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1 Introduction

Firms can tightly target pricing, marketing and even product characteristics to in-

dividual consumers, using information technology and large datasets of customer-level

information dubbed big data. For example, tracking tools such as cookies, web bea-

cons, or Etags, allow individual sellers or data brokers to record consumers’ browsing

histories on the Internet.1 This information can be used by websites to target their offer-

ings based on consumers’ purchasing history, location, referring sites or even computer

operating systems (‘On Orbitz, Mac users steered to pricier hotels’, The Wall Street

Journal, August 23, 2012). Driven by the growth of mobile devices and use of mobile

apps, traditional retailers, such as supermarkets, use loyalty schemes to gather personal

and shopping data and offer consumers personalized discounts on-line or through mo-

bile apps (‘Individualized coupons aid price discrimination’, Forbes, August 21, 2012;

‘Supermarkets offer personalized pricing’, Bloomberg Business, November 16, 2013).

The ability of firms to use big data to price discriminate and raise profits has spurred

active research in marketing and economics. For example, using 2006 data on customers’

web-browsing behavior, Schiller (2014) estimates that Netflix could have raised its profit

by 0.8% if it had used prices based on customer demographics alone but by as much as

12.2% if it had used personalized prices based on web-browsing explanatory variables.

On the other hand, it has also led to concerns about privacy and equity. Hannak et

al. (2014, p. 305) argue that personalization on e-commerce sites may also be used

to the user’s disadvantage by manipulating the products shown (price steering) or by

customizing the prices of products (price discrimination). The US Council of Economic

Advisers (2015, p. 17) note a similar concern that “[s]ome consumer advocates suggest

that we should . . . limit the use of personalized pricing to offline settings or require its

disclosure to buyers”. In addition, fairness concerns present challenges to firms in how

best to utilize big data while not triggering customer backlash (‘Different customers,

different prices, thanks to big data’, Forbes, April 14, 2014).2

Existing research shows that access to consumer information can intensify compe-

tition and hurt firm profitability. For example, Thisse and Vives (1988, p. 124) note,

because of their access to consumer information, “firms may get trapped into a Prisoner’s

Dilemma-type situation and end up with lower profits due to the intense competition

1A cookie is a file placed on a browser’s computer by a website to allow the website owner to track
the browser’s interactions with the site. See, for example, ‘Little brother’, The Economist (September
13, 2014) or ‘How companies learn your secrets’, The New York Times (February 16, 2012). Bergemann
and Bonatti (2015), and Braulin and Valletti (2016) provide a formal analysis of data brokers.

2A growing body of academic research incorporates fairness concerns in firms’ pricing policies. For
example, Richards et al. (2016) argue that allowing customer participation in the price-formation process
may be one way to make price discrimination sustainable. On the other hand, Li and Jain (2016) show
fairness concerns can benefit firms by softening competition.
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unleashed”. But this result depends on the static analysis in which consumer informa-

tion is exogenously given.3 Subsequent studies consider dynamic games in which firms

gather consumer information through the first-period purchase, which they use for price

discrimination in the future, hence called behavior-based price discrimination. Gen-

eral findings from these studies continue to confirm the insight from the static analysis

that customer information can intensify competition, relative to the non-discrimination

benchmark.4

A key assumption in the above studies is that competing firms are endowed with or

acquire symmetric information, albeit at different levels of aggregation. In Thisse and

Vives (1988), firms are endowed with perfect information about all consumers, which

allows them to exercise personalized pricing. In Fudenberg and Tirole (2000), firms

learn where all consumers purchased in the first period, but not any finer details about

their characteristics. As a result, they exercise third-degree price discrimination us-

ing symmetric information on market segmentation.5 Information collection by firms,

however, will often be asymmetric. For example, a cookie can provide highly personal-

ized information about a consumer. But that information is only available to the firm

that installs the cookie. Similarly, loyalty programs provide extensive histories about

a customer’s shopping preferences at a particular retailer. But this information is not

available to other retailers. While ‘minimal’ information about a particular customer

may be available to a firm that fails to sell to that customer, the successful seller may

gather significantly more information about the same customer.

In this paper, we study behavior-based price discrimination with asymmetric infor-

mation acquisition and personalized prices using the two-firm/two-period framework of

Fudenberg and Tirole (2000), allowing general discount factors for firms (δf ) and con-

sumers (δc). A firm that sells to a particular customer in the first period learns the exact

‘location’ of that customer. However, the other firm only knows that the customer chose

the rival seller, which creates asymmetric information whereby a firm knows more about

its customers than its rival. Using two versions of our model (exogenous product choice

and endogenous product choice), we show that this asymmetric information acquisition

leads to multiple asymmetric equilibria if firms do not discount future completely, i.e.,

δf > 0. This is in sharp contrast to afore-mentioned studies that all obtain a unique

symmetric equilibrium. Our equilibria collapse to a unique symmetric equilibrium if and

3Other studies show that introducing some heterogeneity among firms (Shaffer and Zhang, 2002;
Matsumura and Matsushima, 2015) or quality choice by firms (Choudhary et al., 2005; Ghose and
Huang, 2009) can resolve the prisoner’s dilemma. But they also assume exogenously given information.

4See for example Villas-Boas (1999), Fudenberg and Tirole (2000), and Esteves (2010). Chen (2005)
and Fudenberg and Villas-Boas (2007) survey the early literature.

5Zhang (2011, p. 173) refers to this as the “minimum information assumption about consumer
purchase histories; a consumer’s product choice reveals her relative preference between the two firms but
not the precise strength of her preference”.
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only if δf = 0, i.e., in the absence of any dynamic consideration.

With product choice exogenously fixed at maximal differentiation, there are two

asymmetric equilibria, each favoring a firm with more aggressive pricing in the first

period.6 There is one-way customer switching whereby the firm with a larger market

share loses some customers to its rival in the second period but still retains a larger

market share.7 The reason for the asymmetric equilibria is the asymmetric information

created in the first period and the use of personalized pricing in the second period.

Asymmetric information is clearly irrelevant if firms cannot use personalized pricing.

When firms use personalized pricing in the second period, the information advantage over

own customers allows firms to protect their turf better, which intensifies competition for

market share in the first period. But the marginal change in the second-period profits

with respect to the change in market share is asymmetric around the equal market

share of 1/2 each: starting from equal market share, the second-period gain to a more

aggressive firm outweighs the second-period loss to its less aggressive rival. An increase

in market share allows the more aggressive firm to charge higher personalized prices to

all its loyal customers. Thus the more aggressive firm benefits from both a larger market

share and higher personalized prices. Although the less aggressive firm loses its market

share, it can charge a higher poaching price, which compensates for the loss in market

share. Consequently one firm’s incentive to undercut its rival is stronger than the rival’s

incentive to match. But both firms are worse off in both equilibria compared to when

they use third-degree price discrimination. Moreover they are worse off in each period

compared to when they do not price-discriminate.

We then examine the case where customer recognition is imperfect in that the firm

learns its customer’s exact location only with some probability, which depends on the

firm’s investment in consumer-level information technology. This extension incorporates

our basic model as one polar case where both probabilities are equal to one and the

minimum symmetric information case as another polar case where both probabilities are

equal to zero. We find that there continue to exist multiple equilibria if the two firms have

sufficiently similar information technologies in the sense that the probabilities are not

very much apart from each other. Otherwise the equilibrium is unique with asymmetric

market shares in the first period, where the firm with superior information is better off

than its rival. But both firms are worse off than when both probabilities are equal to

6Esteves (2010, Section 6) notes that an asymmetric equilibrium may arise in her model where one
firm gains the entire market in the first period. In this case, no information is created through first
period sales. In contrast, in our model, both sellers are always active in the market and information is
created. Unlike Esteves (2010), it is the asymmetry of the information that drives asymmetric behavior
in the first period.

7This is different from the case with the minimum symmetric information assumption, as in Fudenberg
and Tirole (2000) and Zhang (2011) where two-way poaching occurs in the second period with each firm
stealing some of its rival’s first-period customers.
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zero. This is because the possibility of using personalized pricing in the second period

always intensifies the first-period competition. In fact the cost of intensified competition

in the first period negates any gains from consumer information for each firm, regardless

of the other firm’s information. This implies that, if firms have choice over the investment

in consumer-level information technology, then it is a dominant strategy for each firm

to choose zero investment.8 Of course this is subject to the caveat that the sole use

of information is for pricing in this case. Customer information has much wider use in

practice; for example, it is crucial to effective customer relationship management that

goes beyond pricing.

When firms make product choice endogenously in the first period, we provide several

results on equilibrium characterization for general values of (δc, δf ), while focusing on

the case δc = 0 and δf = 1 for more detailed discussions.9 First, if δf is sufficiently

small, then maximal differentiation obtains in equilibrium regardless of δc, followed by

the multiple pricing equilibria described above. The reason is as follows. As products

are less differentiated, price competition becomes more intense in the first period, but

the perceived benefits of using personalized prices in the second period may outweigh

the costs of more intense competition. Small δf means such future benefits are largely

discounted, hence maximal differentiation. Second, if δf is above a certain threshold,

then there exist two asymmetric equilibria, one being a mirror image of the other, where

one firm chooses extreme differentiation but the other firm chooses a more aggressive

product choice, which reduces differentiation. This includes the case we focus on, namely

δc = 0 and δf = 1.

The reason for the equilibria without maximal differentiation is as follows. The bene-

fits of maximal differentiation are mainly through reduced competition in the first period.

But the benefits of aggressive product choice come largely in the second period: using

its aggressive positioning, the firm enjoys a more loyal customer base, from whom it can

extract surplus while poaching rival’s customers. Thus δf needs to be sufficiently large

for the equilibria without maximal differentiation. Nonetheless the aggressive positioning

intensifies competition in the first period sufficiently, leaving both firms worse off than

when product choice is at maximal differentiation. But the firms cannot coordinate onto

the equilibrium with maximal differentiation because of the multiplicity of equilibria: the

firm that deviates to the aggressive product choice gains at the expense of the other that

continues to choose extreme differentiation. In this sense, making an aggressive product

choice is loss-minimizing in that it helps the firm to avoid the worst outcome: the firm

8Chen and Iyer (2002) ask a similar question but obtain a different answer. The difference between
their results and ours is discussed in Section 3.5.

9Finding closed-form solutions for equilibrium for general values of (δc, δf ) involves solving simulta-
neous quadratic equations, which is generally not possible.

5



is better off in the best equilibrium under endogenous product choice where it makes an

aggressive choice than in the worst equilibrium under exogenous product choice where

it concedes a larger market share to its rival.

Zhang (2011, Section 5.1) considers a situation with the same information assump-

tions as in our model. But she allows costless personalization of products as well as

prices. This means that once one firm has customer-specific information, the other

firm cannot effectively serve that customer. The result is a symmetric equilibrium with

highly aggressive pricing in the first period and perfect price/product discrimination in

the second period. Thus her results differ substantially from our own. Further, while her

assumption of costless product personalization may be relevant in some settings, in many

situations it is reasonable to expect some limits to product variety. In that sense, our

analysis is complementary to hers. Our model takes the opposite product assumption to

hers (each firm only chooses one product), leading to very different but, in our opinion,

widely applicable results.

Our paper significantly extends the existing literature on behavior-based price dis-

crimination in a number of ways. First, the asymmetric information structure we analyze

captures key features of actual information gathering by firms. But it has not been widely

considered in the literature. As a result, and in contrast to the existing literature, our

analysis shows that multiple asymmetric equilibria can arise even when there are two ex

ante symmetric firms. This asymmetry feeds into all elements of the competitive pro-

cess: product choice where relevant; pricing in both the first and second periods of the

game; and customer poaching in the second period. Second, we allow general discount

factors for consumers and firms and show that the two discount factors have asymmetric

effects on equilibria. Third, we explicitly compare our results with those from the case

with third-degree price discrimination and show firms are increasingly worse off as their

pricing strategies change from uniform, to third-degree discrimination, to personalized

pricing. Finally, we incorporate the firm’s product choice decision into the existing stud-

ies on behavior-based price discrimination that mostly start from given product choice,

and demonstrate that, as firms have more choices, the situation worsens even further.

Our findings suggest various strategies firms may need to consider to make their dynamic

pricing strategies more viable and sustainable.

The rest of this paper proceeds as follows. Section 2 describes the model. Section

3 analyzes the case with exogenously fixed product choice while Section 4 studies the

case when product choice is also endogenous. Section 5 offers some discussions on the

implications for management. Section 6 concludes the paper. Appendix A contains

proofs not provided in the main text while Appendix B presents additional discussions

on the results from Section 4.
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2 The Model

Consider a Hotelling linear city where consumers are distributed uniformly over [0, 1].

Consumer located at x will be simply called consumer x. Each consumer buys one unit

of good in each period for two periods, and derives utility v from each unit. We assume

v is sufficiently large so that the entire market is covered in equilibrium. There are two

firms indexed by i = A,B. Both firms have constant marginal cost of production, which

is normalized to zero. Consumers have quadratic transportation costs.10 Thus if firm i

is located at l and sets a price Pi(x) for consumer x, then consumer x gets a payoff of

v − Pi(x)− t(x− l)2 if she buys from firm i.

There are two periods in the game, indexed by τ = 1, 2. The τ = 1 is the standard

Hotelling model: firms simultaneously choose locations which are fixed over two periods,

after which they compete in price. The prices set by each firm in τ = 1 are non-

discriminatory: each firm sets a single price and sells to all consumers who wish to

purchase at that price. Consumers observe these prices and choose to buy from one

firm. In τ = 1, each firm also uses ‘cookies’ to track consumers. Let A be the set of

consumers that choose firm A in τ = 1 and B be the set of consumers that choose firm

B in τ = 1. By assumption, all consumers are members of only one of these sets. At

the end of τ = 1, firm A knows, for each consumer x: (i) whether x ∈ A or x ∈ B; and

(ii) if x ∈ A, then the location x. Similarly, at the end of τ = 1, firm B knows, for each

consumer y: (i) whether y ∈ A or y ∈ B; and (ii) if y ∈ B, then the location y.

In τ = 2, firms chooses two types of prices since they can now set prices to discrimi-

nate between consumers based on the information acquired in τ = 1. Thus firm A can set

individual prices PA(x) to each consumer x ∈ A, to be called personalized pricing. For

its rival’s τ = 1 customers, firm A chooses a uniform ‘poaching’ price PA(B). Similarly,

firm B chooses individual prices PB(y) for each consumer y ∈ B and a uniform price,

PB(A) for the set of consumers in A. As is standard in the literature (Thisse and Vives,

1988; Choudhary et al., 2005), we assume firms simultaneously choose uniform prices

first, after which they choose personalized prices. This timing allows us to narrow down

equilibrium prices to those that are subgame-perfect. In addition, this two-stage struc-

ture reflects a commonly held view that a firm’s choice of ‘regular price’ is a higher-level

managerial decision and is relatively slower to adjust in practice than a firm’s choice of

personalized prices.

In τ = 2, consumers make their purchase decisions after observing all the relevant

prices. Each consumer observes a personalized price offered to her, and the two poaching

10We assume quadratic transportation costs so that the one period game with endogenous product
choice has a unique pure strategy equilibrium where firms choose maximal differentiation (Anderson et
al., 1992). This makes our results easily comparable to other standard results.
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prices. We follow the standard literature and assume consumers care about only the price

they pay. This assumption rules out the possibilities where consumers’ purchase decisions

can also depend on behavioral elements such as fairness concerns or inequity aversion. In

reality, they are important aspects of consumers’ purchase decisions as shown by plenty

of experimental and anecdotal evidence.11 We abstract away from these issues mainly

because our aim is to clearly understand how changes in informational assumptions lead

to different equilibria in otherwise the same model such as the one in Fudenberg and

Tirole (2000). Adding behavioral elements to consumer choice is likely to change our

results substantially. In the concluding section, we offer some discussions on this.

In making first-period decisions, firms discount the τ = 2 profit by δf ∈ [0, 1] and

consumers discount their τ = 2 surplus by δc ∈ [0, 1]. Thus if firm i’s profit in period τ

is πτi , then its τ = 1 problem is to maximize Πi ≡ π1
i + δfπ

2
i . Likewise if consumer x’s

surplus in period τ is uτx, then her optimal decision in τ = 1 is to maximize u1
x + δcu

2
x.

If δc = 0, then consumers are completely myopic in the sense that their τ = 1 purchase

decisions are based only on their τ = 1 surplus. As δc increases, consumers become more

forward-looking in that they discount future less in their τ = 1 purchase decisions. We

consider the general case when consumers and firms may use different discount factors.

As we will see, these discount factors have asymmetric effects on equilibria. In particular,

the existence of asymmetric equilibria hinges crucially on the forward-looking behavior

by firms (δf > 0). If δf = 0, then the equilibrium is symmetric regardless of δc.

