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Abstract

In Singular Spectrum Analysis (SSA) window length is a critical tuning parameter that

must be assigned by the practitioner. This paper provides a theoretical analysis of

signal-noise separation and reconstruction in SSA that can serve as a guide to optimal

window choice. We establish numerical bounds on the mean squared reconstruction

error and present their almost sure limits under very general regularity conditions on

the underlying data generating mechanism. We also provide asymptotic bounds for

the mean squared separation error. Evidence obtained using simulation experiments

indicates that the theoretical properties are reflected in observed behaviour, even in

relatively small samples, and the results indicate how an optimal choice for the window

length can be made.
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1 Introduction

Singular spectrum analysis (SSA) is a non-parametric technique that is designed to

look for nonlinear, non–stationary, and intermittent or transient behaviour in an ob-

served time series. By way of introduction to SSA and in order to set the scene,

suppose that x(t) ≡ x′(τ) is a stochastic process of interest that is observed at a se-

quence of points τ = τmin + t△t, t = 1, . . . , N , in the interval T = (τmin, τmax] where

△t = (τmax − τmin)/N , giving rise to an observed time series {x(1), x(2), . . . , x(N)} of
∗Correspondence: Don Poskitt, Department of Econometrics and Business Statistics, Monash

University, Clayton, Victoria 3800, Australia. Tel.:+61-3-9905-9378; fax:+61-3-9905-5474.
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length N .1 The aim of SSA is to decompose the observed series into the sum of inde-

pendent and interpretable components, akin to the classical decomposition of a time

series into the sum of trend, cyclical, seasonal and noise components, and SSA looks

for such structure in an observed series via an eigen–decomposition of the so-called

trajectory matrix.

The development of SSA is often attributed to researchers working in the physical

sciences, namely Broomhead and King (1986), Vautard and Ghil (1989) and Vautard,

Yiou and Ghil (1992), and SSA has gained popularity in such areas as meteorology,

bio-mechanics and hydrology. The basic building blocks of SSA where previously out-

lined by Basilevsky and Hum (1979), however, who argued that in the social sciences

standard frequency domain methods based on Fourier decompositions may lack appeal

and that a discrete Karhunen-Loève analysis was more suitable, and the application

of SSA in economics and finance are now also finding favour.

The general structure of the algorithm underlying SSA can be described in four basic

steps:

1. Embedding: For a given window size m the m× n trajectory matrix is given by

X = [x1 : . . . : xn] where n = N−m+1 and xt = (x(t), x(t+1), . . . , x(t+m−1))′

for (t = 1, 2, . . . , n) are known as the m–lagged vectors ofX. The parameter m is

called the trajectory matrix window length, and following standard practice we

will suppose that m is assigned by the practitioner such that 2 < m ≤ N/2 ≤ n.

We will denote the mapping from {x(1), x(2), . . . , x(N)} to its trajectory matrix

X by x(t)
T(N,m)←→ X. It is straightforward to show that T(N,m) is a linear mapping

that defines an isomorphism between RN and the vector space of m× n Hankel

matrices.

2. Singular Value Decomposition: Let ℓ1 ≥ ℓ2 ≥ . . . ,≥ ℓm > 0 denote the eigenval-

ues of XX′ arranged in descending order of magnitude, and denote by u1, . . . ,um

the associated orthonormal system of eigenvectors. Then X can be expressed as

the sum of m rank one projections X = X1 + · · · +Xm ,wherein Xi =
√
ℓiuiv

′
i

and
√
ℓi is the ith singular value, and ui and vi = X′ui/

√
ℓi are the ith left and

right eigenvectors of X.

3. Signal–Noise Separation: It is well known that ∥X∥2 = trace{XX′} =
∑m

i=1 ℓi

and ∥Xi∥2 = ℓi for i = 1, . . . ,m, and ℓi/
∑m

i=1 ℓi can be interpreted as the propor-

tion of the total variation in X attributable to Xi. Since not every eigentriple,

1To avoid a proliferation of notation we adopt the common practice of not distinguishing between
a stochastic process and realized values of that process, relying on the context or some explicit
statement to make the meaning clear. For notational simplicity we have supposed that the series is
observed on a uniform grid, but extension to observations {x(t1), x(t2), . . . , x(tN )} on a non–uniform
grid is straightforward.
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{ℓi,ui,vi}, need contribute significantly to the overall variation, the next step is

to determine a subset of eigentriples that encompass the dominant variation in

X. This amounts to selecting a k ≤ m dimensional subspace on which to project

X with the associated projection Sk = X1 + · · · + Xk being attributed to the

signal and the residual Ek =
∑m

i=k+1 Xi being taken as noise, with k denoting

the designated dimension of the signal.

4. Time Series Reconstruction: The purpose of this step is to transform the signal–

noise representation X = Sk + Ek into a corresponding reconstruction of the

observed series. Noting thatX is Hankel, this is achieved by a process of diagonal

averaging or Hankelization in which the r, cth element of Sk = [src,k] is replaced

by the average over all r and c such that r + c = t + 1 where r = 1, . . . ,m,

c = 1, . . . , n and t = 1, . . . , N . This operation implicitly defines a time series

and an associated trajectory matrix, {s̃k(1), s̃k(2), . . . , s̃k(N)} and S̃k = [s̃rc,k]

say, where

s̃k(t) = s̃r(t−r+1),k =


1
t

∑∑
r+c=t+1

src,k , when 1 ≤ t ≤ m− 1;

1
m

∑∑
r+c=t+1

src,k , when m ≤ t ≤ n;

1
N−t+1

∑∑
r+c=t+1

src,k , when n+ 1 ≤ t ≤ N .

