to strong long-range dependence is worth the slight reduction that might

occur (relative to the raw sieve) otherwise; and that a reasonable approach to estimat-

ing unknown sampling distributions in empirical settings is to employ the data-based
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pre-filtered sieve as the default method.

Appendix: Edgeworth expansion for the sample au-

tocorrelation function

To support the reproducibility of the results reported in this paper, we provide a

brief outline of the details of the Edgeworth expansion used as a comparator of our

bootstrap-based methodology. All further details of this expansion can be found in

Lieberman et al. (2001) (LRZ hereafter).

Suppose we possess a statistic sT such that ζT =
√
T (sT −E[sT ])

D→ N(0, ν2). The

conventional (second-order) Edgeworth expansion for the CDF of ζT is of the form

FζT (c) = Pr {ζT < c = νu} (A.1)

= G (u)−
{

η3

6
√
T
H2 (u) +

1

T

(
η4

24
H3 (u) +

η2
3

72
H5 (u)

)}
g (u) +O

(
T−3/2

)
where ηr = κr/ ν

r denotes the rth standardised cumulant of ζT , and

H2 (u) = u2 − 1

H3 (u) = u3 − 3u

H5 (u) = u5 − 10u3 + 15u

are the required Hermite polynomials (Hall, 1992). Accordingly, direct application of

(A.1) to the statistic

WT (k) =
√
T (ρ̂(k)− ρ(k)) (A.2)

requires a means of computing the required cumulants of W . In theory these might

be computed via Magnus (1986, Theorem 6), or possibly Smith (1989); in practice

these expressions quickly become unmanageable as the order of the required moments

increases.

LRZ instead begin with

ZT (k) =
√
n (γ̂(k)− γ(k)) , (A.3)

where

γ̂(k) =
1

T

T−k∑
t=1

x(t)x(T + k) = T−1x′AT,kx ,

[AT,k]i,j = ξk (i− j) =

{
1
2
for |i− j| = k

0 otherwise
,
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and AT,0 = IT . Assuming that x = (x(1), . . . , x(T ))′ is distributed N (0,Σ)10, LRZ

then proceed to produce an expansion for WT (k) indirectly, via ZT (k), as follows.

For brevity write ZT (k) and WT (k) as Zk and Wk respectively, and use ρ(k) =

γ(k)/γ(0) and γ̂(k) = γ(k) + T−1/2Zk to now rewrite Wk as

Wk =
√
T

(
γ̂(k)

γ̂(0)
− γ(k)

γ(0)

)
=
√
T

(
γ̂(k)γ(0)− γ(k)γ̂(0)

γ̂(0)γ(0)

)
=

γ(0)Zk − γ(k)Z0

γ(0)γ̂(0)

=
Zk − ρ(k)Z0

γ̂(0)
.

Then for a single Wk :

FWk
(c) = Pr (Wk < c)

= Pr (Zk − ρ(k)Z0 < cγ̂(0)) since γ̂(0) > 0

= Pr
(
Zk − ρ(k)Z0 < cγ(0) + cT−1/2Z0

)
= Pr

(
Zk −

(
ρ(k) + cT−1/2

)
Z0 < cγ(0)

)
,

where, from (A.3),

Zk −
(
ρ(k) + cT−1/2

)
Z0 =

√
T
(
γ̂(k)−

(
ρ(k) + cT−1/2

)
γ̂(0)

)
−
[√

T
(
γ(k)−

(
ρ(k) + cT−1/2

)
γ(0)

)]
=
√
T
(
γ̂(k)−

(
ρ(k) + cT−1/2

)
γ̂(0)

)
+ cγ(0)

=
√
T
(
n−1x′AT,kx−

(
ρ(k) + cT−1/2

)
T−1x′x

)
+ cγ(0)

= T−1/2x′BT,kx+ cγ(0)

and BT,k = AT,k −
(
ρ(k) + cT−1/2

)
IT . So, defining x′BT,kx = Q†T,k, we have

FWk
(c) = Pr (Wk < c) ≡ Pr

{
Q†T,k < 0

}
.

Standard results on quadratic forms in normal variates when x ∼ N(0,Σ) gives

ψT (τ) = E[iτQ†T,k] =
∏T

t=1(1− 2iτλt)
− 1
2 on application of Aitken’s integral, where λt,

t = 1, . . . , T are the eigenvalues of BT,kΣ. The characteristic function is integrable for

all T > 2 and the cumulant generating function −1
2

∑T
t=1 log(1− 2iτλt) yields the rth

cumulant of Q†T,k as

κ∗r = 2r−1 (r − 1)!tr [(BT,kΣ)r] .

10 LRZ explicitly impose E(X) = 0; or, equivalently, assume that X = Y − µ where µ = E(Y ) is
known.
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Evaluating the mean and variance now makes Q†T,k (or more correctly its z-score) a

convenient candidate for an Edgeworth expansion.

From the preceding,

FWk
(c) ≡ Pr

{
Q†T,k < 0

}
= Pr

{
Q†T,k − µ†

σ†
< u = −µ

†

σ†

}
,

where µ† = κ†1 and σ
† =

√
κ†2. Hence the second-order Edgeworth expansion (if it

exists) for the CDF of Q†T,k (and hence Wk) will be of the form11

F̃Wk
(c) = G (u)−

{
η†3
6
H2 (u) +

η†4
24
H3 (u) +

(η†3)2

72
H5 (u)

}
g (u) ,

with error O
(
T−3/2

)
, where η†r = κ†r/(

√
κ†2)r, r = 1, 2, 3, 4, and u = −η†1. Note that

the descending powers of
√
T that would ordinarily appear in the expansion (cf. (A.1))

are here subsumed into the standardised cumulants; that is, we are implicitly assuming

that η†r = O
(
T 1−r/2) or, equivalently, that κ†r is O (T ), at least up to r = 4.

That the cumulants of Q†T,k are of the appropriate order, at least for restricted

values of the fractional parameter d, follows from LRZ Theorem 1. In particular, the

cumulants of Q†T,k of order no greater than r will be O (T ) only if r(2d) < 1, implying

that κ†r, r = 1, 2, 3, 4, are O (T ) if d < 0.125 but not otherwise. However, if r now

denotes the order of the highest cumulant in the expansion, then LRZ also show that

we require (r+ 1)(2d) < 1 and r even to attain an expansion error of o
(
T 1−r/2); while

if r is odd the error is of the same order as the last term, namely O
(
T 1−r/2). Hence

the second-order (r = 4) expansion is valid only for d < 0.1, and there is no valid

expansion (in the sense that the error is of smaller order than the last included term)

for d ≥ 0.1.
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