2.1 Benchmark results

For future reference, we discuss below the results from the three benchmark models

adapted to our framework. The first two benchmark models are essentially static, by-

passing the issue of where customer information comes from. The third model is dynamic

where firms gather customer information in τ = 1, which they use for pricing in τ = 2.

First, in the standard Hotelling model with quadratic transportation cost, one firm

chooses location 0 and serves [0, 1/2] while the other chooses location 1 and serves [1/2, 1].

Firms charge the same price t, earn profit t/2, and the average distance traveled by a

consumer is 1/4. Since this outcome is replicated in each period, each firm earns a total

discounted profit equal to ΠH ≡ (1 + δf )t/2.

The second benchmark is Thisse and Vives (1988) where both firms employ person-

alized pricing for all potential customers. Since firms’ locations are exogenously fixed in

their model, we can assume that firm A is at 0 and firm B at 1. Then in equilibrium,

11For example, see the references in Weisstein et al. (2013), Li and Jain (2016), and Richards et al.
(2016). Li and Jain provide a formal model of behavior-based pricing with third-degree price discrim-
ination where they show consumers’ fairness concerns can soften competition. Weisstein et al. (2013),
and Richards et al. (2016) provide experimental evidence on how to alleviate such fairness concerns.
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firm A serves [0, 1/2] with prices PA(x) = (1 − 2x)t for all x < 1/2 and firm B serves

[1/2, 1] with prices PB(y) = (2y−1)t for all y > 1/2. The average distance traveled by a

consumer is again 1/4. Since each firm earns t/4 each period, the total discounted profit

over two periods is ΠTV ≡ (1 + δf )t/4.

Third, in Fudenberg and Tirole (2000), firms exercise third-degree price discrimina-

tion in τ = 2 based on customers’ purchase behavior in τ = 1. They assume the same

discount factor for firms and consumers: δc = δf = δ. With firm A located at 0 and

firm B at 1, the equilibrium in τ = 1 is symmetric with price equal to (3 + δ)t/3, and

firm A’s market share is [0, 1/2], hence each firm’s τ = 1 profit is (3 + δ)t/6. In τ = 2,

both firms charge 2t/3 to their τ = 1 customers and t/3 to their rival’s customers and,

as a result, consumers in [1/3, 1/2] switch from firm A to firm B, and those in [1/2, 2/3]

switch from firm B to firm A. The τ = 2 profit for each firm is then 5t/18. The average

distance traveled by consumers in τ = 2 is 11/36 > 1/4, hence social welfare is lower in

τ = 2 compared to the two previous cases because of inefficient customer switching. The

total discounted profit for each firm in this case is ΠFT ≡ (9 + 8δ)t/18.

In sum, all three models lead to a symmetric equilibrium in which the two firms

have the same market share each period. As can be checked easily, the total discounted

profits are the smallest with personalized pricing and the largest with uniform pricing:

ΠH ≥ ΠFT ≥ ΠTV . Thus the more customer information firms use to devise finer pricing

strategies, the more intense competition becomes, which hurts firm profitability.

3 Exogenously Fixed Locations

We start by analyzing the case in which the firms’ locations are fixed at 0 and 1,

i.e., maximal differentiation. Without loss of generality, suppose firm A is located at

0. Analyzing this case helps us understand the second-period pricing game more clearly

than when the location choice is also endogenous. This will in turn facilitate solving the

whole game with endogenous location choice. Note that the equilibrium in the standard

Hotelling model with quadratic transportation cost also has maximal differentiation.

3.1 Second Period

Let us begin with the pricing game in τ = 2. Since a standard revealed preference

argument shows that each of A and B is a connected interval, we can define a unique

value z ∈ [0, 1] such that x ∈ A iff x ≤ z. Then the equilibrium prices in τ = 2 can be

derived as follows.

Suppose z ≤ 1/2. First, consider the segment A = [0, z]. Since z ≤ 1/2, firm A has a

location advantage over firm B on this segment. Moreover firm A can use personalized

prices PA(x) while firm B can use only a uniform price PB(A). Consumer x chooses
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firm A if PA(x) + x2t ≤ PB(A) + (1 − x)2t or PA(x) ≤ PB(A) + (1 − 2x)t. Thus the

Bertrand competition on this segment leads to PB(A) = 0 and PA(x) = (1− 2x)t. Note

that PA(x) ≥ 0 since x ≤ z ≤ 1/2 on A.

Next, consider the segment B = [z, 1] for which firm A chooses a uniform price PA(B)

while firm B uses personalized prices PB(y). Consumer y will choose firm B so long as

PA(B) + y2t > PB(y) + (1− y)2t or PB(y) < PA(B) + (2y−1)t. However, firm B will not

want to sell to consumer y if PB(y) < 0. Thus for any PA(B), we can define a critical

value of y, denoted by ỹ such that PA(B) = (1 − 2ỹ)t or ỹ = (t − PA(B))/2t. Then for

any price PA(B), consumer y ∈ [z, ỹ] chooses firm A (if ỹ > z). On the other hand, firm

B can choose nonnegative prices to serve all consumers y ∈ [ỹ, 1].

For the segment [z, ỹ], profit for firm A is
∫ ỹ
z PA(B)dy = (ỹ − z)PA(B). Substituting

for ỹ and maximizing, the optimal value of PA(B) for firm A is PA(B) = (1 − 2z)t/2,

which is the price charged to all the consumers in B since firm A cannot price-discriminate

these consumers. Given PA(B) = (1−2z)t/2, we have ỹ = (1+2z)/4. It is easy to verify

z ≤ ỹ ≤ 1/2. Given PA(B) derived above, firm B sets personalized prices for the segment

[ỹ, 1]. They are given by PB(y) = (2y − 1)t+ PA(B) = (4y − 2z − 1)t/2.

For the case z > 1/2, the same argument can be applied. We summarize these results

in the following lemma.

Lemma 1 (i) If z ≤ 1/2, then the unique equilibrium in τ = 2 is given by

PA(x) =

(1− 2x)t if x ∈ [0, z],

(1− 2z)t

2
if x ∈ [z, 1],

PB(y) =

0 if y ∈ [0, (1 + 2z)/4],
(4y − 2z − 1)t

2
if y ∈ [(1 + 2z)/4, 1].

(ii) If z ≥ 1/2, then the unique equilibrium in τ = 2 is given by

PA(x) =


(2z − 4x+ 1)t

2
if x ∈ [0, (1 + 2z)/4],

0 if x ∈ [(1 + 2z)/4, 1],

PB(y) =


(2z − 1)t

2
if y ∈ [0, z],

(2y − 1)t if y ∈ [z, 1].

Figure 1 describes the equilibrium with z ≤ 1/2 in Lemma 1. The thick solid lines

represent firm A’s prices while the thick dashed lines show firm B’s prices. Firm A serves

its τ = 1 customers with personalized prices that decrease from t to (1 − 2z)t on [0, z],

and charges a uniform price (1− 2z)t/2 to all firm B’s τ = 1 customers, poaching those

10



on [z, ỹ] where ỹ = (1 + 2z)/4. Firm B charges a uniform price 0 to all customers on

[0, z], PB(y) = 0 to customers on [z, ỹ], and personalized prices that increase from 0 to

(3 − 2z)t/2 on [ỹ, 1]. Figure 1 also indicates how consumers choose firms over the two

periods: those on [0, z] choose firm A in both periods; those on [z, ỹ] choose firm B in

τ = 1 but switch to firm A in τ = 2; those on [ỹ, 1] stay with firm B in both periods.

— Figure 1 goes about here. —

Based on the above, we can calculate the τ = 2 profit for each firm. Consider first

the case z ≤ 1/2. Then consumers in [0, z] continue to purchase from firm A, consumers

in [z, (1 + 2z)/4] switch from firm B to firm A, and consumers in [(1 + 2z)/4, 1] continue

to purchase from firm B. Thus firm A’s τ = 2 profit from its repeat customers is∫ z
0 (1−2x)tdx = (1−z)zt and its profit from switching customers is (1−2z)t

2

(
1+2z

4 − z
)

=

(1− 2z)2t/8. So if z ≤ 1/2, firm A will make τ = 2 profit equal to:

π2
A = (1− z)zt+

(1− 2z)2t

8
=

(1 + 4z − 4z2)t

8
.

If z > 1/2, then consumers in [(1 + 2z)/4, z] switch from firm A to firm B. Thus firm A

serves only those in [0, (1+2z)/4] by charging personalized prices PA(x) = (2z−4x+1)t/2.

So it makes profit:

π2
A =

∫ 1+2z
4

0

(2z − 4x+ 1)t

2
dx =

(1 + 2z)2t

16
.

Due to symmetry, firm B’s profit is the same as firm A’s profit in the relevant region

when z is replaced by 1− z. Summarizing the above, we have

Lemma 2 Equilibrium profits in τ = 2 are given by

π2
A =


(1 + 4z − 4z2)t

8
if z ≤ 1/2,

(1 + 2z)2t

16
if z ≥ 1/2,

π2
B =


(3− 2z)2t

16
if z ≤ 1/2,

(1 + 4z − 4z2)t

8
if z ≥ 1/2.

It is easy to verify that both profit functions are continuous, firm A’s profit increases

in z, and firm B’s profit decreases in z. At z = 1/2, the two firms’ profits are the same

and are equal to t
4 . Thus firm A has incentives to increase z and firm B has incentives to

decrease z, which would intensify price competition in the first period. However, a change

in τ = 1 market share affects each firm’s τ = 2 profit in an asymmetric way. The reason
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is as follows. As can be checked from Lemma 1(ii), an increase in z above 1/2 increases

firm A’s personalized prices and firm B’s poaching price. Thus when z increases, firm

A benefits from both higher personalized prices and more loyal customers. When z

increases, firm B loses its loyal customer base, but it can charge a higher poaching price,

which compensates for the loss in loyal customer base. Consequently, as z increases from

1/2, firm A’s τ = 2 profit increases more than (the absolute value in) the decrease in firm

B’s τ = 2 profit: from Lemma 2, we have dπ2
A/dz = (1+2z)t/4 > |dπ2

B/dz| = (2z−1)t/2

for all z ≥ 1/2. In this case, firm A’s incentives to cut τ = 1 price are stronger than firm

B’s incentives to undercut firm A. Similarly, if z < 1/2, firm B has stronger incentives

to cut τ = 1 price. As we will see below, this asymmetry leads to asymmetric equilibria

in the τ = 1 price game.

3.2 First period

We start with the location of marginal consumer z. Consider first the equilibrium

with z ≤ 1/2. Based on our discussion in the previous section, the marginal consumer

z is indifferent between choosing firm A in both periods, and choosing firm B in τ = 1

while switching to firm A in τ = 2. Thus we have

P 1
A + z2t+ δc

(
PA(z) + z2t

)
= P 1

B + (1− z)2t+ δc
(
PA(B) + z2t

)
.

Substituting PA(z) = (1− 2z)t and PA(B) = (1− 2z)t/2 in Lemma 1 into the above, we

obtain

z =
(2− δc)t− 2(P 1

A − P 1
B)

2(2− δc)t
,

and z ≤ 1/2 if and only if P 1
A ≥ P 1

B. Similarly, in the equilibrium with z ≥ 1/2, the

marginal consumer z is indifferent between choosing firm B in both periods, and choosing

firm A in τ = 1 while switching to firm B in τ = 2. Proceeding as before, we again

obtain the same z.

In τ = 1, firm A’s profit is π1
A = P 1

Az while firm B’s profit is π1
B = P 1

B(1− z) where

P 1
i is firm i’s τ = 1 price, i = A,B. Firm i chooses P 1

i to maximize its total discounted

profit Πi = π1
i + δfπ

2
i . Based on these, the equilibria of the τ = 1 price game can de

derived as follows.

Lemma 3 The price game in τ = 1 has two equilibria:

(i) P 1
A =

(4− 2δc + δf )(6− 3δc − 2δf )t

2(12− 6δc + δf )
, P 1

B =

(
6(2− δc)2 − 3(2− δc)δf − 2δ2

f

)
t

2(12− 6δc + δf )
with

z =
12− 6δc − δf

2(12− 6δc + δf )
(≤ 1/2);

12



(ii) P 1
A =

(
6(2− δc)2 − 3(2− δc)δf − 2δ2

f

)
t

2(12− 6δc + δf )
, P 1

B =
(4− 2δc + δf )(6− 3δc − 2δf )t

2(12− 6δc + δf )
with

z =
3(4− 2δc + δf )

2(12− 6δc + δf )
(≥ 1/2).

Proof: See Appendix A.

It is worth noting that asymmetric equilibria obtain even though the two firms are

symmetric and their τ = 1 locations are fixed exogenously at a maximal distance. This

is in contrast to the three benchmark results discussed in the previous section. In the

static case, both the Hotelling and the Thisse and Vives (1988) outcomes are symmetric.

In the dynamic model of Fudenberg and Tirole (2000) where firms use third-degree price

discrimination in τ = 2, the τ = 1 equilibrium is also unique with equal market share

for each firm.

The reason for the asymmetric equilibria in our case is the asymmetric information

created at the end of τ = 1 and the use of personalized pricing in τ = 2. Firms start

with the same prior information about customers in τ = 1 but they learn more about

their own customers, precise locations in our case, at the end of τ = 1. This information

advantage over own customers allows firms to employ personalized pricing in τ = 2.

Personalized pricing enables firms to tailor their pricing policy for their own customers,

allowing them to protect their market in τ = 2 more effectively than when they use a

uniform price. As a result, each firm’s τ = 2 profit increases if it has a larger market

share in τ = 1.12 As shown previously, however, the effect of a change in market share

on firms’ τ = 2 profits is asymmetric, which breaks down the symmetric equilibrium.

Starting from the Hotelling price t and z = 1/2, a small increase in z increases firm A’s

τ = 2 profit more than it decreases firm B’s τ = 2 profit. Likewise, a small decrease

in z decreases firm A’s τ = 2 profit less than it increases firm B’s τ = 2 profit. Such

asymmetric effects of z on τ = 2 profits feed back into firms’ pricing decisions in τ = 1,

rendering the symmetric outcome untenable.

To appreciate the asymmetric incentives better, we draw both reaction functions in

Figure 2 where, for simplicity, we set δc = 0 and δf = 1. In this case, one can check

that the two equilibria in Lemma 3 become (i) P 1
A = 10t/13, P 1

B = 8t/13, z = 11/26;

(ii) P 1
A = 8t/13, P 1

B = 10t/13, z = 15/26. Suppose now firm B chooses P 1
B = t. Then

firm A’s best response is to undercut it to 5t/7. But firm B does not gain by further

undercutting firm A: its best response is to lower its τ = 1 price to 29t/35 > 5t/7t. It is

followed by further price cuts by both firms, each time firm B’s price remaining higher

12When firms use third-degree price discrimination as in Fudenberg and Tirole (2000), each firm’s
equilibrium profit in τ = 2 is independent of its market share in τ = 1. This is discussed in detail in
Section 3.4.
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than firm A’s. But continued price cuts are not in firm A’s interest since an increase

in its τ = 2 profit is eventually offset by a decrease in its τ = 1 profit. This leads to

the equilibrium with z = 15/26. The adjustment process can be understood with help

of Figure 2 where thick dashed lines (solid lines, resp.) represent firm A’s (firm B’s,

resp.) reaction function and the two equilibria are indicated at the intersection of the

two reactions functions.

— Figure 2 goes about here. —

Needless to say, the asymmetric incentives for price cuts matter only when firms

care about the τ = 2 profits in their pricing decisions in τ = 1. Thus we expect the

unique, symmetric equilibrium to re-emerge when δf = 0. Indeed it is easy to check

from Lemma 3 that there is a unique, symmetric equilibrium with z = 1/2 if and only if

δf = 0. In sum, the asymmetric equilibria are due to the presence of the second period

when firms can exercise personalized pricing for their own customers. If firms do not

exercise personalized pricing in τ = 2 or if they are myopic (δf = 0), then we have a

unique, symmetric equilibrium.

3.3 Equilibria and discussions

We now describe the equilibria for the whole game. By substituting the value of z

from the τ = 1 equilibrium back into the τ = 2 prices in Lemma 1, we have:

Proposition 1 The equilibrium prices for the two periods are given by:

(i) P 1
A =

(4− 2δc + δf )(6− 3δc − 2δf )t

2(12− 6δc + δf )
, P 1

B =

(
6(2− δc)2 − 3(2− δc)δf − 2δ2

f

)
t

2(12− 6δc + δf )
with

z =
12− 6δc − δf

2(12− 6δc + δf )
,

PA(x) =


(1− 2x)t if x ∈

[
0,

12− 6δc − δf
2(12− 6δc + δf )

]
,

δf t

12− 6δc + δf
if x ∈

[
12− 6δc − δf

2(12− 6δc + δf )
, 1

]
,

PB(y) =


0 if y ∈

[
0,

3(2− δc)
12− 6δc + δf

]
,(

2y − 6(2− δc)
12− 6δc + δf

)
t if y ∈

[
3(2− δc)

12− 6δc + δf
, 1

]
.