After applying the Hankelization procedure the SSA(m, k) model is given by the

specification S̃k + Ẽk

T(m,N)←→ s̃k(t) + ẽk(t), with x(t) = s̃k(t) + ẽk(t), t = 1, . . . , N ,

denoting the reconstruction of the original time series.

For more detailed discussions of the techniques underlying SSA and their practical ap-

plication (with several examples) we refer to Elsner and Tsonis (1996) and Golyandina,

Nekrutkin and Zhigljavski (2001).

Signal–noise separation and reconstruction are critical initial steps in SSA that un-

derly any application – to forecasting or the analysis of missing data or change point

problems, for example – and from the preceding description it is apparent that these

two steps depend upon two basic parameters that must be assigned or chosen by the

practitioner, namely, the window length of the embedding (a tuning parameter) and

the dimension of the signal (a modeling parameter). Clearly the values chosen for m

and k will interact one with another so as to effect performance and it is therefore

necessary to ensure that the techniques used for the assignment and selection of m

and k will lead to strong separability and minimize (in some sense) reconstruction

error. Our purpose in this paper is to present a detailed theoretical analysis of signal–

noise separation and time series reconstruction as implemented in SSA and thereby to

indicate how the previous goal may be achieved.
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Standard practice in SSA is to use a value for m large enough to ensure that the

signal and noise components are strongly separated. Strong separation is deemed to

have been achieved when a weighted correlation between s̃k(t) and ẽk(t), computed

once the signal and noise groupings have been assigned, a sufficiently small. The

signal–noise groupings are determined via procedures that employ pattern recognition

techniques and methods similar to those used in conventional principal component

analysis (the use of the scree–plot and various correlation methods as described in

Jolliffe, 2002, chap. 6). The difficulty with this approach is that in the absence of

clear cut statistical decision rules, and with few guidelines on how to set appropriate

thresholds, the modeling involves substantial subjective assessment.

In an attempt to provide a more objective criterion for assigning window length Golyan-

dina (2010) has examined the application of the rule m = βN with β ∈ (0, 0.5) and

concludes that the use a value of β close to 0.5 will produce optimal SSA signal-noise

separation and reconstruction. The recommendation that the window length be chosen

close to one-half of the time series length is based primarily on simulation evidence

derived from time series constructed using deterministic trigonometric signals, how-

ever, and it is not obvious that extrapolation of Golyandina’s conclusions to more

general stochastic processes is appropriate. More recently Khan and Poskitt (2010)

have developed a Minimum Description Length (MDL) criterion that can be employed

to identify the dimension of the signal from the data. They show that under appro-

priate regularity, and given a window length m = log(N)c, c > 0, the MDL criterion

will provide a strongly consistent estimate of k. Experimental and empirical results

presented in Khan and Poskitt (2010) clearly demonstrate the practical efficacy of

using the MDL criterion to determine k, and they also illustrate that setting m too

large can have deleterious effects on signal-noise separation and reconstruction.

In this paper we present theoretical results on SSA signal-noise separation and re-

construction that provide a clear guide to the experimental outcomes obtained by

Golyandina (2010) and Khan and Poskitt (2010). We obtain bounds on mean squared

separation and reconstruction error that can be used to explain the differences in per-

formance characteristics reported in these two papers. The theoretical properties that

we develop also support simulation results indicating how an optimal choice of window

length can be made.

The plan of the remainder of the paper is as follows. In Section 2 we define mean

squared reconstruction error (MSRE), obtain finite sample numerical bounds on

MSRE, and define mean squared separation error (MSSE). In Section 3 we out-

line the signal–plus–noise model that underlies our analysis and use this to establish

corresponding asymptotic bounds for both MSRE and MSSE under very general

regularity conditions. Section 4 employs simulation experiments to demonstrate the
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practical impact of our results in the context of two very different stochastic processes,

and illustrates the effects of varying window length on signal–noise separation and

reconstruction. Section 5 presents some concluding remarks.

2 Separation and Reconstruction Error

Now suppose that the observed process x(t) = s(t) + ε(t) where s(t) denotes an

underlying signal that is masked by random noise ε(t) with zero mean and variance

σ2
ε <∞. If s(t) and ε(t) are orthogonal and ε(t) satisfies sufficient regularity to ensure

that N−1
∑N

t=1 ε(t)
2 converges to σ2

ε (statistical ergodic theorem) then the signal–noise

ratio, defined as the almost sure limit

SNR = lim
N→∞

10 log10

(∑N
t=1 s(t)

2∑N
t=1 ε(t)

2

)
a.s. ,

provides a natural measure of our ability to disentangle the signal from the noise,

large values of SNR indicating that fluctuations in the signal are closely reflected in

corresponding variations in the observed process. In practice, of course, ε(t) and s(t)

are unobservable, but an obvious empirical counterpart to SNR can be calculated by

evaluating

SNRN = 10 log10

(∑N
t=1 x(t)

2∑N
t=1 ẽk(t)

2
− 1

)
.