(ii) P 1
A =

(
6(2− δc)2 − 3(2− δc)δf − 2δ2

f

)
t

2(12− 6δc + δf )
, P 1

B =
(4− 2δc + δf )(6− 3δc − 2δf )t

2(12− 6δc + δf )
with

z =
3(4− 2δc + δf )

2(12− 6δc + δf )
,
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PA(x) =


(

2(6− 3δc + δf )

12− 6δc + δf
− 2x

)
t if x ∈

[
0,

6− 3δc + δf
12− 6δc + δf

]
,

0 if x ∈
[

6− 3δc + δf
12− 6δc + δf

, 1

]
,

PB(y) =


δf t

12− 6δc + δf
if y ∈

[
0,

3(4− 2δc + δf )

2(12− 6δc + δf )

]
,

(2y − 1)t if y ∈
[

3(4− 2δc + δf )

2(12− 6δc + δf )
, 1

]
.

To put Proposition 1 in perspectives, we offer comparative static analyses with respect

to the discount factors. Without loss of generality, we consider the case z ≤ 1/2. First,

larger δc unambiguously hurts firms because, as consumers become more forward-looking,

firms need to lower prices more to lock in consumers in τ = 1. It is easy to check that

both π1
A and π2

A decrease as δc increases, implying ΠA also decreases in δc. For firm B,

however, π1
B decreases while π2

B increases as δc increases, the latter because the firm with

a larger τ = 1 market share has more advantage in τ = 2 as consumers become more

forward-looking. But the decrease in the τ = 1 profit due to more intense competition

dominates the increase in the τ = 2 profit, implying ΠB also decreases in δc. On the

other hand, changes in δf have opposing effects on per-period profit and total discounted

profit. Larger δf reduces the τ = 1 profit by intensifying competition for market share

but the adverse effect is offset as the firm cares more about its τ = 2 profit. Thus the

total discounted profit is the largest when δc = 0 and δf = 1, and the smallest when

δc = 1 and δf = 0.13 The following can be shown easily from Proposition 1.

Corollary (i) As δc increases, P 1
A, P 1

B, ΠA and ΠB decrease. (ii) As δf increases, P 1
A

and P 1
B decrease, but ΠA and ΠB increase. (ii) The total discounted profit for each firm

is the largest when δc = 0 and δf = 1, and the smallest when δc = 1 and δf = 0. (iii)

The equilibria in τ = 1 collapse to a unique, symmetric equilibrium with z = 1/2 if and

only if δf = 0.

In what follows, we provide more detailed discussions of Proposition 1. Since a

concrete example helps us understand the main ideas better, we focus on the case when

δc = 0 and δf = 1. But qualitatively the same discussions apply for other values of δc

13Since there are two equilibria for each pair (δc, δf ) except when δf = 0, a more precise statement
is as follows. Given any pair (δc, δf ), consider an equilibrium in which one firm, say firm B, has larger
total discounted profit: ΠA < ΠB , which implies that z < 1/2. Then among all such equilibria, ΠB is
the largest when δc = 0 and δf = 1. The same is true when comparing ΠA for all (δc, δf ). This is based
on the comparison of total discounted profit. We note that un-discounted total profit for each firm, i.e.,
π1
i + π2

i (i = A, B), is the largest and equal to 3t/4 when δc = δf = 0, in which case the equilibrium is
symmetric with τ = 1 equilibrium equal to the Hotelling outcome and the τ = 2 equilibrium same as in
Thisse and Vives (1988). But total discounted profit in this case is t/2, smaller than when δc = 0 and
δf = 1 for each firm
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and δf except when δf = 0. As pointed out earlier, the equilibrium is unique if and

only if δf = 0. In all other cases, there are two equilibria that are mirror images of each

other. We continue to consider the equilibrium with z < 1/2, i.e., firm B has a larger

market share in τ = 1. Then P 1
A = 10t/13, P 1

B = 8t/13, and z = 11/26.14 Calculating

equilibrium profits in this case, we have π1
A = 0.325t, π2

A = 0.247t, π1
B = 0.355t, and

π2
B = 0.290t.

First, although firm B secures a larger market share by pricing below firm A in τ = 1,

its market share shrinks in τ = 2 since its τ = 1 customers in [11/26, 6/13] switch to

firm A. But firm B is better off having switching customers than having a smaller τ = 1

market share. It is because switching customers are closer to firm A and they help firm

B fend off firm A’s aggressive pricing in τ = 2 and use personalized pricing for the

remaining customers that continue to purchase from firm B. Indeed firm B’s most loyal

customers, i.e., x ∈ (25/26, 1], are charged price higher than the Hotelling price t. But

the maximum price firm A charges is t. Thus firm B has larger profit than firm A in

both periods. This implies that, when firms’ locations are exogenously fixed, the main

strategic decision is to choose the τ = 1 price to secure a larger market share.

Second, the dynamic consideration and the accompanied personalized pricing in τ = 2

intensify price competition in τ = 1. As a result, both firms choose their τ = 1 prices

below the Hotelling price. Consequently their τ = 1 profits are smaller than t/2, the

Hotelling profit. The dynamic consideration also differentiates our τ = 2 equilibrium

from that in Thisse and Vives (1988), where the unique equilibrium is symmetric and

each firm earns profit equal to t/4. In contrast, we have an asymmetric equilibrium in

τ = 2 where firm B’s market share is larger than firm A’s even though some of firm B’s

customers switch to firm A. In addition, firm B’s profit is larger than in Thisse and Vives

(1988) while firm A’s profit is smaller: π2
B = 0.290t > t/4 > π2

A = 0.247t. But for both

firms, the τ = 2 profits are smaller than the Hotelling profit. This is generally consistent

with Thisse and Vives (1988) that the ability to price-discriminate harms profitability

by intensifying competition, although in our setup firms use personalized pricing only

for their repeat customers. As pointed out earlier, the only case we obtain the Hotelling

outcome in τ = 1 and the Thisse and Vives (1988) outcome in τ = 2 in our model is in

the absence of any dynamic consideration by both consumers and firms, i.e., δc = δf = 0.

So far, we have seen that both firms are strictly worse off in each period when they

use personalized pricing in τ = 2 than when they use uniform price in both periods. But

are consumers better off under price discrimination? To answer this, recall that, in the

Hotelling equilibrium, price is t, all consumers x ≤ 1/2 choose firm A in both periods at

total cost 2(t + x2t), and all consumers y > 1/2 choose firm B in both periods at total

14The explanations for the other case are the same with firm B replaced by firm A.
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cost 2
(
t+ (1− y)2t

)
.

Let us again consider the equilibrium with z = 11/26. We have shown previously

that both firms charge price strictly below t in τ = 1. In τ = 2, only consumers in

(25/26, 1] pay price higher than t. For all other consumers, price is strictly lower than

t in both periods. In addition, these consumers have an option to choose the firms in

the Hotelling equilibrium and pay the same transportation costs. Thus all consumers in

[0, 25/26] are strictly better off under price discrimination. Consider now y ∈ (25/26, 1],

who chooses firm B in both periods, pays the τ = 1 price P 1
B = 8t/13 < t and the τ = 2

price PB(y) = (2y − 12/13) t > t. But P 1
B + PB(y) < 22t/13 < 2t for all y ∈ (25/26, 1],

hence total cost for y is P 1
B + PB(y) + 2(1− y)2t < 2(t+ (1− y)2t). Thus all consumers

(25/26, 1] are better off under price discrimination.15

But welfare is lower in both periods than in the Hotelling equilibrium since firms have

asymmetric market shares in both periods except when δf = 0. Given the two firms’

locations at each end, the average distance traveled is minimized when z = 1/2. On the

other hand, welfare in τ = 2 is higher than in Fudenberg and Tirole (2000) since there

is only one-way customer switching in our case.16 The following proposition summarizes

the above discussions.

Proposition 2 In equilibrium where firms use personalized pricing in τ = 2, firms are

worse off in each period, all consumers are better off, but social welfare is lower compared

to when firms do not exercise price discrimination.

3.4 Personalized pricing vs. third-degree price discrimination

The current case with exogenously fixed locations is identical to the model in Fu-

denberg and Tirole (2000), to be called FT henceforth, except two differences. First,

firms use personalized pricing in τ = 2 in our model while they use third-degree price

discrimination in FT. Second, we consider general discount factors whereas firms and

consumers use the same discount factor in FT. We discuss below why equilibrium changes

drastically given these two differences.

Let us note first that when the FT model allows general discount factors δc and δf ,

there continues to exist a unique symmetric equilibrium described previously with the

only change that the τ = 1 price becomes (3 + δc)t/3.17 Thus the total discounted profit

is now ΠFT = (3 + δc)t/6 + δf (5t/18). Because prices in τ = 1 increase in δc, firms are

15One can show that this argument applies for all values of δc and δf . That is, P 1
B + (1 − y)2t +

δc(PB(y) + (1− y)2t) < (1 + δc)(t+ (1− y)2t) for all y ∈ B with equality if and only if δc = δf = 0.
16In τ = 2, the average distance traveled is (7/13)2×1/2 + (6/13)2×1/2 = 85/338. It is smaller than

11/36, the average distance traveled in τ = 2 in Fudenberg and Tirole (2000).
17That firms’ discount factor does not matter follows from the fact that each firm’s τ = 2 profit is

independent of its τ = 1 market share thanks to the two-way customer switching.
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better off when consumers are more forward-looking. In particular, the τ = 1 price is

higher than the Hotelling price for all δc > 0. The higher τ = 1 price is offset by lower

prices in τ = 2.

When firms use third-degree price discrimination, one can verify that the equilibrium

profit in τ = 2 is the same for both firms regardless of firm A’s market share [0, z] in

τ = 1. This is because customer switching is two-way and, as firm A’s market share in

τ = 1 increases, more customers switch to firm B in τ = 2. Specifically, the fraction

of customers switching from firm A to firm B and the fraction of those switching from

firm B to firm A are exactly the same if and only if z = 1/2, and the former (latter) is

larger if z > (<)1/2.18 Such two-way customer switching is due to the assumption that

firms use third-degree price discrimination. Because each firm has to charge the same

price to all its τ = 1 customers, protecting its turf in τ = 2 can be too costly if the firm

has a large market share. If a firm wants to continue to serve its marginal customer, it

has to reduce price for its most loyal customers as well. Likewise, firms cannot price too

aggressively to poach their rival’s customers. The end result is that both firms poach

some of their rival’s customers.

In contrast, the ability to use personalized pricing in our model allows firms to protect

their turf better. Specifically, if z ≤ 1/2, then firm A can continue to serve all its τ = 1

customers while poaching some customers from firm B. As discussed previously, however,

such customer switching benefits firm B since it allows firm B to use personalized pricing

for its remaining customers and extract larger surplus than when firm B has a smaller

τ = 1 market share. Thus firm B has a larger profit than firm A in each period even

though it loses some of its customers to firm A in τ = 2. Similarly if z ≥ 1/2, customer

switching is only from firm A to firm B but firm A has a larger profit than firm B. The

flip side of the ability to use personalized pricing is that firms choose more aggressive

poaching offers than in FT. It is easy to check that, in all equilibria in our model, each

firm’s successful poaching offer is lower than t/3, the unique poaching offer in FT.

The two-way customer switching in FT implies that a larger τ = 1 market share

does not lead to a larger profit in τ = 2. In addition, the firm with a larger market

share in τ = 1 loses more customers to its rival in τ = 2, which softens the τ = 1

price competition. As a result, the τ = 1 equilibrium price in FT is not lower than the

Hotelling price. In our model, a larger market share implies a larger profit in each period,

which makes price competition in τ = 1 tougher than in the static Hotelling model. As

a result, both firms charge their τ = 1 price below the Hotelling price.

As mentioned previously, firms in FT are better off when consumers are more forward-

18This argument applies as long as z ∈ [1/4, 3/4], which is true in equilibrium. More precisely, one can
show that the fraction of customers switching from firm A to B is (4z − 1)/6 and the fraction switching
from firm B to A is (3− 4z)/6 with (4z − 1)/6 ≥ (3− 4z)/6 if and only if z ≥ 1/2.
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looking. This is because forward-looking consumers anticipate favorable poaching offers

in τ = 2, which makes them less sensitive to prices charged in τ = 1. But these poaching

offers, equal to t/3, are independent of consumers’ discount factor because of symmetric

two-way customer switching. Given that there is a unique symmetric equilibrium in FT,

the only effect forward-looking consumers have on the firm’s behavior is thus to soften

competition in τ = 1. In our results, customer switching is one-way and there are two

asymmetric equilibria, one favoring one firm over the other. This intensifies first-period

competition relative to FT, and more so when consumers are more forward-looking, as

shown in the corollary to Proposition 1. The discussions so far suggest that competition

in personalized pricing makes firms worse off compared to when they compete in third-

degree price discrimination.

Proposition 3 For all values of (δc, δf ), each firm’s total discounted profit in equilibrium

is smaller when competition in τ = 2 is in personalized pricing than when it is in third-

degree price discrimination.

Proof: See Appendix A.

In the end, the feasibility of different pricing strategies would depend on various

factors pertaining to industries, products, or types of consumers and sellers. We finish

this section with some discussions on when personalized pricing is more likely to be

feasible.

Personalized pricing is a limiting case of price discrimination as the number of iden-

tifiable consumer segments increases. As in other types of price discrimination, the

feasibility of personalized pricing depends on the availability of consumer information

and the firm’s ability to prevent consumers from discovering price differentials and ex-

ploiting arbitrage opportunities. The information in itself is only necessary for successful

implementation of personalized pricing since the information needs to yield usable in-

sights that can be operationalized (Arora et al., 2008). Thus personalized pricing is more

likely to work for products that can be more easily customized, or that can be combined

with quality differentiation. Examples in the first category include large enterprise-

level business software, for which transactions are often based on negotiated customized

pricing, while computer servers or storage devices are examples in the second category

(Choudhary et al., 2005). In addition, personalized pricing can work better for products

whose pricing is too complex and variable for consumers to compare price differentials

easily such as insurance, financial products, or mobile phone plans (‘Caveat emptor.com;

Online prices’, The Economist, June 30, 2012).

The above discussions suggest that it may be difficult to use personalized pricing

for standardized products such as grocery items or DVDs. An example is Amazon’s
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ill-fated attempt to exercise price discrimination for DVD titles.19 But even for stan-

dardized products, firms can operationalize personalized pricing through using various

price-framing tactics (Weisstein et al., 2013), or targeted advertising and promotions

such as Safeway’s Just for U program (http://m.safeway.com/just-for-u/) or Target’s

Cartwheel mobile couponing application (https://cartwheel.target.com/). For example,

Safeway’s Just for U program uses complex algorithms to process customers’ purchase

data, based on which the retailer can send personalized offers on-line or through mo-

bile apps (‘Supermarkets offer personalized pricing’, Bloomberg Business, November 16,

2013). As mobile technologies advance rapidly, this type of personalization becomes

more prevalent and even real-time personalized offers may become eventually possible

(Esteves and Resende, 2016). These are more effective than traditional paper coupons in

making direct price comparison harder, which can render personalized pricing feasible.

From the above discussions, we can identify several factors that would make person-

alized pricing more likely to be feasible such as the quality of customer information, the

extent to which products can be customized and can be combined with added value, the

degree of complexity in pricing, the technologies employed in operationalizing personal-

ized pricing, etc. But the difficulty in clearly identifying the number of market segments

used for pricing limits rigorous empirical research on the use of personalized pricing in

practice; the evidence is anecdotal at best or based only on isolated examples.

3.5 Imperfect customer recognition

So far we have assumed that firms observe their customers’ locations perfectly at the

end of τ = 1. We now discuss a more plausible case when such customer recognition is

imperfect. To this end, we consider an extension of our model in which firm i learns the

exact locations of all its τ = 1 customers with probability φi, i = A,B. With probability

1 − φi, firm i learns only who its τ = 1 customers are, but not their exact locations.20

Then firm i can use personalized prices for all its τ = 1 customers with probability

φi, but can charge only a uniform price to all its τ = 1 customers with probability

1 − φi. A natural interpretation is that φi reflects firm i’s investment in its consumer-

level information technology, or consumer addressability. Given such interpretation, it

19The main reason was that Amazon failed to operationalize personalized pricing since price differ-
entials were easy to find and led to consumer backlash. In one case, one customer ordered a DVD for
$24.49, only to find out that the price had jumped to $26.24 next time he went back. But when he used
the computer removing the tags that identified him as an Amazon customer, the price fell to $22.74
(‘Test of ‘dynamic pricing’ angers Amazon customers’, The Washington Post, October 7, 2000).

20An alternative to model imperfect customer recognition is to introduce some noise. For example,
firm A observes s(x) = x + ε for x ∈ A where ε is a white noise. But in this case, the meaning of
personalized prices becomes unclear since the personalized price for customer x depends on s(x), which
could also be for all other customers if ε has a full support.
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is also natural to assume φA and φB are independent.21 To simplify notation, we also

assume δc = δf = 1.

The above change in information structure leads to four possibilities in competi-

tion in t = 2 depending on what pricing strategies firms can choose for their repeat

customers. First, with probability φAφB, both firms use personalized prices for their

τ = 1 customers. This is the case studied in our main model. Second, with probability

φA(1 − φB), firm A uses personalized prices while firm B uses a uniform price. Third,

with probability (1−φA)φB, firm A uses a uniform price while firm B uses personalized

prices. Finally, with probability (1− φA)(1− φB), both firms use uniform prices, which

corresponds to the case analyzed in Fudenberg and Tirole (2000). Since we already know

the results from the first and the fourth cases, the additional cases to analyze are when

only one firm uses personalized prices in τ = 2. The following lemma summarizes the

results when only firm A uses personalized prices.22

Lemma 4 Suppose φA = 1 and φB = 0. Then there is a unique equilibrium such that:

(i) The location of marginal consumer in τ = 1 is z = 6/17.

(ii) Prices in τ = 1 are PA = 15t/17 and PB = 6t/17.

(iii) Prices in τ = 2 are

P 2
A =

{
PA(x) = (1− 2x)t if x ∈ [0, 6/17],
PA(B) = 9t/17,

P 2
B =

{
PB(A) = 0,
PB(B) = 13t/17.

(iv) Consumers in [0, 6/17] choose firm A in both periods, those in [6/17, 21/34] choose

firm B in τ = 1 but switch to firm A in τ = 2, and those in [21/34, 1] choose firm

B in both periods.

(v) The total profits are ΠA = 393t/578 and ΠB = 301t/578.

Proof: See Appendix A.

The above lemma shows an important difference between the case when both firms

can use personalized prices and the case when only one firm can use personalized prices.

In the latter case, Lemma 4 shows that there is a unique equilibrium with asymmetric

market share in τ = 1 accompanied by one-way customer switching. For firm A that can

use personalized prices, the market share is 6/17 in τ = 1 but it increases to 21/34 in

21This setup is similar to Chen and Iyer (2002) whose main focus is on the firm’s decision to invest in
consumer addressability. But there are two important differences between our model and theirs. First,
we consider dynamic pricing over two periods; the firm’s investment in addressability allows the firm to
gather consumer-level information only through the first-period interaction. In contrast, Chen and Iyer
(2002) study a static model of pricing game in which the information comes directly from the investment.
Second, they assume each firm can target only those consumers that are addressable whereas firms in our
model use personalized prices for addressable consumers and a uniform price for others. These differences
lead to different equilibria in the investment game, as we will discuss later.

22The other case when only firm B uses personalized prices is a mirror image of this case.
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τ = 2. Unlike the case when both firms use personalized prices, however, the equilibrium

with z > 1/2 does not exist in this case. The reason is as follows. When z > 1/2, there

is two-way customer switching in τ = 2 as shown in the proof of Lemma 4, which implies

that firm B does not benefit from having a smaller market share in τ = 1. Thus firm

B has incentives to reduce z by decreasing its τ = 1 price, which breaks down the

equilibrium with z > 1/2. Clearly this is because firm B cannot continue to serve all its

repeat customers when it cannot use personalized prices.23

In the above equilibrium, firm A has larger profits in both periods: in τ = 1, it has

a smaller market share but charges higher price and, in τ = 2, it serves all its repeat

customers using personalized prices and poaches some of firm B’s τ = 1 customers.

Nonetheless, firm A is better off if it uses a uniform price instead of personalized prices

for its τ = 1 customers. This is because firm A’s sole ability to use personalized prices

in τ = 2 makes firm B more aggressive, which intensifies competition in τ = 1. Setting

t = 1, quick calculation shows that firm A’s total profit is broken down to π1
A + π2

A =

90/289 + 213/578 = 393/578. When both firms use uniform prices in τ = 2 for their

repeat customers, we have the outcome from Fudenberg and Tirole (2000): with δc =

δf = 1, firm A’s total profit is π1
A + π2

A = 2/3 + 5/18 = 17/18 > 393/578. Thus firm A’s

τ = 2 profit is larger when it is the only firm using personalized prices, but its τ = 1

profit is significantly smaller than when both use uniform prices. It is easy to check that

the above relation also holds when δc < 1.

We can summarize the results so far in the following observations. First, when

φA = φB = 0, the equilibrium is unique with z = 1/2. Second, when φA = φB = 1, there

are two equilibria with asymmetric market shares in τ = 1, one being a mirror image of

the other. Third, when φA = 1 and φB = 0, the equilibrium is unique with z < 1/2.

Fourth, when φA = 0 and φB = 1, the equilibrium is unique with z > 1/2. These

observations suggest the possibility of a unique equilibrium with asymmetric market

share in τ = 1 when φA and φB are sufficiently different from each other. The intuition

is as follows. Starting from the case with two asymmetric equilibria, sufficient differences

in pricing capabilities between the two firms enable the firm with more sophisticated

information technology to set a higher τ = 1 price. By doing so, it can increase its

τ = 1 profit while poaching some customers from its rival that is more likely to use a

uniform price and hence less likely to protect its customer base. Thus the firm that is

more likely to use personalized prices will choose an equilibrium with a smaller market

share in τ = 1.

The following proposition characterizes all possible equilibria for all values of φA and

23When firm B also uses personalized prices as in our main model, customer switching is only from
firm A to firm B if z > 1/2. Thus firm B does not have incentives to undercut firm A in τ = 1. This is
why there are two asymmetric equilibria when both firms use personalized prices.
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φB. For each pair (φA, φB), equilibrium can be found in several steps. First, given the

τ = 1 marginal consumer z, we solve for τ = 2 equilibria in each case of z ≤ 1/2 and

z ≥ 1/2. Second, based on the τ = 2 equilibria, we express z in terms of τ = 1 prices

and (φA, φB). Third, we find equilibrium prices in τ = 1 by solving the two firms’ best

response functions in each case of z ≤ 1/2 and z ≥ 1/2. In the last step, we verify that

these prices indeed constitute equilibrium by deriving the conditions that guarantee each

equilibrium is consistent with the restriction on z. These conditions involve polynomial

inequalities in terms of φA and φB. We define the following:

F (φA, φB) ≡ (64 + 4φA − 5φB)φB
√

2(28− 2φA + φB)(56− 13φA − 16φB)

+2(28− 2φA + φB)(10φ2
A − (64− 15φA)φB + 3φ2

B),

G(φA, φB) ≡ (64 + 4φB − 5φA)φA
√

2(28− 2φB + φA)(56− 13φB − 16φA)

+2(28− 2φB + φA)(10φ2
B − (64− 15φB)φA + 3φ2

A).

As shown in the proof, the condition F (φA, φB) > 0 guarantees the consistency of equi-

librium with z < 1/2, and the condition G(φA, φB) > 0 guarantees the consistency of

equilibrium with z > 1/2.

Proposition 4 (i) If F (φA, φB) > 0 and G(φA, φB) < 0, then the equilibrium is unique

with the τ = 1 marginal consumer’s location z < 1/2.

(ii) If F (φB, φA) < 0 and G(φB, φA) > 0, then the equilibrium is unique with z > 1/2.

(iii) If F (φA, φB) > 0 and G(φA, φB) > 0, then there are two equilibria with asymmetric

market shares in τ = 1.

(iv) The equilibrium is unique with z = 1/2 if and only if φA = φB = 0.

(v) For firm i, total equilibrium profit is the largest when φi = 0 regardless of φj, j 6= i.

Proof: See Appendix A.

As the conditions in the above proposition are somewhat complicated, we provide

Figure 3 to illustrate them where each shaded area indicates the range of (φA, φB) for

the existence of each type of equilibrium. As shown in Figure 3, the conditions for the

equilibrium with z < 1/2 require φA be larger than φB, and include the case analyzed

in Lemma 4. As we have also argued above, the conditions for the existence of both

equilibria are that φA and φB are not very much apart from each other, and include the

case studied in our main model, i.e., φA = φB = 1.

— Figure 3 goes about here. —

The last part of Proposition 4 has important implications on the firm’s decision to

invest in consumer addressability. It implies that, if firms have choice over φi’s, it is
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a dominant strategy for each firm to choose φi = 0. Thus even if there is no cost

in choosing φi, both firms choose φi = 0 in dominant strategy equilibrium. This is in

contrast to Chen and Iyer (2002) who find that, even when the cost of investment is zero,

the equilibrium is asymmetric with one firm choosing full addressability, i.e., φi = 1. The

main difference is dynamics. As shown previously, use of personalized prices in τ = 2

intensifies competition in τ = 1, and more so when both firms use personalized prices.

The intensified competition in τ = 1 negates the benefits of consumer addressability

and more sophisticated pricing capabilities in τ = 2. In addition, Chen and Iyer (2002)

assume firms do not target the consumers who are not addressable, which further softens

competition and increases the value of addressability.

4 Endogenous Location Choice

We now turn to the full game where firms optimally choose their locations. The first

period is the standard Hotelling game in which each firm chooses location and a uniform

price. As before, the locations are fixed over two periods. Denote firm A’s location by

a and firm B’s location by b with 0 ≤ a ≤ b ≤ 1. Once again it is easy to see that each

firm’s τ = 1 market segment is a connected set. Without loss of generality, we denote

firm A’s τ = 1 market segment by A = [0, z] with a ≤ z ≤ b.24 In the second period,

firms compete by using personalized prices whenever possible. An equilibrium consists

of each firm’s location and prices over the two periods.

For general values of δc and δf , finding closed-form solutions for equilibrium locations

is not possible as it involves solving quadratic equations simultaneously. In addition,

there are only mixed-strategy equilibria for some values of the discount factors, making

it hard to derive clear intuition. Thus we focus on the case when δc = 0 and δf = 1,

which is the same case we discussed in detail in the previous section. This allows us

a clear comparison of the equilibria with or without location choice. Nonetheless we

provide in Appendix B general analysis for all possible values of the discount factors and

derive several observations on the properties of equilibria.25 For example, in case δc = 1,

the analysis shows: for small values of δf , maximal differentiation obtains in equilibrium

and the pricing equilibria for the subgame are identical to those in the previous section;

as δf increases, there are two pure-strategy equilibria with one firm choosing an interior

location; when δf = 1, pure-strategy equilibria do not exist. The analysis also shows

24To see that a ≤ z ≤ b holds in equilibrium, we note that firm A’s (firm B’s, resp.) τ = 2 profit
increases (decreases, resp.) in z. In addition, if z < a, then firm A can increase its τ = 1 profit by
lowering its τ = 1 price, hence increasing z. Similarly if z > b, then firm B can increase its τ = 1 profit
by lowering its τ = 1 price, thereby decreasing z.

25First, we derive necessary and sufficient conditions for maximal differentiation (a = 0, b = 1) to
become an equilibrium outcome. Second, we derive sufficient conditions for the existence of pure-strategy
equilibria. Third, we show that there does not exist a pure-strategy equilibrium if δc = δf = 1.
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that, when δc = 0, equilibria exist in pure strategies with maximal differentiation for

small values of δf , and asymmetric location choice for large values of δf . Thus the case

we focus on in this section, δc = 0 and δf = 1, leads to asymmetric location choice in

equilibrium.

We solve the game backwards in three steps. First, given (a, b, z), we find the equilib-

rium of the τ = 2 pricing game. Second, given (a, b), we solve for the τ = 1 prices. Given

our simplification δf = 1, each firm chooses its τ = 1 price to maximize un-discounted

total profit. This leads to both τ = 1 prices and z expressed in terms of (a, b). Finally

we solve for the equilibrium location choice.

4.1 Second period

Analogous to the previous case with maximal differentiation, we divide analysis into

two cases depending on where consumers lie relative to the midpoint between the two

firms: z ≤ (a+ b)/2 and z ≥ (a+ b)/2. Following the argument used previously, we can

show the following.

Lemma 5 Suppose z ≤ (a+ b)/2. Then the unique equilibrium in τ = 2 is given by

PA(x) =

(a+ b− 2x)(b− a)t if x ∈ [0, z],

(a+ b− 2z)(b− a)t

2
if x ∈ [z, 1],

PB(y) =


0 if y ∈ [0,

a+ b+ 2z

4
],

(4y − 2z − a− b)(b− a)t

2
if y ∈ [

a+ b+ 2z

4
, 1].

The corresponding profits are

π2
A =

t

8
(b− a)

(
(a+ b)2 + 4(a+ b)z − 4z2

)
,

π2
B =

t

16
(b− a)(4− a− b− 2z)2.

Proof: See Appendix A.

Lemma 6 Suppose z ≥ (a+ b)/2. Then the unique equilibrium in τ = 2 is given by

PA(x) =


(2z − 4x+ a+ b)(b− a)t

2
if x ∈ [0,

a+ b+ 2z

4
],

0 if x ∈ [
a+ b+ 2z

4
, 1],

PB(y) =


(2z − a− b)(b− a)t

2
if y ∈ [0, z],

(2y − a− b)(b− a)t if y ∈ [z, 1].
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The corresponding profits are

π2
A =

t

16
(b− a)(a+ b+ 2z)2,

π2
B =

t

8
(b− a)

(
8(1− a− b) + (a+ b)2 + 4(a+ b)z − 4z2

)
.

Proof: See Appendix A.

As before, one can verify that both firms’ τ = 2 profit functions are continuous in z,

π2
A increases in z, and π2

B decreases in z. In equilibrium with z ≤ (a+b)/2, all consumers

in [0, z] choose firm A in both periods, those in [z, a+b+2z
4 ] choose firm B in τ = 1 but

switch to firm A in τ = 2, and the rest choose firm B in both periods. In the other

equilibrium, some consumers switch from firm A to firm B.

4.2 First period: price

Next we solve for the equilibrium prices in τ = 1 given locations fixed at a and b.

Given δc = 0, the marginal consumer z satisfies P 1
A + (z − a)2t = P 1

B + (b− z)2t, hence

z =
a+ b

2
+
P 1
B − P 1

A

2(b− a)t

where z ≤ (a+ b)/2 if and only if P 1
A ≥ P 1

B. Proceeding similarly as before, we can show

the following.

Lemma 7 Given fixed locations a and b with a ≤ b, the price game in τ = 1 has two

equilibria:

(i) P 1
A =

2(3 + 2a+ 2b)(b− a)t

13
and P 1

B =
2(5− a− b)(b− a)t

13
with z =

4 + 7a+ 7b

26
;

(ii) P 1
A =

2(3 + a+ b)(b− a)t

13
and P 1

B =
2(7− 2a− 2b)(b− a)t

13
with z =

8 + 7a+ 7b

26
.

1. If a + b > 84
13
√

70−28
' 1.04, then only the first equilibrium exists. 2. If 84

13
√

70−28
≥

a+ b ≥ 2(13
√

70−70)

13
√

70−28
' 0.96, then both equilibria exist. 3. If 2(13

√
70−70)

13
√

70−28
> a+ b, then only

the second equilibrium exists.

Proof: See Appendix A.

Lemma 7 shows that the τ = 1 pricing game has different equilibria depending on

the range of a + b. In particular, there are multiple equilibria when a + b is close to

1. When a + b = 1, the two firms’ locations are symmetric in that they are located

exactly in the opposite position from the center. This includes the case we studied

in Section 3, namely a = 0 and b = 1. As discussed previously, symmetric locations
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lead to asymmetric incentives for price cut whereby one firm has more incentives to

price aggressively in τ = 1 than the other firm. This results in multiple equilibria

in the continuation game. As we show below, the multiplicity of pricing equilibria in

turn makes symmetric locations untenable as an equilibrium outcome since one firm can

always deviate to its preferred equilibrium in the continuation game.

4.3 First period: location

Let us now turn to the equilibrium location choice. Lemma 7 shows that the con-

tinuation game has multiple equilibria in the intermediate range of a + b. Thus each

firm’s location choice depends on which of these equilibria each firm anticipates in the

subgame following its location choice. The equilibrium location choice in turn should be

consistent with the anticipated equilibrium of the pricing subgame.

Lemma 8 The location game in τ = 1 has two equilibria:

(i) a =
2
√

56029− 347

621
' 0.2 and b = 1, which is followed by the equilibrium of the

pricing subgame where z =
4 + 7a+ 7b

26
;

(ii) a = 0 and b =
968− 2

√
56029

621
' 0.8, which is followed by the equilibrium of the

pricing subgame where z =
8 + 7a+ 7b

26
.

Proof: See Appendix A.

It is worth noting that equilibrium product choice does not lead to maximal differ-

entiation in either of the two equilibria. We offer detailed discussions in the next section

where, for clarity of exposition, we round equilibrium locations to the first decimal point,

i.e., a = 0.2 in the first equilibrium and b = 0.8 in the second. This simplification does

not change our qualitative results and discussions in any meaningful way.