The only term in SNRN that changes as a consequence of using different window

lengths and signal dimensions in the signal–noise separation and reconstruction steps

is
1

N

N∑
t=1

ẽk(t)
2 =

1

N

N∑
t=1

(x(t)− s̃k(t))
2 ,

which we will designate the mean squared reconstruction error (MSREk) following

the common practice in SSA of referring to s̃k(t) as the reconstructed time series.

Recognizing that MSREk depends on the values assigned to m and k, we begin by

establishing algebraic bounds on MSREk as a function of these two parameters. From

the structure of the mapping Ẽk

T(m,N)←→ ẽk(t) we have

m

N

N∑
t=1

ẽ2k(t) ≥
1

N

(
m−1∑
t=1

tẽ2k(t) +m

n∑
t=m

ẽ2k(t) +
N∑

t=n+1

(N − t+ 1)ẽ2k(t)

)

=
1

N
∥Ẽk∥2

≥ 1

N

m∑
j=k+1

ℓj ,
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where ∥ ·∥ denotes the Euclidean norm, the final inequality following because ∥Ẽk∥2 =
∥X− S̃k∥2 ≥ ∥X− Sk∥2 = ∥Ek∥2 (Rao, 1965, Sec. 8g.2). Thus we can conclude that

MSREk ≥
∑m

j=k+1 ℓj

mN
.

This establishes the lower bound exhibited in the following lemma.

Lemma 1. : For all window lengths m = k + 1, . . . , [N/2] the mean squared recon-

struction error MSREk lies in the interval [LR(m, k), UR(m, k)] where

LR(m, k) =

∑m
j=k+1 ℓj

mN

and

UR(m, k) =

∑m
j=k+1 ℓj

N

(
N − 2(m− 1)

m
+ 2 log(m− 1) + 2γ +

1

m− 1
− η(m)

(m− 1)2

)
,

wherein γ denotes Euler’s constant and η(m) ∈ [0, 0.25].

Proof of Lemma 1: It is only necessary for us to establish the stated upper bound.

Using the fact that Ẽk in the mapping Ẽk

T(N,m)←→ ẽk(t) is obtained by averaging Ek =

[erc,k], r = 1, . . . ,m, c = 1, . . . , n, along the t-th secondary diagonal, it follows from

the Cauchy–Schwartz inequality that

ẽk(t)
2 ≤


1
t

∑∑
r+c=t+1

(erc,k)
2 , for 1 ≤ t ≤ m− 1;

1
m

∑∑
r+c=t+1

(erc,k)
2 , for m ≤ t ≤ n;

1
N−t+1

∑∑
r+c=t+1

(erc,k)
2 , for n+ 1 ≤ t ≤ N .

(1)

Replacing each ẽk(t)
2 in the formula for MSREk by it’s upper bound in (1) and

gathering terms, noting that
∑N

t=1

∑∑
r+c=t+1(erc,k)

2 =
∑m

r=1

∑n
c=1(erc,k)

2 = ∥Ek∥2

now yields the inequality

1

N

N∑
t=1

ẽ2k(t) ≤
1

N

(
m−1∑
t=1

1

t
+

n∑
t=m

1

m
+

N∑
t=n+1

1

N − t+ 1

)
∥Ek∥2 . (2)

Finally, substituting

m−1∑
t=1

1

t
= log(m− 1) + γ +

1

2(m− 1)
− η(m)

2(m− 1)2
,

n − m + 1 = N − 2(m − 1) and ∥Ek∥2 = ∥
∑m

j=k+1

√
ℓjujv

′
j∥2 =

∑m
j=k+1 ℓj into (2)

gives the formula for UR(m, k) as stated. 2
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If we are to use MSREk as a guide to assigning appropriate values for the window–

length, or as a guide to the consequences of selecting a particular dimension for the

signal, we need to investigate the statistical properties of the bounds in Lemma 1

under different scenarios. Before going on to treat such matters, we note here that in

her simulation experiments Golyandina (2010) uses

1

N

N∑
t=1

(s̃k(t)− s(t))2 =
1

N

N∑
t=1

(ẽk(t)− ε(t))2 (3)

to evaluate the consequences of using different choices of m and k. The expressions in

(3) measure the distance between the reconstruction estimates and the actual signal

and noise components, and we will therefore call this the mean squared separation

error (MSSEk). Although MSSEk can be evaluated in simulation experiments it

cannot be calculated empirically because it depends upon s(t) and ε(t), which are

in practice unobservable. Unlike MSREk, which can be determined from the data,

MSSEk is an abstract object not available to the practitioner. It follows that the

theoretical properties of MSSEk are of interest if it is to provide a general guide

to the consequences of using particular combinations of window length m and signal

dimension k. To derive the theoretical behaviour of MSSEk, as well as MSREk, we

must introduce some regularity conditions, needless to say.

3 Asymptotic Bounds

In order for our results to have broad applicability we state our basic assumption in

generic form.