4.4 Equilibria and discussions

Collecting the results from Lemmas 5 - 8, we have

Proposition 5 With endogenous location choice, there are two equilibria given by:
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(i) a = 0.2, b = 1; P 1
A = 216t/325, P 1

B = 152t/325 with z = 31/65;

PA(x) =


8(3− 5x)t

25
if x ∈ [0,

31

65
],

32

325
t if x ∈ [

31

65
, 1],

PB(y) =


0 if y ∈ [0,

7

13
],

8(13y − 7)t

65
if y ∈ [

7

13
, 1].

(ii) a = 0, b = 0.8; P 1
A = 152t/325, P 1

B = 216t/325 with z = 34/65;

PA(x) =


8(7− 13x)t

65
if x ∈ [0,

7

13
],

0 if x ∈ [
7

13
, 1],

PB(y) =


32t

325
if y ∈ [0,

34

65
],

8(5y − 2)t

25
if y ∈ [

34

65
, 1].

In Section 3 where locations were exogenously fixed at a = 0 and b = 1, we found

that there are two equilibria in the τ = 1 pricing game. When locations are chosen

endogenously, the above proposition shows that there are two equilibria in the τ = 1 lo-

cation game, each associated with a unique equilibrium in the continuation pricing game.

In particular, there cannot be a location equilibrium followed by multiple equilibria in

the continuation game. The intuition is as follows. Fix firm B’s location at b. Suppose

firm A’s best response is a such that the continuation game admits two equilibria, one

favoring firm A and the other favoring firm B. If the continuation game is played in firm

A’s favor, then firm B is better off deviating from b. If the continuation game is played

in firm B’s favor instead, then firm A is better off deviating from a. This argument also

implies that there cannot be equilibrium locations such that a + b = 1, since they lead

to multiple pricing equilibria as shown in Lemma 7. Thus the multiplicity of equilib-

rium prices changes to the multiplicity of equilibrium locations when location choice is

endogenous.

Neither of these equilibria feature maximal differentiation, i.e., a = 0, b = 1. We

have already argued above that the case a + b = 1 leads to multiple equilibria in the

continuation game, which creates opportunities for profitable deviation. An alternative

explanation can be offered based on dynamic consideration and the use of personalized

pricing in τ = 2. The former compels firms to make forward-looking decisions in τ = 1

while the latter allows firms to protect their market more effectively than when they

choose prices at higher levels of aggregation. Suppose firm B chooses b = 1. If firm A
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chooses a = 0, it can benefit from softened competition, hence larger τ = 1 profits than

when it chooses an interior location. If firm A chooses an interior location instead, it

can improve its τ = 2 profits due to its aggressive positioning, which allows firm A to

protect its turf better and poach some of firm B’s customers in τ = 2. Thus choosing an

interior location can be optimal if firm A does not discount its τ = 2 profits too much,

or δf is not too small.

To see this more clearly, suppose firm A chooses a = 0 in response to b = 1. Then

there are two possibilities in the continuation game based on the equilibria found in

Lemma 7 (also Proposition 1). First, firm A can price less aggressively and have a

smaller market share in τ = 1, i.e., z = 11/26 (Lemma 7(i)). In this case, firm A’s

profits are π1
A = 0.325t and π2

A = 0.247t. But if firm A deviates by choosing a = 0.2, its

profits change to π1
A = 0.317t and π2

A = 0.282t (Proposition 3(i)). Firm A’s τ = 1 profit

decreases since it is now closer to firm B, which intensifies competition. But its τ = 2

profit increases thanks to its position closer to the center. If δf is large enough, then the

discounted profit from the latter can be larger than that from the former, whence a = 2

can be firm A’s profitable deviation. Second, firm A can price more aggressively with a

view to securing a larger market share, z = 15/26 (Lemma 7(ii)). But in this case, firm

B can deviate by choosing b = 0.8 and increase its profits insofar as firm B does not

discount its τ = 2 profits too much.

The above argument suggests that maximal differentiation can be an equilibrium

outcome if δf is small. Consider the case δf = 0 for example. Then firms do not care

about their τ = 2 profit in their τ = 1 location decisions. Softening the τ = 1 competition

becomes the primary concern in this case, which would lead to maximal differentiation.

Thus δf = 0 is one sufficient condition for the equilibrium with maximal differentiation.

In Appendix B, we provide the complete necessary and sufficient conditions for maximal

differentiation to be an equilibrium outcome. Roughly speaking, the conditions require

δf to be bounded above such that, for small values of δf , δc is irrelevant, and for larger

values of δf , δc needs to be bounded above as well with the bound decreasing as δf

increases. The bound on δc can be understood since larger δc intensifies competition,

which leads one firm to choose an interior location.

Comparing the above equilibria with those from Section 3 leads to several obser-

vations. We discuss them below based on the equilibrium with a = 0.2, b = 1 and

z = 31/65.26 In this equilibrium, firm A’s τ = 1 market share is [0, z] but its τ = 2

market share increases to [0, ỹ] where ỹ = 7/13. In τ = 2, firm A continues to serve

all its τ = 1 customers with personalized price PA(x) that decreases from 24t/25 to

64t/325 on x ∈ [0, z], and poaches firm B’s τ = 1 customers in [z, ỹ] with a uniform

26For the other case, we can simply swap firm A and firm B and the same explanations apply.
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price PA(B) = 32t/325. In τ = 2, firm B charges a uniform price 0 to all firm A’s

τ = 1 customers as well as its τ = 1 customers in [z, ỹ]. But the latter switch to firm A.

For its remaining τ = 1 customers, firm B uses personalized price PB(y) that increases

from 0 to 48t/65 on y ∈ [ỹ, 1]. Calculating equilibrium profits in this case, we have

π1
A = 0.317t, π2

A = 0.282t, π1
B = 0.245t and π2

B = 0.170t. Thus firm A has larger profit

than firm B in both periods. Figure 4 shows each firm’s pricing strategies in τ = 2 and

how market shares change over time in this equilibrium, where thick solid lines (dashed

lines, resp.) represent firm A’s (B’s, resp.) prices.

— Figure 4 goes about here. —

First, firm A has a smaller market share in τ = 1 although its location is closer to

the center compared to firm B. But firm A secures a larger market share in τ = 2.

This is due to different pricing strategies available in each period. In τ = 1, firm A has

to charge the same price to all its customers including those to the left of firm A who

are in its backyard. For these customers, firm A has significant location advantage over

firm B. Thus firm A can extract large surplus from these customers by charging high

price. But firm A has to charge the same high price to customers to its right and, as a

result, firm A concedes a larger market share to its rival. In τ = 2, however, firm A can

leverage its location to protect its turf through personalized prices and poach firm B’s

customers. Thus one can interpret firm A’s strategy in this case as using its strategic

location to extract large surplus from its loyal customers in τ = 1 when it cannot price-

discriminate, and expanding by poaching in τ = 2 when it can use personalized prices.

In this equilibrium, firm A has larger profit than firm B in both periods. This is in

contrast to the case when locations were fixed at 0 and 1: in that case, the firm with

a larger market share in τ = 1 continues to have a larger market share in τ = 2 and

obtains larger profit in both periods although its market share decreases in τ = 2 due to

customer switching.

Second, the τ = 1 prices are lower than the Hotelling price, once again confirming the

intuition that the competition in personalized pricing in τ = 2 intensifies competition

in τ = 1. Compared to the case when locations are fixed at 0 and 1, one firm charges

a higher price while the other charges a lower price. Of course we need to be more

precise in the comparison since there are two equilibria given fixed locations. Since

the above equilibrium is the one that favors firm A, a meaningful comparison would

be with the equilibrium given fixed locations that also favors firm A, i.e., the second

equilibrium in Proposition 1 with δc = 0 and δf = 1. In the latter, the first-period

prices are P 1
A = 8t/13 < 216t/325 and P 1

B = 10t/13 > 152t/325. Although one firm

charges a higher price and the other charges a lower price, the average price is lower
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under endogenous location choice: the average τ = 1 price is zP 1
A + (1 − z)P 1

B, which

equals 0.68t under fixed locations and 0.562t under endogenous location choice. In this

sense, endogenous location choice intensifies competition in τ = 1.

Third, profits are smaller for both firms in each period when location choice is en-

dogenous. Comparing the same pair of equilibria as before, firm A’s profit changes

from 0.355t to 0.317t in τ = 1 and from 0.290t to 0.282t in τ = 2. Firm B’s profit

changes from 0.325t to 0.245t in τ = 1 and from 0.247t to 0.170t in τ = 2. The decrease

in profits is primarily due to the fact that, given endogenous location choice, the two

products are less than maximally differentiated, which intensifies competition in both

periods. It is easy to verify that there is more customer switching with endogenous

location choice. In the equilibrium with a = 0.2 and b = 1, the fraction of customers

who switch from firm B to firm A is 7/13−31/65 ≈ 0.061. In the equilibrium with fixed

locations that favors firm A, the fraction of customers who switch from firm A to firm

B is 15/26 − 7/13 ≈ 0.038. Thus firms are worse off when they choose locations than

when locations are fixed exogenously at 0 and 1.

Finally, some consumers are better off and some worse off when firms choose loca-

tions optimally compared to when locations are fixed at 0 and 1. For example, in the

equilibrium with a = 0.2 and b = 1, it is easy to verify that consumer x = 0 is worse off.

It is because this consumer is in the deepest territory of firm A when a = 0.2 and has to

incur transportation costs in both periods while not benefiting from firm B’s poaching

offer. On the other hand, consumer y = 1 is better off in equilibrium with a = 0.2

and b = 1. But welfare is higher with endogenous location choice because the average

distance traveled by a consumer is smaller. Specifically, in equilibrium with a = 0.2 and

b = 1, the average distance traveled by a consumer is around 0.195 in τ = 1 and 0.184

in τ = 2.27 When locations are fixed at 0 and 1, the minimum average distance traveled

by a consumer is 0.25.

We can summarize the main difference between the case with fixed locations and

endogenous location choice as follows. With locations fixed at maximal distance, each

firm’s main strategy is to price aggressively and secure a larger market share in τ = 1.

Although the firm with a larger market share will inevitably lose some customers to its

rival in τ = 2, personalized pricing enables the firm to minimize such poaching. When

location choice is endogenous, firms cannot commit to maximal differentiation. Thus

their main strategy is to choose aggressive positioning and extract surplus from loyal

customers in τ = 1, and leverage its position to poach rival’s customers in τ = 2. But

27In equilibrium with a = 0.2 and b = 1, consumers in [0, 0.477] purchase from firm A in τ = 1. Thus
the average distance traveled is (0.22 + (0.477 − 0.2)2 + (1 − 0.477)2)/2 ≈ 0.195. In τ = 2, consumers
in [0, 0.538] purchase from firm A. Thus the average distance traveled is (0.22 + (0.538 − 0.2)2 + (1 −
0.538)2)/2 ≈ 0.184.
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such aggressive positioning intensifies competition, making both firms worse off relative

to the case with maximal differentiation. Nevertheless aggressive positioning is loss-

minimizing in the sense that it helps the firm to avoid the worst outcome: the firm is

better off in the best equilibrium under endogenous location choice where it chooses an

interior location than in the worst equilibrium under fixed locations where it concedes a

larger market share to its rival. Summarizing, we have

Proposition 6 Suppose δc = 0 and δf = 1. In equilibrium where firms choose locations

in τ = 1, firms are worse off in each period, but social welfare is higher compared to

when locations are fixed at maximal distance.

5 Implications for Management

The central message from our study is that more customer information is bad for

competing firms insofar as the sole use of customer information is for pricing. The

main driver of these results is the asymmetric information whereby firms know more

about their own customers, allowing them to protect their turf better in the second

period. This in turn intensifies competition in the first period when information is

gathered. Unless firms discount future too much, such asymmetric information leads to

multiple equilibria, each favoring one firm over the other. When product choice is fixed

at maximal differentiation, the multiplicity of equilibria results in a contest for market

share since a larger market share renders the firm strategic edge in the second period.

When product choice is also endogenous, the contest is for more aggressive positioning.

In the end, the more aggressive firm, whether through pricing or positioning, can force

the game to be played to its advantage. But both firms end up worse off compared

to when they can credibly make any of the commitments that include use of simpler

pricing strategies, substantial product differentiation, or pricing strategies that depend

on short-term profits. In view of these findings, we discuss below some implications for

management decisions in regards to customer information and pricing.

Customer information is crucial to effective customer relationship management, which

aims at building one-to-one relationships with customers that can ultimately drive value

for the firm. Consumer heterogeneity implies that the firm should rely on diverse mar-

keting strategies to target different customers. For example, some customers may value

customer service more than lower price, or prefer interacting through live chats to phone

conversations. Likewise a firm’s decision to invest in consumer addressability also de-

pends on diverse factors, improved pricing capabilities being only one of them. But if

competitors interpret such investment primarily as a signal to employ more aggressive

pricing policies, competition can be intensified. To counter this, the firm can rely on a
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number of strategies that can credibly signal its intent to soften competition.

The first set of such strategies directly relate to the firm’s pricing policy such as price

matching guarantees or most-favored customer clauses. By adopting a price matching

guarantee, the firm commits to its own τ = 1 customers to match the rival’s poaching

price. For example, if firm A has a price matching guarantee in place, consumer x ∈ A
now faces a personalized price that cannot be higher than firm B’s poaching price, i.e.,

PA(x) ≤ PB(A). This breaks down the strategy to extract surplus from loyal customers

by charging them more and poach the rival’s customers by charging them less. This in

turn implies that the firm does benefit from a larger market share, thereby softening

competition in τ = 1. When both firms adopt price matching guarantees in our duopoly

case, the end result is softened competition and higher price.28 A most-favored customer

clause is a firm’s promise to a customer that no other customers will be offered a lower

price. Suppose firm A issues a most-favored customer clause to all its τ = 1 customers.

Then consumer x ∈ A faces in τ = 2 a personalized price PA(x) ≤ PA(B). Thus firm

A cannot be too aggressive in offering a poaching price to new customers since the

low poaching price also applies to all its τ = 1 customers. Similar to price matching

guarantees, the end result is also softened competition when both firms issue most-

favored customer clauses to their τ = 1 customers (Cooper, 1986; Schnitzer, 1994).29

The second set of strategies can soften competition through creating various switching

costs for a firm’s repeat customers. First, a firm can utilize customer information and

offer new enhanced services to its repeat customers. For example, repeat customers at

Amazon can save the cost of entering information on repeat purchase, receive ‘reminder

services’ or other recommendations. To the extent that consumers value this type of

services, the resulting switching costs make it harder for firms to poach rival’s customers.

As shown by Acquisti and Varian (2005), these additional enhanced services can make

behavior-based price discrimination profitable. In a similar vein, a firm can build a

loyal customer base through various reward programs, personalized discounts, customer

experience management, and so on (Kumar and Shah, 2004; Verhoef et al. 2009). Loyal

customers are less price-sensitive, which allows firms to use dynamic pricing to screen

out the more price-sensitive segment (Chen and Zhang, 2009). Loyal customers may

also have higher-volume demand compared to one-off buyers (Shin and Sudhir, 2010). In

addition, reward programs such as loyalty rewards can soften competition by facilitating

tacit collusion (Fong and Liu, 2011). Thus the factors mentioned above can also lead to

28It is well known that price matching guarantees facilitate tacit collusion in a concentrated industry
with low consumer search costs, although the opposite may be the case with enough heterogeneity in
consumer search costs and brand loyalty. See, for example, Chen et al. (2001).

29In some cases, most-favored customer clauses can be ruled anticompetitive, Du Pont and Ethyl
being the best-known example. More recently a similar decision was made in Germany against online
hotel portals (Heinz, 2016).
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more profitable behavior-based pricing than what was analyzed in our model.

Finally, firms may benefit from sharing customer information.30 The multiplicity of

equilibria in our model stems from the asymmetric information in τ = 2, which intensifies

competition in τ = 1 as each firm tries to play its preferred equilibrium. Therefore if firms

have symmetric information in τ = 2 leading to symmetric equilibrium, then competition

in τ = 1 can be softened even though it may intensify competition in τ = 2. To see this,

suppose the two firms share the information about their τ = 1 customers and, as a result,

both firms have perfect information on all consumers in τ = 2. Then the equilibrium in

τ = 2 will be the same as the Thisse and Vives outcome and so the equilibrium in τ = 1

will be the standard Hotelling outcome. The resulting profit for each firm is t/2 in τ = 1

and t/4 in τ = 2. It is easy to see the total discounted profit in this case is larger for

both firms than in both equilibria in our main model for all (δc, δf ).31

6 Conclusion

This paper has studied a two-period model of differentiated duopoly where firms

compete à la Hotelling in the first period, and compete using personalized pricing for

their repeat customers in the second period. A key departure in our paper from most of

the existing studies is that information is asymmetric and personalized. The asymmet-

ric information significantly alters the competitive outcomes. In contrast to the existing

literature, gathering consumer information results in multiple asymmetric equilibria in

pricing and (when endogenous) in product choice unless firms discount future too much.

Firms are worse off when they have more customer information that can be used for

pricing, and more so when they also make product choice. Thus an important man-

agement question is how best to utilize customer information while avoiding destructive

price competition. This paper has provided some discussions in this direction.

There are a number of important issues we have left out in the current paper. We

briefly discuss two of them. First, consumers can behave strategically to interfere with

information gathering by firms, or to take advantage of favorable poaching offers. For

example, consumers can delay purchasing with a view to receiving a lower price offer in

30Firms can and do share customer information in various ways. Examples include data co-ops, data-
marketing firms such as the DMA (Data & Marketing Association - https://thedma.org) or the ADMA
(Association for Data-Driven Marketing and Advertising - https://www.adma.com.au), or Computer
Reservation Systems in various travel industries. See Liu and Serfes (2006) or Jentzsch et al. (2013) for
more details.

31Although not directly comparable to our model, several other studies discuss the benefits and costs
of sharing customer information for pricing purposes. Chen et al. (2001a) analyze beneficial information
sharing when customer segmentation is imperfect. Shaffer and Zhang (2002) and Liu and Serfes (2006)
discuss beneficial one-way information sharing given enough firm heterogeneity. Jentzsch et al. (2013)
show information sharing can be beneficial even when firms are symmetric if customer information is
multi-dimensional.
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the future (Villas-Boas, 2004; Chen and Zhang, 2009). They can also behave more proac-

tively by, for example, deleting cookies, creating new accounts, or adopting anonymous

payments (Acquisti and Varian, 2005). It may appear at first glance that such strategic

behavior by consumers would undermine personalized pricing. But we suspect different

types of strategic behavior work through different mechanisms, leading to different out-

comes. For example, delay in purchase could signal consumers’ price sensitivity, which

sellers can take advantage of to screen different types of consumers (Chen and Zhang,

2009). But this argument rests on sufficient pre-existing consumer heterogeneity. On

the other hand, the second type of strategic behavior, namely ‘deleting cookies’, is likely

to have more robust implications. Acquisti and Varian (2005) briefly touch on this case,

showing that competing sellers can benefit even when consumers can delete cookies if

they can offer enhanced services to repeat buyers. Our preliminary work in this direction

suggests that sellers benefit from this type of strategic consumers even in the absence of

enhanced services. The reasoning is as follows. Suppose consumer x ∈ A deletes cookies.

Then in τ = 2 she faces three prices, PA(x), PB(A), PA(B) instead of the first two as in

our current paper. This makes it harder for firm A to poach firm B’s customers as the

low poaching price PA(B) also applies to all its loyal customers who delete cookies. The

end result is softened competition since poaching becomes more costly facing strategic

consumers.

Second, we have assumed away behavioral elements in consumers’ purchase decisions

such as fairness concerns. But they have real economic consequences if consumers eschew

buying from a business that engages in personalized pricing as the Amazon example

shows. Li and Jain (2016) incorporate fairness concerns to the model in Fudenberg

and Tirole (2000) where fairness concerns are assumed to generate negative utility to

consumers in proportion to the difference in the two prices their firm offers in the second

period. Clearly such fairness concerns make it harder for firms to offer an aggressive

poaching price. As a result, competition is softened in the second period and, given this,

the first-period competition is also softened. Although Li and Jain (2016) focus on third-

degree price discrimination, adding fairness concerns to our model with personalized

pricing is also likely to lead to similar results. To see this, suppose consumer x ∈
A derives disutility in τ = 2 equal to λ|PA(x) − PA(B)| where λ > 0 indicates the

magnitude of disutility.32 Then consumer x will choose firm A in τ = 2 if PA(x) +

x2t + λ|PA(x) − PA(B)| ≤ PB(A) + (1 − x)2t. The third term on the left-hand side

means that whenever firm A cuts PA(B) to poach firm B’s customers, firm A should also

cut PA(x) to continue to serve its loyal customers. This increases the cost of poaching,

32By the definition of personalized prices, we assume that consumer x ∈ A cannot observe PA(x′) for
all x′ ∈ A, x′ 6= x.
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which should soften competition. Interestingly, in the extreme case where λ → ∞, this

model will become equivalent to the case where consumers can delete cookies because

any meaningful poaching price is also what loyal customers would choose to pay when

they can delete cookies. That is, firm A should offer PA(x) = PA(B) to keep customer x.

The types of responses by consumers to personalized pricing discussed above, whether

strategic or behavioral, remain areas for future research.

Appendix A: Proofs

Proof of Lemma 3: Using π2
A in Lemma 2 and the location of marginal consumer z,

we can express firm A’s profit function as

ΠA =


P 1
A

(2− δc)t− 2(P 1
A − P 1

B)

2(2− δc)t
+ δf

(2− δc)2t2 − 2(P 1
B − P 1

A)2

4(2− δc)2t
if P 1

A ≥ P 1
B,

P 1
A

(2− δc)t− 2(P 1
A − P 1

B)

2(2− δc)t
+ δf

[(2− δc)t+ P 1
B − P 1

A]2

4(2− δc)2t
if P 1

A ≤ P 1
B.

The first-order conditions for profit maximization are then

∂ΠA

∂P 1
A

=


2(2− δc + δf )P 1

B − 2(4− 2δc + δf )P 1
A + (2− δc)2t

2(2− δc)2t
= 0 if P 1

A ≥ P 1
B,

(4− 2δc − δf )P 1
B − (8− 4δc − δf )P 1

A + (2− δc)(2− δc − δf )t

2(2− δc)2t
= 0 if P 1

A ≤ P 1
B.

From the first-order conditions, we have the following reaction function and the respective

profit for firm A:

P 1
A(P 1

B) =


P̃ 1
A(P 1

B) ≡
2(2− δc + δf )P 1

B + (2− δc)2t

2(4− 2δc + δf )
if P 1

B ≤
(2−δc)t

2 ,

P̂ 1
A(P 1

B) ≡
(4− 2δc − δf )P 1

B + (2− δc)(2− δc − δf )t

(8− 4δc − δf )
if P 1

B ≥
(2−δc−δf )t

2 .

ΠA(P 1
B) =



4(P 1
B)2 + 4(2− δc + δf )t(P 1

B) + [(2− δc)2 + 4(2− δc)δf + 2δ2
f ]t2

8(4− 2δc + δf )t

when P 1
A(P 1

B) = P̃ 1
A(P 1

B),

4(P 1
B)2 + 2(4− 2δc + δf )t(P 1

B) + (2− δc)(2− δc + 2δf )t2

4(8− 4δc − δf )t

when P 1
A(P 1

B) = P̂ 1
A(P 1

B).

For P 1
B ∈ [

(2−δc−δf )t
2 , (2−δc)t

2 ], firm A has two local optimal prices, P̃ 1
A(P 1

B) and
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P̂ 1
A(P 1

B). Comparing firm A’s profits for each case, we have

4(P 1
B)2 + 4(2− δc + δf )t(P 1

B) + [(2− δc)2 + 4(2− δc)δf + 2δ2
f ]t2

8(4− 2δc + δf )t

≥
4(P 1

B)2 + 2(4− 2δc + δf )t(P 1
B) + (2− δc)(2− δc + 2δf )t2

4(8− 4δc − δf )t

⇔ P 1
B ≤

(√
2[8(2− δ)2 + 2(2− δc)δf − δ2

f ]− (2− δc + 2δf )
)
t

6
≡ P̄ 1.

One can verify that P̄ 1 ∈ [
(2−δc−δf )t

2 , (2−δc)t
2 ]. Thus firm A’s reaction function is

P 1
A(P 1

B) =


P̃ 1
A(P 1

B) ≡
2(2− δc + δf )P 1

B + (2− δc)2t

2(4− 2δc + δf )
if P 1

B ≤ P̄ 1,

P̂ 1
A(P 1

B) ≡
(4− 2δc − δf )P 1

B + (2− δc)(2− δc − δf )t

(8− 4δc − δf )
if P 1

B ≥ P̄ 1.

Applying the same argument to firm B’s best response problem, we can derive its

reaction function as:

P 1
B(P 1

A) =


P̃ 1
B(P 1

A) ≡
2(2− δc + δf )P 1

A + (2− δc)2t

2(4− 2δc + δf )
if P 1

A ≤ P̄ 1,

P̂ 1
B(P 1

A) ≡
(4− 2δc − δf )P 1

A + (2− δc)(2− δc − δf )t

8− 4δc − δf
if P 1

A ≥ P̄ 1.

Solving these reaction functions simultaneously, we can derive the equilibrium prices

given in Lemma 3. �

Proof of Proposition 3: The total discounted profit given third-degree price dis-

crimination is ΠFT = (3 + δc)t/6 + δf (5t/18). With personalized pricing, one firm has

larger total discounted profit than the other. Denote the larger discounted profit by

ΠPP = π1 + δfπ
2. We will show ΠFT ≥ ΠPP for all (δc, δf ).

First, consider the case δf = 0. Then ΠFT = (3 + δc)t/6 ≥ t/2 for all δc ≥ 0. From

Proposition 1, we have π1 = (2 − δc)/4, hence π1 ≤ 1/2 for all δc with equality when

δc = 0. Thus ΠFT ≥ ΠPP for all δc. Consider next the case δf 6= 0. For each δf , ΠFT

attains the minimum value when δc = 0, which is denoted by Πmin
FT = t/2 + δf (5t/18).

On the other hand, ΠPP attains the maximum value when δc = 0, which we denote by

Πmax
PP . It suffices to show Πmin

FT ≥ Πmax
PP for all δf . From Proposition 1, one can show

that Πmin
FT −Πmax

PP is strictly increasing in δf with Πmin
FT −Πmax

PP = 0 when δf = 0. Thus

Πmin
FT > Πmax

PP for all δf 6= 0. Combining the two cases, we have shown ΠFT ≥ ΠPP for

all (δc, δf ). �

Proof of Lemma 4: This is a special case of Proposition 4 when φA = 1 and φB = 0.
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So the proof is provided at the end of the proof of Proposition 4. �

Proof of Proposition 4: We start with τ = 2. In what follows, we denote personalized

pricing by P and uniform price by U.

Suppose z ≤ 1/2. Consider the segment [0, z] first. If firm A uses P, then the prices

are given by PA(x) = (1 − 2x)t and PB(A) = 0 as in our main model. If firm A uses

U, then the indifferent consumer is x = (t+ PB(A)− PA(A))/2t. The profits from this

segment are PA(A)x for firm A and PB(A)(z−x) for firm B. Thus the prices are given by

PA(A) = (1 + 2z)t/3 and PB(A) = (4z− 1)t/3 (we ignore the case z ≤ 1/4, which never

happens on the equilibrium path). Consider next the segment [z, 1]. If firm B uses P,

the prices are given by PA(B) = (1−2z)t/2 and PB(y) = (4y−2z−1)t/2 as in our main

model. If firm B uses U, then the indifferent consumer is x = (t + PB(B) − PA(B))/2t

and the profits from this segment are PA(B)(x− z) and PB(B)(1− x). Thus the prices

are PA(B) = (3− 4z)t/3 and PB(B) = (3− 2z)t/3.

Suppose next z ≥ 1/2. On the segment [0, z], if firm A uses P, the prices are given

by PA(x) = (1 + 2z − 4x)t/2 and PB(A) = (2z − 1)t/2 as in our main model. If firm A

uses U, then the outcome was already derived above for the case z ≤ 1/2, so the prices

are PA(A) = (1 + 2z)t/3 and PB(A) = (4z− 1)t/3. On the segment [z, 1], if firm B uses

P, the prices are given by PA(B) = 0 and PB(y) = (2y − 1)t as in our main model. If

firm B uses U, then the outcome is the same as in the case z ≤ 1/2, and the prices are

PA(B) = (3−4z)t/3 and PB(B) = (3−2z)t/3 (again we ignore the case of z ≥ 3/4 which

never happens on the equilibrium path).

Based on the results, we derive below the location of the τ = 1 marginal consumer z.

Suppose first z ≤ 1/2. If z chooses firm A in τ = 1, then in τ = 2, z stays with

firm A if and only if firm A uses P, regardless of firm B’s pricing policy, and pays price

PA(z) = (1−2z)t. But z switches to firm B if and only if firm A uses U, again regardless

of firm B’s pricing policy, and pays the poaching price PB(A) = (4z−1)t/3. On the other

hand, if z chooses firm B in τ = 1, then in τ = 2, z switches to firm A at the poaching

price PA(B) = (1 − 2z)t/2 if and only if firm B uses P, and at PA(B) = (3 − 4z)t/3 if

and only if firm B uses U. The indifference condition for z is then given by

P 1
A + tz2 + φA

(
(1− 2z)t+ tz2

)
+ (1− φA)

(
(4z − 1)t

3
+ t(1− z)2

)
= P 1

B + t(1− z)2 + φB

(
(1− 2z)t

2
+ tz2

)
+ (1− φB)

(
(3− 4z)t

3
+ tz2

)
.

The solution to the above, denoted by z is

z =
1

2
+
−3P 1

A + 3P 1
B + (φA − φB)t

(8− 4φA − φB)t
.
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Note that z ≤ 1/2 if and only if 3P 1
B ≤ 3P 1

A + (φB − φA)t.

Suppose next z ≥ 1/2. First, if z chooses firm B in τ = 1, then z stays with firm B if

and only if firm B uses P, and pays price PB(z) = (2z − 1)t. But z switches to firm A if

and only if firm B uses U, and pays the poaching price PA(B) = (3−4z)t/3. On the other

hand, if z chooses firm A in τ = 1, then in τ = 2, z switches to firm B at the poaching

price PB(A) = (2z − 1)t/2 if and only if firm A uses P, and at PB(A) = (4z − 1)t/3 if

and only if firm A uses U. Thus the indifference condition becomes

P 1
A + tz2 + φA

(
(2z − 1)t

2
+ t(1− z)2

)
+ (1− φA)

(
(4z − 1)t

3
+ t(1− z)2

)
= P 1

B + t(1− z)2 + φB
(
(2z − 1)t+ t(1− z)2

)
+ (1− φB)

(
(3− 4z)t

3
+ tz2

)
.

The solution to the above, denoted by z̄ is

z̄ =
1

2
+
−3P 1

A + 3P 1
B + (φA − φB)t

(8− 4φB − φA)t
.

Note that z̄ ≥ 1/2 if and only if 3P 1
B ≥ 3P 1

A + (φB − φA)t.

Given our assumption δf = 1, each firm’s total profit is then

ΠA =



P 1
Az +

{
φAφB

(1+4z−4z2)t
8 + φA(1− φB)

(
(1− z)zt+ (3−4z)2t

18

)
+(1− φA)φB

(
(1+2z)2t

18 + (1−2z)2t
8

)
+(1− φA)(1− φB)

(
(1+2z)2t

18 + (3−4z)2t
18

)}
,

if z ≤ 1/2,

P 1
Az̄ +

{
φAφB

(1+2z̄)2t
16 + φA(1− φB)

(
(1+2z̄)2t

16 + (3−4z̄)2t
18

)
+(1− φA)φB

(1+2z̄)2t
18

+(1− φA)(1− φB)
(

(1+2z̄)2t
18 + (3−4z̄)2t

18

)}
,

if z̄ ≥ 1/2,

ΠB =



P 1
B(1− z) +

{
φAφB

(3−2z)2t
16 + φA(1− φB) (3−2z)2t

18

+(1− φA)φB

(
(4z−1)2t

18 + (3−2z)2t
16

)
+(1− φA)(1− φB)

(
(4z−1)2t

18 + (3−2z)2t
18

)}
,

if z ≤ 1/2,

P 1
B(1− z̄) +

{
φAφB

(1+4z̄−4z̄2)t
8 + φA(1− φB)

(
(2z̄−1)2t

8 + (3−2z̄)2t
18

)
+(1− φA)φB

(
(4z̄−1)2t

18 + z̄(1− z̄)t
)

+(1− φA)(1− φB)
(

(4z̄−1)2t
18 + (3−2z̄)2t

18

)}
,

if z̄ ≥ 1/2.

We now solve for the equilibrium prices in τ = 1. From the above profit functions,
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we can derive firm A’s reaction function as follows:

P 1
A(P 1

B) =



t(64− 40φB + φ2
B − 4(10− 3φB)φA + 12φ2

A) + 4(2 + 5φA + 2φB)P 1
B

2(28− 2φA + φB)
,

if P 1
B ≤

(24− 10φA − 5φB)t

18
,

t(64− 16φA − φ2
A − (88− 17φA)φB + 24φ2

B) + (8 + 8φB − 7φA)P 1
B

(56− 16φB − 13φA)

if P 1
B ≥

(12− 5φA − 7φB)t

9
.