Assumption 1: The data generating mechanism underlying the stochastic process

x(t) satisfies sufficient conditions to ensure that for any trajectory matrix window

length m = (logN)c, c < ∞, there exists a positive definite matrix Γm such that

∥n−1XX′ − Γm∥ = O(Qn) a.s. as N →∞ where Qn =
√
log log n/n.

Particular examples of data generating mechanisms that satisfy Assumption 1 are

presented below. To show that Assumption 1 is applicable to the so called Karhunen

class of processes (Rao, 1985), we follow Khan and Poskitt (2010) and suppose that

{x(t) : t ∈ T} is a zero mean stochastic process, defined on a probability space P =

{Ω,B, P}, continuous in mean square, with the continuous covariance kernel K(t, s) =

E[x(t)x(s)] on T×T . By Mercer’s theoremK(t, s) =
∑∞

j=1 λjϕj(t)ϕj(s) where the {ϕj}
are continuous orthonormal eigenfunctions of K corresponding to the eigenvalues {λj},
namely

∫
T
K(t, s)ϕj(s)ds = λjϕj(t) , and the series converges uniformly and absolutely
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on T × T . Let

zj =

∫
T

x(t)ϕj(t)dt j = 1, 2, . . . . (4)

Then the zj have zero mean and variance λj, zj ∼ (0, λj), j = 1, 2, . . ., and since

K(t, t) =
∑∞

j=1 λj|ϕj(t)|2 converges it follows from the Cauchy criterion that the

stochastic series
∑κ

j=1 zjϕj(t) converges uniformly in mean square to x(t) as κ → ∞.

The limiting expression x(t) =
∑∞

j=1 zjϕj(t) is known as the Karhunen-Loève expan-

sion. Now let us suppose that in passage to the limit given by the Karhunen-Loève

expansion there exists a value κ = k such that the difference x(t) −
∑k

j=1 zjϕj(t) be-

haves as a weakly stationary process, so that we may write the observed process as

x(t) =
k∑

j=1

zjϕj(t) + ε(t) , (5)

a signal–plus–noise representation of x(t) in which the signal s(t) =
∑k

j=1 zjϕj(t) and

the noise ε(t) are orthogonal by virtue of the fact that the random coefficients zj

are pairwise uncorrelated. The decomposition in (5) implies that the signal and noise

subspaces are strongly separable and that the minimal eigenvalue of the signal is larger

than the maximal eigenvalue of the noise.

To relate SSA to the Karhunen-Loève expansion note that if the model in (5) obtains

the m-lagged vectors of the trajectory matrix can be written as

xt =
k∑

j=1

zjϕj(t) + εt , (6)

where

ϕj(t) =


ϕj(t)
...

ϕj(t+m− 1)

 and εt =


ε(t)
...

ε(t+m− 1)

 .

Now suppose that ϕj, j = 1, . . . , k, satisfy the Lipschitz condition |ϕj(t)−ϕj(t− 1)| ≤
M△t – smoothness of the dominant eigenfunctions is commonly supposed in SSA.

Then ∥ϕj(t)− ϕj(t− 1)∥ ≤
√
mM△t. Let φj be a point on the line segment joining

ϕj(t) to ϕj(t− 1) and set ζjt = (φ′
jφj)

−1φ′
jϕj(t)zj. Then ζjtφj = zjϕj(t) and (6) can

be reexpressed in matrix–vector form as

xt = Φzt + εt (7)

where zt = (ζ1t, . . . , ζkt)
′ and Φ = [φ1 : · · · : φk] is an m × k matrix of functional

values. Furthermore, |1−(φ′
jφj)

−1φ′
jϕj(t)| ≤ ∥φj−ϕj(t)∥/∥φj∥2 and ∥φj−ϕj(t)∥ ≤√

mM△t. Hence, as N →∞ and △t→ 0 the representation in (6) will be equivalent
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to the model in (7) where, with a slight abuse of notation, zt ∼ (0,Λ) with Λ =

diag{λ1, . . . , λk} and is orthogonal to εt ∼ (0,Σm) where Σm = E[εtε′t].

The specification in (7) generates a combined functional–structural relationship for

xt (Kendal and Stuart, 1979, chap. 29) and given the nature of the approximation

inherent in (7) it does not seem unreasonable to suppose that the stochastic proper-

ties of zt are characterized by those of a near epoch dependent (mixing) processes.

Pötscher and Prucha (1997, Chapt. 5–10) present a detailed discussion of stochas-

tic approximation and near epoch dependence, with extensive references. If we also

assume that ∥n−1
∑n

i=1 ztz
′
t − Λ∥ = O(Qn), ∥n−1

∑n
t=1 εtε

′
t − Σm∥ = O(Qn) and

∥n−1
∑n

t=1 ztε
′
t∥ = O(Qn), which we will christen Assumption 1’, then it is straight-

forward to show that x(t) will satisfy Assumption 1 with Γm = ΦΛΦ′ +Σm. We will

not indicate more primitive conditions under which an O(Qn) convergence rate will

hold since a speed of convergence governed by the law of the iterated logarithm is not

critical to our subsequent analysis. Suffice it to say that none of the requirements of

Assumption 1 and Assumption 1’ seems onerous, indeed, our results will still hold for

any Qn such that Qn → 0 as N →∞.

In SSA the window length is simply assumed to satisfy 2 ≤ m ≤ N
2
, but for our

theoretical development we have supposed that m = (logN)c, c < ∞. The latter

reflects that the kth order signal–noise representation X = Sk + Ek is a function of

k(m+1)− 1
2
k(k+1) freely varying parameters with k < m, namely, k singular values

plus mk eigenvector elements minus their 1
2
k(k + 1) orthonormalization constraints.

Although we can allow m to approach infinity with N it is obvious that we require

m/N → 0 as N →∞ if the effective sample size n = N −m+1 is to grow faster than

the number of parameters. Hence the imposition the condition that m = (logN)c,

c < ∞. We will return to a consideration of the choice of c when using the rule

m = (logN)c to assign window length in Section 3.

For convenience we state the following convergence property taken from Khan and

Poskitt (2010), where the proof can be found.

Lemma 2. : Suppose that x(t) satisfies Assumption 1 and let γ1 ≥ γ2 ≥ · · · ≥ γm > 0

denote the ordered eigenvalues of Γm. Then maxj=1,...,m |γj − ℓj/n| = O(Qn).

From Lemma 2 we can readily deduce that∣∣∣∣ ∑m
i=k+1 ℓi

n
∑m

i=k+1 γi
− 1

∣∣∣∣ ≤ 1

(m− k)γm

∣∣∣∣∣
m∑

i=k+1

(
ℓi
n
− γi

)∣∣∣∣∣ = O(Qn) (8)

uniformly in k < m. Employing this result in conjunction with Lemma 1 leads to the

following theorem.
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Theorem 1. : Suppose that x(t) satisfies Assumption 1. Then for all window lengths

m = k + 1, . . . , [N/2] the bounds on MSREk can be reformulated as

LR(m, k) =
n

mN

(
m∑

j=k+1

γj

)
(1 +O(Qn))

and

UR(m, k) =
nνN,m

N

(
m∑

j=k+1

γj

)
(1 +O(Qn))

where

νN,m =
N −m

N

(
N − 2(m− 1)

m
+ 2 log(m− 1) + 2γ +

1

m− 1
− η(m)

(m− 1)2

)
.

Proof of Theorem 1: The formula for the lower bound follows from equation (8)

upon substituting n
∑m

i=k+1 γi for
∑m

i=k+1 ℓi in Lemma 1. Let SN = N−1
∑N

t=1 ẽ
2
k(t)

and CN = N−2
∑N

t=1(N − t)ẽ2k(t). From the properties of Césaro sums we have

limN→∞ |SN − CN | = 0, and for N sufficiently large CN < N−2(N −m)
∑N

t=1 ẽ
2
k(t) =

N−1(N − m)SN since by assumption m/N → 0 as N → ∞. Applying Lemma 1 to

SN , and once again substituting n
∑m

i=k+1 γi for
∑m

i=k+1 ℓi and appealing to Lemma 2

via equation (8) in similar manner to the derivation of the lower bound, now gives the

upper bound. 2

The corresponding theorem for MSSEk is as follows.

Theorem 2. : Suppose that x(t) satisfies Assumption 1’. Then for all window lengths

m = k + 1, . . . , [N/2] the inequalities 0 ≤MSSEk ≤ US(m, k) obtain where

US(m, k) =
nνN,m

N

(
m∑

j=k+1

γj +
m∑
j=1

σj − 2
m∑

j=k+1

σj

)
(1 +O(Qn))

and σ1 ≥ σ2 ≥ · · · ≥ σm > 0 denote the ordered eigenvalues of Σm.

Proof of Theorem 2: That MSSEk ≥ 0 is obvious. Let E = [ε(r+c−1)], r = 1, . . . ,m,

c = 1, . . . , n. It is readily verified that ẽk(t)−ε(t)
T(N,m)←→ Ẽk−E where Ẽk−E is obtained

by Hankelizing Ek − E. It follows that

(ẽk(t)− ε(t))2 =

(
1

t

∑∑
r+c=t+1

erc,k − ε(t)

)2

≤ 1

t

∑∑
r+c=t+1

(erc,k − ε(t))2 ,

when 1 ≤ t ≤ m− 1,

(ẽk(t)− ε(t))2 =

(
1

m

∑∑
r+c=t+1

erc,k − ε(t)

)2

≤ 1

m

∑∑
r+c=t+1

(erc,k − ε(t))2 ,

10



when m ≤ t ≤ n, and

(ẽk(t)− ε(t))2 =

(
1

N − t+ 1

∑∑
r+c=t+1

erc,k − ε(t)

)2

≤ 1

N − t+ 1

∑∑
r+c=t+1

(erc,k − ε(t))2

when n+1 ≤ t ≤ N . Replacing each (ẽk(t)− ε(t))2 in the formula for MSSEk by the

corresponding mean squared difference and proceeding as in the proof of Theorem 1

leads us to the inequality

MSSEk ≤
νN,m

N
∥Ek − E∥2 .

Now, ∥Ek − E∥2 = ∥Ek∥2 + ∥E∥2 − 2tr(EkE′) and by Lemma 2 it follows that

n−1∥Ek∥2 = n−1

m∑
j=k+1

ℓj =

(
m∑

j=k+1

γj

)
(1 +O(Qn))

and

n−1∥E∥2 = tr

(
n−1

n∑
t=1

εtε
′
t

)
=

(
m∑
j=1

σj

)
(1 +O(Qn)) .