Expressing firm A’s profit in terms of P 1
B that reflects firm A’s best response, we have

ΠA(P 1
B) =



t2(1136− 668φB + 9φ2
B − 2(64− 73φB)φA + 72φ2

A)

72(28− 2φA + φB)t

+
72t(2 + 4φA + 3φB)P 1

B + 324(P 1
B)2

72(28− 2φA + φB)t

if P 1
B ≤

(24− 10φA − 5φB)t

18
,

t2(4(284− 320φB + 81φ2
B)− 2(109− 136φB)φA + 9φ2

A)

36(56− 16φB − 13φA)t

+
18t(8 + 7φA + 12φB)P 1

B + 324(P 1
B)2

36(56− 16φB − 13φA)t

if P 1
B ≥

(12− 5φA − 7φB)t

9
.

For P 1
B ∈ [ (12−5φA−7φB)t

9 , (24−10φA−φB)t
18 ], firm A has two local optimal prices. Comparing

firm A’s profits from each case, we find that the profit when P 1
A ≥ P 1

B + (φA − φB))t/3

(hence z ≤ 1/2) is larger than or equal to that when P 1
A ≤ P 1

B + (φA − φB))t/3 (hence

z̄ ≥ 1/2) if and only if

P 1
B ≤

(
φB
√

2(28− 2φA + φB)(56− 13φA − 16φB)

18(φA + 2φB)

−
(10φ2

A − 3(8− 7φB)φA + 4φB(2 + 3φB))

18(φA + 2φB)

)
t ≡ PBφ.

One can verify that PBφ ∈ [ (12−5φA−7φB)t
9 , (24−10φA−φB)t

18 ]. Thus firm A’s reaction func-

tion is

P 1
A(P 1

B) =



t(64− 40φB + φ2
B − 4(10− 3φB)φA + 12φ2

A) + 4(2 + 5φA + 2φB)P 1
B

2(28− 2φA + φB)
,

if P 1
B ≤ PBφ,

t(64− 16φA − φ2
A − (88− 17φA)φB + 24φ2

B) + (8 + 8φB − 7φA)P 1
B

(56− 16φB − 13φA)

if P 1
B ≥ PBφ.
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Proceeding similarly, we can derive firm B’s the reaction function:

P 1
B(P 1

A) =



t(64− 16φB − φ2
B − (88− 17φB)φA + 24φ2

A) + (8 + 8φA − 7φB)P 1
A

(56− 16φA − 13φB)
,

if P 1
A ≥ PAφ,

t(64− 40φA + φ2
A − 4(10− 3φA)φB + 12φ2

B) + 4(2 + 5φB + 2φA)P 1
A

2(28− 2φB + φA)
,

if P 1
A ≤ PAφ,

where

PAφ ≡

(
φB
√

2(28− 2φB + φA)(56− 13φB − 16φA)

18(φB + 2φA)

−
(10φ2

B − 3(8− 7φA)φB + 4φA(2 + 3φA))

18(φB + 2φA)

)
t.

For z ≤ 1/2, solving the simultaneous equations, P 1
A(P 1

B) = 0 when P 1
B ≤ PBφ and

P 1
B(P 1

A) = 0 when P 1
A ≥ PAφ, we obtain

P 1
A =

(512− 272φB + 21φ2
B − 4(20 + 7φB)φA + 21φ2

B)t

6(64 + 4φA − 5φB)
,

P 1
B =

(512− 128φB + 9φ2
B − 2(184− φB)φA)t

6(64 + 4φA − 5φB)
.

If these prices satisfy P 1
B ≤ PBφ and P 1

A ≥ PAφ, the price pair indeed constitutes

equilibrium and z ≤ 1/2. The condition is

F (φA, φB) ≡ (64 + 4φA − 5φB)φB
√

2(28− 2φA + φB)(56− 13φA − 16φB)

+2(28− 2φA + φB)(10φ2
A − (64− 15φA)φB + 3φ2

B) ≥ 0.

The location of the τ = 1 marginal consumer is then

z =
64− 16φA − 3φB

2(64 + 4φA − 5φB)

and z ≤ 1/2 if and only if 10φA ≥ φB, which is satisfied if F (φA, φB) ≥ 0.

For z̄ ≥ 1/2, solving the simultaneous equations, P 1
A(P 1

B) = 0 when P 1
B ≥ PBφ and

P 1
B(P 1

A) = 0 when P 1
A ≤ PAφ, we obtain

P 1
A =

(512− 128φA + 9φ2
A − 2(184− φA)φB)t

6(64 + 4φB − 5φA)
,

P 1
B =

(512− 272φA + 21φ2
A − 4(20 + 7φA)φB − 72φ2

B)t

6(64 + 4φB − 5φA)
.
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If these prices satisfy P 1
B ≥ PBφ and P 1

A ≤ PAφ, the price pair constitutes equilibrium

and z̄ ≥ 1/2. The condition is

G(φA, φB) ≡ (64 + 4φB − 5φA)φA
√

2(28− 2φB + φA)(56− 13φB − 16φA)

+2(28− 2φB + φA)(10φ2
B − (64− 15φB)φA + 3φ2

A) ≥ 0.

The location of the τ = 1 marginal consumer is then

z̄ =
64 + 24φB − 7φA

2(64 + 4φB − 5φA)

and z̄ ≥ 1/2 if and only if 10φB ≥ φA which is satisfied if G(φA, φB) ≥ 0.

From the above follows (i)—(iii). For (iv), it is easy to see that none of the above

conditions are satisfied when φA = φB = 0. Therefore there is only a unique, symmetric

equilibrium, which was shown in Section 3.4. For (v), let Πi(φA, φB) be firm i’s total

profit in equilibrium given (φA, φB). We have already shown ΠA(0, 0) > ΠA(1, 0) >

ΠB(1, 0). One can check the same relation holds for any φB, hence ∂ΠA/∂φA < 0 for

all φB, and similarly for firm B. Thus Πi decreases monotonically in φi for all φj ,

i, j = A,B, which gives us (v).

For the proof of Lemma 4, we substitute φA = 1 and φB = 0 into z, PA, and PB in

the case of z ≤ 1/2, and obtain z = 6/17, PA = 15t/17, and PB = 6t/17. From the first

discussion in the proof of this proposition, we can obtain prices in τ = 2 under z ≤ 1/2.

On the segment [0, z], the prices are PA(x) = (1− 2x)t and PB(A) = 0. On the segment

[z, 1], the prices are PA(B) = (3 − 4z)t/3 = 9t/17 and PB(B) = (3 − 2z)t/3 = 13t/17,

and the indifferent consumer is x = (t + PB(B) − PA(B))/2t = 21/34. Thus consumers

in [6/17, 21/34] switch to firm A in τ = 2 and those in [21/34, 1] choose firm B in both

periods. Finally, substituting φA = 1, φB = 0, and z = 6/17 into ΠA and ΠB in the case

of z ≤ 1/2, we obtain ΠA = 393t/578 and ΠB = 301t/578. �

Proof of Lemma 5: First, x ∈ [0, z] chooses firm A if PA(x) + (x − a)2t ≤ PB(A) +

(x− b)2t or PA(x) ≤ PB(A) + (a+ b− 2x)(b− a)t. Noting that a+ b ≥ 2x, the Bertrand

competition on this segment leads to PA(x) = (a + b − 2x)(b − a)t and PB(A) = 0.

Second, since z ≤ a+b
2 , firm A can serve additional customers on the segment [z, ỹ]

where ỹ satisfies PA(B) + (2ỹ − a − b)(b − a)t = 0 or ỹ = a+b
2 − PA(B)

2(b−a)t . Firm A

chooses PA(B) to maximize profit from this segment given by (ỹ − z)PA(B). This leads

to PA(B) = (a+b−2z)(b−a)t
2 . Substituting PA(B) back into ỹ, we obtain ỹ = a+b+2z

4 . On

[z, ỹ], firm B’s best response to PA(B) is PB(y) = 0. Finally y ∈ [ỹ, 1] chooses firm B if

PB(y) + (y − b)2t ≤ PA(B) + (y − a)2t. Thus firm B’s optimal pricing on this segment

is PB(y) = PA(B) + (2y − a− b)(b− a)t = (4y−2z−a−b)(b−a)t
2 .

Firm A’s second-period profit in this equilibrium is π2
A =

∫ z
0 (a+ b− 2x)(b− a)tdx+
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(ỹ−z)PA(B). Firm B’s profit is
∫ 1
ỹ

(4y−2z−a−b)(b−a)t
2 dy. Straightforward calculation leads

to the desired results. �

Proof of Lemma 6: The same argument used in Lemma 5 applies. �

Proof of Lemma 7: Substituting z = ((b2 − a2)t+ P 1
B − P 1

A)/(2(b− a)t) into firm A’s

profit function, we have

ΠA =



P 1
A

P 1
B − P 1

A + (b2 − a2)t

2(b− a)t
+

(b− a)t((b+ a)(a+ b+ 4z)− 4z2)

8
if P 1

A ≤ P 1
B,

P 1
A

P 1
B − P 1

A + (b2 − a2)t

2(b− a)t
+

(b− a)t(a+ b+ 2z)2

16
if P 1

A ≥ P 1
B.

The first-order conditions for profit maximization are

∂ΠA

∂P 1
A

=


3P 1

B − 7P 1
A + 2(b2 − a2)t

8(b− a)t
if P 1

A ≤ P 1
B,

3P 1
B − 5P 1

A + 2(b2 − a2)t

4(b− a)t
if P 1

A ≥ P 1
B.

From the above first-order conditions, we have the following local optimal prices and

respective profit of firm A:

P 1
A(P 1

B) =


P̃ 1
A(P 1

B) ≡
3P 1

B + 2(b2 − a2)t

5
if P 1

B ≤ (b− a)(b+ a)t,

P̂ 1
A(P 1

B) ≡
3P 1

B + 2(b2 − a2)t

7
if P 1

B ≥ (b− a)(b+ a)t/2.

ΠA(P 1
B) =


2(P 1

B)2 + 6(b2 − a2)tP 1
B + 7(b2 − a2)2t2

20(b− a)t
when P 1

A(P 1
B) = P̃ 1

A(P 1
B),

2(P 1
B)2 + 5(b2 − a2)tP 1

B + 4(b2 − a2)2t2

14(b− a)t
when P 1

A(P 1
B) = P̂ 1

A(P 1
B).

For P 1
B ∈ [(b− a)(b+ a)t/2, (b− a)(b+ a)t], firm A has two local optimal prices, P̃ 1

A(P 1
B)

and P̂ 1
A(P 1

B). Comparing the profits from each case, we have

2(P 1
B)2 + 6(b2 − a2)tP 1

B + 7(b2 − a2)2t2

20(b− a)t
≥

2(P 1
B)2 + 5(b2 − a2)tP 1

B + 4(b2 − a2)2t2

14(b− a)t

⇔ P 1
B ≤

(
√

70− 4)(b2 − a2)t

6
.

43



Thus firm A’s reaction function is given by

P 1
A(P 1

B) =


P̃ 1
A(P 1

B) =
3P 1

B + 2(b2 − a2)t

5
if P 1

B ≤
(
√

70− 4)(b2 − a2)t

6
,

P̂ 1
A(P 1

B) =
3P 1

B + 2(b2 − a2)t

7
if P 1

B ≥
(
√

70− 4)(b2 − a2)t

6
.

Applying the same argument to firm B’s optimization problem, we can derive firm

B’s reaction function:

P 1
B(P 1

A) =



P̃ 1
B(P 1

A) ≡
3P 1

A + 2(b− a)(2− (a+ b))t

5

if P 1
A ≤

(
√

70− 4)(b− a)(2− (a+ b))t

6
,

P̂ 1
B(P 1

A) ≡
3P 1

A + 2(b− a)(2− (a+ b))t

7

if P 1
A ≥

(
√

70− 4)(b− a)(2− (a+ b))t

6
.

Using the above reaction functions, we derive the equilibrium prices. First, we solve

for the intersection of the following two reaction functions:
P 1
A(P 1

B) =
3P 1

B + 2(b2 − a2)t

5
if P 1

B ≤
(
√

70− 4)(b2 − a2)t

6
,

P 1
B(P 1

A) =
3P 1

A + 2(b− a)(2− (a+ b))t

7
if P 1

A ≥
(
√

70− 4)(b− a)(2− (a+ b))t

6
.

The resulting prices and the value of z are given as

(P 1
A
∗
, P 1

B
∗
) =

(
2(b− a)(3 + 2(a+ b))t

13
,
2(b− a)(5− (a+ b))t

13

)
, z∗ =

4 + 7(a+ b)

26
.

The prices satisfy the above two inequalities if and only if

a+ b ≥ 2(13
√

70− 70)

13
√

70− 28
' 0.96.

Second, we solve for the intersection of the following two reaction functions:
P 1
A(P 1

B) =
3P 1

B + (b2 − a2)2t

7
if P 1

B ≥
(
√

70− 4)(b2 − a2)t

6
,

P 1
B(P 1

A) =
3P 1

A + 2(b− a)(2− (a+ b))t

5
if P 1

A ≤
(
√

70− 4)(b− a)(2− (a+ b))t

6
.

The resulting prices and the realized value of z are

(P 1
A
∗
, P 1

B
∗
) =

(
2(b− a)(3 + (a+ b))t

13
,
2(b− a)(7− 2(a+ b))t

13

)
, z∗ =

8 + 7(a+ b)

26
.
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The prices satisfy the above inequalities if and only if

a+ b ≤ 84

13
√

70− 28
' 1.04.

Combining these two cases gives us Lemma 7. �

Proof of Lemma 8: Firm A’s profit is ΠA = P 1
Az + π2

A and firm B’s profit is ΠB =

P 1
B(1 − z) + π2

B. If a + b > 84/(13
√

70 − 28), then Lemma 6 shows that the τ = 1

pricing subgame has a unique equilibrium with z = 4+7a+7b
26 < a+b

2 , which we call E1.

If a + b < 2(13
√

70 − 70)/(13
√

70 − 28), then the τ = 1 pricing game has a unique

equilibrium with z = 8+7a+7b
26 > a+b

2 , which we call E2. If 84/(13
√

70 − 28) ≥ a +

b ≥ 2(13
√

70 − 70)/(13
√

70 − 28), both E1 and E2 are possible. In this case, each

firm’s location choice depends on which of the two pricing equilibria they expect in the

subgame. Given that E1 follows when a + b > 84/(13
√

70 − 28) and E2 follows when

a + b < 2(13
√

70 − 70)/(13
√

70 − 28), by continuity we assume that both firms expect

E1 if and only if a+ b > k for some k ∈ (2(13
√

70−70)/(13
√

70−28), 84/(13
√

70−28)).

In what follows, we assume k = 1. But it is easy to verify that our argument applies for

any k ∈ (2(13
√

70−70)/(13
√

70−28), 84/(13
√

70−28)). Given k = 1 and the stipulated

expectation, each firm’s profit function can be written as

ΠA =


(b− a)

[
207(a+ b)2 + 140(a+ b) + 40

]
676

if a+ b > 1,

(b− a)
[
32(a+ b)2 + 49(a+ b) + 28

]
169

if a+ b ≤ 1,

ΠB =


(b− a)

[
32(a+ b)2 − 177(a+ b) + 254

]
169

if a+ b > 1,

(b− a)
[
207(a+ b)2 − 968(a+ b) + 1148

]
676

if a+ b ≤ 1,

with the corresponding derivatives

∂ΠA

∂a
=


−621a2 − (280 + 414b)a− (40− 207b2)

676
if a+ b > 1,

−2
[
14− 16b2 + (49 + 32b)a+ 48a2

]
169

if a+ b ≤ 1,

∂ΠB

∂b
=


2
[
127− 16a2 − (177− 32a)b+ 48b2

]
169

if a+ b > 1,

1148− 207a2 − (1936− 414a)b+ 621b2

676
if a+ b ≤ 1.
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Solving the above, we have the following candidate equilibria:
a =

2
√

56029− 347

621
' 0.2, b = 1 if a+ b > 1,

a = 0, b =
968− 2

√
56029

621
' 0.8 if a+ b ≤ 1.

The first equilibrium is consistent with E1 since a+ b > 84/(13
√

70− 28) in E1. Given

b = 1, firm A’s best response problem is over the entire range of [0, 1]. Thus firm A does

not have an incentive to deviate from a ' 0.2. On the other hand, firm B may choose

to deviate by locating at b such that E2 is realized in the pricing subgame. However we

can easily show that firm B does not have an incentive to change its location: plotting

ΠB given a = 0.2 shows that ΠB is indeed maximized when b = 1. Thus a = 0.2, b = 1

constitute an equilibrium. Similarly one can verify that a = 0, b = 0.8 also constitute an

equilibrium, which is followed by E2 in the pricing subgame. �
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Appendix B: Endogenous location choice with general dis-
count factors

This appendix provides analysis of equilibria under endogenous location choice and

general discount factors. Since full characterization of equilibria for all values of (δc, δf )

is not analytically possible, we establish partial characterization of the conditions under

which (i) maximal differentiation is an equilibrium outcome and (ii) pure-strategy equi-

libria exist. We also show that pure-strategy equilibria do not exist when δc = δf = 1.