To evaluate n−1tr (EkE′) substitute Ek =
∑m

j=k+1

√
ℓjujv

′
j =

∑m
j=k+1 uju

′
jX and note

from (7) that X = [Φz1+ε1, . . . ,Φzn+εn]. It follows from the orthogonality between

the signal and the noise that n−1
∑n

t=1(Φzt + εt)ε
′
t = Σm +O(Qn) and hence that

n−1tr (EkE′) = n−1

m∑
j=k+1

tr

(
uju

′
j

n∑
t=1

(Φzt + εt)ε
′
t

)

=
m∑

j=k+1

u′
j(Σm +O(Qn))uj .

From Poincaré’s separation theorem we can therefore deduce that n−1tr (EkE′) ≥
(
∑m

j=k+1 σj)(1 + O(Qn)). Collecting the limiting expressions for n−1∥Ek∥2, n−1∥E∥2

and n−1tr(EkE′) together now gives the required result. 2

Before examining the practical implications of Theorems 1 and 2 it is of interest to

note that Mercer’s theorem implies that λk → 0 as k → ∞ and hence that the

noise component, ε(t) =
∑∞

j=k+1 zjϕj(t), in the signal–plus–noise representation of

x(t) will deviate from zero with arbitrarily small probability as k increases. This

intimates that it is appropriate for us to examine scenarios where there is no noise.

In this case the standard SSA concept of signal–noise separation breaks down since

x(t) ≡ s(t) and ε(t) ≡ 0. Nevertheless, from Rao (1965, Sections 8g.1–8g.2) we

know that the minimum mean squared error projection of X into Rk is achieved by

the first k “principle components” Sk =
∑k

j=1

√
ℓjujv

′
j, with a residual mean square

equal to
∑m

j=k+1 ℓj, and we can interpret the employment of the specification S̃k +

11



Ẽk

T(m,N)←→ s̃k(t) + ẽk(t) for the time series reconstruction as the use of a k dimensional

approximation to the truly infinite dimensional process x(t). Moreover, MSREk can

still be calculated and Theorem 1 used to evaluate the reconstruction and hence assess

the quality of the approximation.

4 Numerical Illustrations

Our purpose in this section of the paper is to examine via simulation experimentation

the extent to which the asymptotic properties presented in Theorems 1 and 2 are re-

flected in finite sample behaviour. Theorems 1 and 2 can be used to assess the possible

consequences of employing different combinations of m and k when modeling different

types of time series, and inferences drawn from them will be devoid of vagaries that

might be associated with basing conclusions exclusively on experimental simulation

outcomes.

4.1 Example I

Consider a process x(t) such that

x(t) =

p∑
r=1

Arcos(λrt+ θr) + ε(t)

where Ar is the amplitude, λr the frequency (in cycles per unit time), and θr the phase

shift of the rth cosinusoidal element of the signal, and ε(t) is a zero mean white noise

process with variance σ2. If the θr are independent and uniformly distributed over

the interval (−π, π) it is straightforward to show that x(t) is a zero mean stationary

process with covariance kernel

E[x(t)x(s)] =

{
1
2

∑p
r=1 A

2
rcos(λr(t− s)) if t ̸= s;

1
2

∑p
r=1 A

2
r + σ2 if t = s.

Moreover, x(t) will satisfy Assumption 1 with

Γm =
1

2

p∑
r=1

A2
r [crc

′
r + srs

′
r] + σ2Im

where cr = [1, cos(λr), · · · , cos((m − 1)λr)]
′ and sr = [1, sin(λr), · · · , sin((m − 1)λr)]

′.

It is straightforward to verify that the ordered eigenvalues of Γm are γi = υi + σ2,

i = 1, . . . , k, and γi = σ2, i = k + 1, . . . ,m, where υ1 > υ2 > · · · > υk > 0 denote the

12



ordered, nonzero eigenvalues of 1
2

∑p
r=1 A

2
r [crc

′
r + srs

′
r] and k = 2p, the dimension of

the cosinusoidal signal component.

The signal–to–noise ratio for this process is

SNR = 10 log10

( 1
2

∑p
r=1 A

2
r

σ2

)
dB ,

and for known amplitudes A1, . . . , Ap simulated realizations from processes with differ-

ent pre–assigned signal–to–noise ratios can be generated by setting the noise variance

σ2 = 10log10(
∑p

r=1 A
2
r)−log10(0.1SNR). In our experiments we employed p = 2 with A1 = 1.0,

A2 = 0.5 and λ1 = 2π/7, λ2 = 2π/10. The noise process was i.i.d. Gaussian with

variance chosen such that SNR ranged from about 5 dB to −4 dB, and we examined

sample sizes N = 200, 400, 600, 1000 and 1600.

Figure 1 displays the average value of MSRE4 and MSSE4 evaluated across 10000

replications when SNR = 0 and N = 400. Figure 1 also plots approximate lower
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0.8
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(a) MSRE4

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5
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(b) MSSE4

Figure 1: Simulated mean squared error (solid lines) and asymptotic bounds (dashed
lines) as a function of window length – 4 dimensional trigonometric signal.

and upper bounds derived from Theorems 1 and 2, namely, σ2n(m − k)/mN and

σ2n(m − k)νN,m/N in Figure 1a, and σ2nkνN,m/N in Figure 1b. Each is graphed as

a function of m = k + 1, . . . , [N/2], any of which can correspond to a window length

assigned by a practitioner. From Figure 1a we see that the average value of MSRE4

is increasing in m, but for window lengths with m ≥ 50 it is apparent that MSRE4

becomes more or less stable and is close to σ2 = 0.625. Whereas MSRE4 is minimized

for small values of m the opposite is obviously true of MSSE4. From Figure 1b we

see that the average value of MSSE4 is decreasing in m, but for window lengths with

m ≥ 100 the values of MSSEk become more or less stable and are close to their

lower bound. Figure 1 clearly demonstrates that MSRE and MSSE are in conflict

and that the choice of a single window length that simultaneously optimizes both is

not possible. A rule that assigns a value of m between, say 50 and 100, will however

achieve a compromise where the least desirable outcomes are avoided for both MSRE

and MSSE, and both are close to optimal.
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Varying the values of SNR and N we find that the qualitative nature of the results

do not change. As might be expected, in general MSRE and MSSE vary inversely

with SNR, and as N increases they approach their natural limiting values of σ2 and

zero, respectively, for all but the very smallest values of m. In general the results

indicate that from the perspective of MSSE small values of m are to be avoided,

whereas large values of m have a detrimental effect on MSRE. Expressing MSRE

and MSSE as functions of c = log(m)/ log log(N), overall the outcomes suggest that

a simple practical rule consistent with the theoretical requirement that m/N → 0 as

N → ∞ is to assign a window length equal to (logN)c with c ∈ (1.5, 3.0). This rule

givesm = 12 ≈ 0.06N when c = 1.5 and N = 200, andm = 401 ≈ 0.25N when c = 3.0

and N = 1600, moderately sized window lengths that produce values of MSRE and

MSSE that are close to optimal. Such window lengths coincide with those found to

maximize the probability of correct model determination in Khan and Poskitt (2010),

but they are noticeably smaller than those recommended in Golyandina (2010).

REMARK 1: Golyandina (2010) examines the window selection rule m = βN and

on the basis of MSSE recommends choosing m “close to one-half of the time se-

ries length”. The assignment m = βN obviously does not meet the theoretical re-

quirements of this paper, but setting m = k + 1, . . . , [N/2] we can investigate the

relationship between β = m/N and MSSE. To demonstrate that our results are

in accord with those of Golyandina (2010) we summarise in Figure 2 the outcomes

based on 10000 replications of the processes x(t) = cos(0.2πt) + ε(t) where σ2 = 0.01

(SNR = 10 log10(50) ≈ 17 dB) and N = 100 – Golyandina’s process t.s.(4). In Figure

2 we plot the function

U(β) =

√
nνN,βN

N
kσ2 β ∈ (0.03, 0.5)

for k = 2, σ2 = 0.01 and N = 100, and the average value of
√
MSSE2. We can

0 0.1 0.2 0.3 0.4 0.5
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 2: Root mean squared separation error
√
MSSE2 as function of β – Golyand-

ina’s process t.s.(4)

see that the profiles of the approximate asymptotic bound U(β) and the observed

root mean squared separation error, when reflected about β = 0.5, closely mirror the
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symmetric U–shape of the root mean squared error curve exhibited in Golyandina (cf.

Golyandina, 2010, Figure 8).

REMARK 2: Our experiments indicate that for the four dimensional trigonometric

signal MSSE4 will approach zero for all but the smallest values of m as N →∞. This

finding is consistent with the results of Forni and Lippi (2001). Working in the context

of dynamic factor models Forni and Lippi (2001) show that if the observed series is

a covariance stationary process composed of incoherent signal and noise components

with absolutely continuous spectral distributions, then the two components will be

identified asymptotically if the number of factors is known and the number of elements

in the series increases with N . If we interpret the window length m as the number of

variables in a multivariate time series and the dimension of the signal as the number

of factors, then their results imply that, provided k is known, SSA reconstruction

will recover the true signal and achieve strong separation if m → ∞ as N → ∞ and

x(t) is a nonsingular stationary process. Such regularity for x(t) is too restrictive

for our purposes here, and Forni and Lippi (2001) do not specify a rate of increase

for m, nevertheless, our results suggest that the assignment rule m = (logN)c with

c ∈ (1.5, 3.0) yields a window length sufficiently large to identify the true signal and

achieve strong separation.

The correspondence between the simulated outcomes and the asymptotic bounds seen

in Figure 1 is partly a consequence of the fact that the true value of k has been

employed when evaluating MSREk and MSSEk. Allowing k to deviate from the true

value we find that MSREk continues to behave as previously, but the behaviour of

MSSEk changes quite dramatically. Figure 3 graphs MSRE2 and MSSE2 for the

same process as led to Figure 1. From Figure 3a we can see that, apart from its limiting
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Figure 3: Simulated mean squared error (solid lines) and asymptotic bounds (dashed
lines) as a function of window length – 4 dimensional trigonometric signal.

value exceeding σ2 due to the under specification of k, MSRE2 behaves similarly to

MSRE4 in Figure 1a and the bounds are still applicable. MSSE2, however, no longer

declines monotonically and the asymptotic bound is no longer operative, as is seen in
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the eventual flattening out of the MSSE curve as m increases. The latter is explicable

because the use of the incorrect value of k implies that the results cited in Remark 2

are no longer applicable and the lower bound of MSSE2 is, of course, no longer zero

due to the confounding of the signal with the noise implicit in using k = 2.

4.2 Example II

As a second example consider an observed process x(t) such that

x(t) =
t−1∑
τ=0

η(t− τ)

where η(t) is an i.i.d. Gaussian white noise processes with a variance of one. Here, of

course, x(t) is a random walk, x(t) = x(t − 1) + η(t). Exploiting the strong Markov

property of the random walk we can express the ith m–lagged vector as xi = x(i −
1)1m + Φzi where: zi = (ζ1, . . . , ζm)

′ ∼ N(0,Λ) with Λ = diag{λ1, . . . , λm}, λk =

cosec2(θk)/4, θk = π(2k − 1)/(4m+ 2), k = 1, . . . ,m; Φ = [φ1 : · · · : φm] is an m×m

matrix with kth column φk =
√
4/(2m+ 1)(sin(θk), . . . , sin(θkm))′. For this process

∥n−1XX′ − Γ∥ = O(Qn) where Γ = nβ2
n1m1

′
m + ΦΛΦ′ and, via an application of

Donsker’s theorem and the fact that n−3/2
∑n

t=1 x(t− 1)η(t) = O(
√
log log n) (Poskitt,

2000, Lemma A.1.(ii)),

β2
n =

1

n2

n∑
t=1

x(t− 1)2 +O(Qn)
D→
∫ 1

0

B2(ω)dω

where Qn =
√

log log n/n and B(ω) denotes standard Brownian motion.

Under the current scenario x(t) is in truth infinite dimensional and there is no noise. As

observed above, the use of a finite k amounts to employing a minimum mean squared

error approximation to the process, and the SSA concept of separation breaks down

and MSSE is not available. In Figure 4 we have graphed MSREk for k = 18 since

this value of k gives a ratio
∑k

r=1 λr/
∑m

r=1 λr that just exceeds 0.99, indicating that

an approximation that explains a little over 99% of the individual variation in each of

the m–lagged vectors of X is being used. Since β2
n converges to a random variable as

n increases the eigenvalues of Γ are random and we cannot use Theorem 1 to calculate

fixed asymptotic bounds. In Figure 4 we have therefore only plotted the average value

of MSRE18 evaluated across 10000 replications.

The gradual increase in MSREk as m increases beyond k is typical of what we observe

in the random walk case. This confirms our previous finding, namely that from the

perspective of MSRE smaller values of m, i.e. shorter window lengths, are to be

preferred since they generate smaller values of MSRE.
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Figure 4: Simulated mean squared reconstruction error MSRE18 as a function of
window length – random walk process.

5 Concluding Remarks

In this paper we have presented a theoretical analysis of SSA signal–noise separation

and reconstruction, a critical initial step that underlies any subsequent use of SSA

for other purposes, such as forecasting or the analysis of missing data or change point

problems. We established bounds onMSRE andMSSE under very general regularity

conditions and our simulation results showed that the theoretical characteristics are

reflected in observed behaviour.

The data generating mechanisms considered in our simulations represent two extreme

cases. The first consisting of a deterministic signal corrupted by noise, and the second

an uncontaminated random walk. If we think of a chaotic series as being one where

initially close values diverge so that all predictability is lost as the system evolves in

time, then the strong Markov property of a random walk makes this the quintessential

example of a chaotic, statistically self similar stochastic process, the random fractal

par excellence. In both cases our results show that the use of the rule m = (logN)c

with c ∈ (1.5, 3.0) to assign window length will yield near optimal performance.

Golyandina (2010) advocates setting m close to one-half of the time series length. Our

results indicate that this recommendation is not to be followed in all cases. We should

emphasize that we are not suggesting that the analysis conducted in Golyandina (2010)

is incorrect, indeed our own results are in accord with those found therein. We would

argue, however, that Golyandina’s counsel is based upon an analysis of a limited class

of processes and is founded on the sole use of MSSE as a guide to performance.

Examination of more general processes and consideration of the alternative measure

MSRE suggests that Golyandina’s conclusion is overstated.

Faced with alternative specifications the practitioner is required to make a choice

and a preference for the specification m = (logN)c with c ∈ (1.5, 3.0) might be

justified on three grounds. First, the m = (logN)c rule yields a sensible compromise

betweenMSRE andMSSE that will avoid the worst choices and provide near optimal

performance for both. Second, whereas the optimality of setting m near N/2 for
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MSSE seems to be contingent on using the correct signal dimension, the properties

of MSRE appear to be invariant to the choice of k and MSRE is minimized by

using smaller rather than larger values of m. Third, since in practice the calculation

of MSSE is infeasible MSRE has more empirical relevance and, as we have just

observed, MSRE is minimized by using smaller rather than larger values for the

window length.2
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