Since the τ = 2 equilibria do not depend on the discount factors, our results in the

main text continue to hold. To analyze the τ = 1 equilibria, we start with the marginal

consumer’s location in τ = 1. First, consider the equilibrium with z ≤ a+b
2 . Then

consumer z is indifferent between choosing firm A in both periods, and choosing firm B

in τ = 1 but switching to firm A in τ = 2. Thus we have

P 1
A + (z − a)2t+ δc(PA(z) + (z − a)2t) = P 1

B + (b− z)2t+ δc(PA(B) + (z − a)2t).

Substituting PA(z) = (a + b − 2z)(b − a)t and PA(B) = (a+b−2z)(b−a)t
2 in Lemma 5 into

the above, we obtain

z =
a+ b

2
+

P 1
B − P 1

A

(b− a)(2− δc)t

where z ≤ a+b
2 if and only if P 1

A ≥ P 1
B. Similarly, in the equilibrium with z ≥ a+b

2 ,

the marginal consumer z is indifferent between choosing firm B in both periods, and

choosing firm A in τ = 1 while switching to firm B in τ = 2. Proceeding as before, we

again obtain the same z derived above.

Substituting z into firm A’s profit function, ΠA = P 1
Az + δfπ

2
A, we obtain

ΠA =



P 1
A

(
a+ b

2
+

P 1
B − P 1

A

(b− a)(2− δc)t

)
+ δf

(b2 − a2)2(2− δc)2t2 − 2(P 1
B − P 1

A)2

4(b− a)(2− δc)2t

if P 1
A ≥ P 1

B,

P 1
A

(
a+ b

2
+

P 1
B − P 1

A

(b− a)(2− δc)t

)
+ δf

((b2 − a2)(2− δc)t+ P 1
B − P 1

A)2

4(b− a)(2− δc)2t

if P 1
A ≤ P 1

B.

The first-order conditions for profit maximization are then

∂ΠA

∂P 1
A

=



2(2− δc + δf )P 1
B − 2(4− 2δc + δf )P 1

A + (b2 − a2)(2− δc)2t

2(b− a)(2− δc)2t
= 0

if P 1
A ≥ P 1

B,

(4− 2δc − δf )P 1
B − (8− 4δc − δf )P 1

A + (b2 − a2)(2− δc)(2− δc − δf )t

2(b− a)(2− δc)2t
= 0

if P 1
A ≤ P 1

B.
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Using the first-order conditions, we can derive the following reaction function and

the respective profit for firm A:

P 1
A(P 1

B) =



P̃ 1
A(P 1

B) ≡
2(2− δc + δf )P 1

B + (b2 − a2)(2− δc)2t

2(4− 2δc + δf )

if P 1
B ≤

(b2−a2)(2−δc)t
2 ,

P̂ 1
A(P 1

B) ≡
(4− 2δc − δf )P 1

B + (b2 − a2)(2− δc)(2− δc − δf )t

(8− 4δc − δf )

if P 1
B ≥

(b2−a2)(2−δc−δf )t
2 .

ΠA(P 1
B) =



4(P 1
B)2 + 4(b2 − a2)(2− δc + δf )t(P 1

B)

8(4− 2δc + δf )t

+
(b2 − a2)2((2− δc)2 + 4(2− δc)δf + 2δ2

f )t2

8(4− 2δc + δf )t
when P 1

A(P 1
B) = P̃ 1

A(P 1
B),

4(P 1
B)2 + 2(b2 − a2)(4− 2δc + δf )t(P 1

B)

4(b− a)(8− 4δc − δf )t

+
(b2 − a2)2(2− δc)(2− δc + 2δf )t2

4(b− a)(8− 4δc − δf )t
when P 1

A(P 1
B) = P̂ 1

A(P 1
B).

For P 1
B ∈ [

(b2−a2)(2−δc−δf )t
2 , (b2−a2)(2−δc)t

2 ], firmA has two local optimal prices, P̃ 1
A(P 1

B)

and P̂ 1
A(P 1

B). Comparing firm A’s profits for each case, we find that the former is larger

than the latter if and only if

P 1
B ≤

(b2 − a2)
(√

2(8(2− δc)2 + 2(2− δc)δf − δ2
f )− (2− δc + 2δf )

)
t

6
≡ P̄ 1

E .

One can easily verify P̄ 1
E ∈ [

(b2−a2)(2−δc−δf )t
2 , (b2−a2)(2−δc)t

2 ]. Thus, firm A’s reaction

function is

P 1
A(P 1

B) =



P̃ 1
A(P 1

B) ≡
2(2− δc + δf )P 1

B + (b2 − a2)(2− δc)2t

2(4− 2δc + δf )

if P 1
B ≤ P̄ 1

E ,

P̂ 1
A(P 1

B) ≡
(4− 2δc − δf )P 1

B + (b2 − a2)(2− δc)(2− δc − δf )t

(8− 4δc − δf )

if P 1
B ≥ P̄ 1

E .

Applying the same argument to firm B’s best response problem, we can derive its
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reaction function as:

P 1
B(P 1

A) =



P̃ 1
B(P 1

A) ≡
2(2− δc + δf )P 1

A + (b− a)(2− a− b)(2− δc)2t

2(4− 2δc + δf )

if P 1
A ≤ ¯̄P 1

E ,

P̂ 1
B(P 1

A) ≡
(4− 2δc − δf )P 1

A + (b− a)(2− a− b)(2− δc)(2− δc − δf )t

8− 4δc − δf
if P 1

A ≥ ¯̄P 1
E ,

where

¯̄P 1
E ≡

(b− a)(2− a− b)
(√

2(8(2− δc)2 + 2(2− δc)δf − δ2
f )− (2− δc + 2δf )

)
t

6
.

Solving the above reaction functions simultaneously, we can derive the equilibrium

prices

(i) P 1
A =

(b− a)
(

2(2 + a+ b)(2− δc)2 − (a+ b)(2− δc)δf − 2(2− a− b)δ2
f

)
t

2(12− 6δc + δf )
,

P 1
B =

(b− a)
(

2(4− a− b)(2− δc)2 − (4− a− b)(2− δc)δf − 2(2− a− b)δ2
f

)
t

2(12− 6δc + δf )
,

with z =
2(2 + a+ b)(2− δc)− (4− 3a− 3b)δf

2(12− 6δc + δf )
;

(ii) P 1
A =

(b− a)
(

2(2 + a+ b)(2− δc)2 − (2 + a+ b)(2− δc)δf − 2(a+ b)δ2
f

)
t

2(12− 6δc + δf )
,

P 1
B =

(b− a)
(

2(4− a− b)(2− δc)2 − (2− a− b)(2− δc)δf − 2(a+ b)δ2
f

)
t

2(12− 6δc + δf )
,

with z =
2(2 + a+ b)(2− δc) + 3(a+ b)δf

2(12− 6δc + δf )
.

As in Lemma 6, we need to specify the condition under which the above equilibria

can exist. First, if P 1
A ≥

¯̄P 1
E and P 1

B ≤ P̄ 1
E , then the equilibrium in (i) exists. This

condition can be written as

a+ b≥
2
(

4δ2
f − 13(2− δc)δf − 12(2− δc)2

)
4δ2
f − 16(2− δc)δf + (6(2− δc) + δf )

√
2(8(2− δc)2 + 2(2− δc)δf − δ2

f )

+
2
(

(6(2− δc) + δf )
√

2(8(2− δc)2 + 2(2− δc)δf − δ2
f )
)

4δ2
f − 16(2− δc)δf + (6(2− δc) + δf )

√
2(8(2− δc)2 + 2(2− δc)δf − δ2

f )
≡ a+ b.

Second, if P 1
A ≤

¯̄P 1
E and P 1

B ≥ P̄ 1
E , then the equilibrium in (ii) exists, of which condition
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can be expressed as

a+ b ≤
6(2− δc)(4(2− δc)− δf )

4δ2
f − 16(2− δc)δf + (6(2− δc) + δf )

√
2(8(2− δc)2 + 2(2− δc)δf − δ2

f )
≡ a+ b.

Finally if a+b ∈ [a+ b, a+ b], then both equilibria exist. When δf = 1, the two threshold

values can be shown to be equal to a+ b ≈ 0.96 and a+ b ≈ 1.04, as in Lemma 6.

Substituting the value of z from the τ = 1 equilibrium back into the τ = 2 prices in

Lemma 5, we find the τ = 2 prices in Case (i):

PA(x) =



(a+ b− 2x)(b− a)t

if x ∈
[
0,

2(2 + a+ b)(2− δc)− (4− 3a− 3b)δf
2(12− 6δc + δf )

]
,

(b− a)((2− a− b)δf − 2(1− a− b)(2− δc))t
12− 6δc + δf

if x ∈
[

2(2 + a+ b)(2− δc)− (4− 3a− 3b)δf
2(12− 6δc + δf )

, 1

]
,

PB(y) =



0 if y ∈
[
0,

(1 + 2a+ 2b)(2− δc)− (1− a− b)δf
12− 6δc + δf

]
,

2(b− a)

(
y −

(1 + 2a+ 2b)(2− δc)− (1− a− b)δf
12− 6δc + δf

)
t

if y ∈
[

(1 + 2a+ 2b)(2− δc)− (1− a− b)δf
12− 6δc + δf

, 1

]
.

Similarly, by substituting the value of z from the τ = 1 equilibrium back into the

τ = 2 prices in Lemma 5, we find the τ = 2 prices in Case (ii):

PA(x) =



2(b− a)

(
(1 + 2a+ 2b)(2− δc) + (a+ b)δf

12− 6δc + δf
− x
)
t

if x ∈
[
0,

(1 + 2a+ 2b)(2− δc) + (a+ b)δf
12− 6δc + δf

]
,

0 if x ∈
[

(1 + 2a+ 2b)(2− δc) + (a+ b)δf
12− 6δc + δf

, 1

]
,

PB(y) =



(b− a)((a+ b)δf + 2(1− a− b)(2− δc))t
12− 6δc + δf

if y ∈
[
0,

2(2 + a+ b)(2− δc) + 3(a+ b)δf
2(12− 6δc + δf )

]
,

(2y − a− b)(b− a)t

if y ∈
[

2(2 + a+ b)(2− δc) + 3(a+ b)δf
2(12− 6δc + δf )

, 1

]
.
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The profits are then

ΠA =



(b− a)t

4(6(2− δc) + δf )2

×{4(2 + a+ b)2(2− δc)3 + 8(4(a+ b)2 + 2(a+ b)− 3)(2− δc)2δf
+(a+ b)(21(a+ b)− 20)(2− δc)δ2

f + (5(a+ b)2 − 12(a+ b) + 8)δ3
f}

in Case (i),

(b− a)t

4(6(2− δc) + δf )2

×{4(2 + a+ b)2(2− δc)3 + 4(5(a+ b)2 + 5(a+ b)− 1)(2− δc)2δf
+3(a+ b)(3(a+ b)− 2)(2− δc)δ2

f − 2(a+ b)2δ3
f}

in Case (ii),

ΠB =



(b− a)t

4(6(2− δc) + δf )2

×{4(4− a− b)2(2− δc)3 + 4(5(a+ b)2 − 25(a+ b) + 29)(2− δc)2δf
+3(2− a− b)(4− 3(a+ b))(2− δc)δ2

f − 2(2− a− b)2δ3
f}

in Case (i),

(b− a)t

4(6(2− δc) + δf )2

×{4(4− a− b)(2− δc)3 + 8(4(a+ b)2 − 18(a+ b) + 17)(2− δc)2δf
+(2− a− b)(22− 21(a+ b))(2− δc)δ2

f + (5(a+ b)2 − 8(a+ b) + 4)δ3
f}

in Case (ii).

Based on the above profit functions, we now check the conditions for maximal dif-

ferentiation to be an equilibrium outcome. Let us focus on Case (i). The conditions

for Case (ii) are the same since these two cases are a mirror image of each other. By

differentiating the above profit functions, we obtain

∂ΠA

∂a
=

t

4(6(2− δc) + δf )2

×{4(2 + a+ b)(2 + 3a− b)(2− δc)3 − 8(12a2 + 4(1 + 2b)a− (3 + 4b2))(2− δc)2δf

−(63a2 − 2(20− 21b)a− 21b2)(2− δc)δ2
f − (15a2 − 2(12− 5b)a+ (8− 5b2))δ3

f},

∂ΠB

∂b
=

t

4(6(2− δc) + δf )2

×{4(4− a− b)(4 + a− 3b)(2− δc)3 − 4(15b2 − 10(5− a)b+ 29− 5a2)(2− δc)2δf

+3(9b2 − 2(10− 3a)b+ 8− 3a2)(2− δc)δ2
f + 2(2− a− b)(3b− 2− a)δ3

f},

∂2ΠA

∂a2
=

−t
2(6(2− δc) + δf )2

×{(4(2− δc)3 + 32(2− δc)2δf + 21(2− δc)δ2
f + 5δ3

f )(3a+ b)

+4(4− 2δc + 3δf )(4− 2δc + δf )(2− δc − δf )},

51



∂2ΠB

∂b2
=

t

4(6(2− δc) + δf )2

×{2(4(2− δc)3 + 20(2− δc)2δf + 9(2− δc)δ2
f − 2δ3

f )(a+ 3b)

−(64(2− δc)3 + 200(2− δc)2δf + 60(2− δc)δ2
f − 16δ3

f )}.

Notice that ∂2ΠA/∂a
2 < 0 for all (δc, δf ). It is also easy to see ∂2ΠB/∂b

2 < 0 for all

(δc, δf ) since ∂2ΠB/∂b
2 increases in a and b, and ∂2ΠB/∂b

2|a=b=1 < 0. Thus each profit

function is strictly concave with respect to the relevant location choice so the first-order

condition is necessary and sufficient.

Suppose now firm B’s location choice is b = 1. We will find the conditions under

which a = 0 and b = 1 constitute a Nash equilibrium. Firm A’s best response to b = 1,

denoted by a(b = 1), is given by

a(b = 1) = max{0, ã}

where ã ≡
2
√
H − (20(2− δc)3 + 48(2− δc)2δf + (2− δc)δ2

f − 7δ3
f )

12(2− δc)3 + 96(2− δc)2δf + 63(2− δc)δ2
f + 15δ3

f

and H ≡ 64(2−δc)6 +360(2−δc)5δf +1804(2−δc)4δ2
f +1286(2−δc)3δ3

f +301(2−δc)2δ4
f +

28(2− δc)δ5
f + δ6

f . In the figures below, we describe firm A’s best response problem.
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∆
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Fig. 1: a(b = 1) Fig. 2: The region where a(b = 1) = 0

Fig. 1 plots a(b = 1) against (δc, δf ) and shows that firm A’s best response to b = 1

varies within the range of 0 and 0.3 as δc and δf change. Fig. 2 corresponds to the flat

part of Fig. 1 and shows the range of (δc, δf ) in which ã ≤ 0, hence a = 0 is firm A’s

best response to b = 1. The threshold value of δf at which δc = 0 (δc = 1, resp.) is

roughly 0.4 (0.2, resp.). Thus a = 0 is the best response to b = 1 (i) for all values of δc if

δf ≤ 0.2 and (ii) for δc bounded above with the bound decreasing in δf if 0.2 ≤ δf ≤ 0.4.

The upper bound of δc, denoted by δ̄c(δf ), is defined implicitly by the equation ã = 0.

Next we check the conditions under which b = 1 is firm B’s best response to a(b = 1).
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Since ΠB is strictly concave in b, the conditions are ∂ΠB
∂b |b=1 ≥ 0, which lead to

H1 + 8H2

√
H

9(6(2− δc) + δf )2(4(2− δc)3 + 32(2− δc)2δf + 21(2− δc)δ2
f + 5δ3

f )2
≥ 0

where H1 ≡ −704(2 − δc)9 − 7984(2 − δc)8δf − 47600(2 − δc)7δ2
f − 168568(2 − δc)6δ3

f −
179884(2−δc)5δ4

f−76619(2−δc)4δ5
f−11803(2−δc)3δ6

f+681(2−δc)2δ7
f+415(2−δc)δ8

f+34δ9
f

and H2 ≡ 16(2− δc)6 + 152(2− δc)5δf + 428(2− δc)4δ2
f + 318(2− δc)3δ3

f + 56(2− δc)2δ4
f −

7(2 − δc)δ5
f − 2δ6

f . The following figure shows the range of (δc, δf ) satisfying the above

inequality.33

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

∆c

∆
f

Fig. 3: The region where b = 1 is firm B’s best response to a(b = 1)

It is clear that the region in Fig. 2 is a proper subset of the region in Fig. 3.

Thus the region in Fig. 2 describes the necessary and sufficient conditions for maximal

differentiation to be an equilibrium outcome. In addition, the region in Fig. 3 shows

sufficient conditions under which location equilibria exist in pure strategies. For example,

the case considered in the main text, namely δc = 0 and δf = 1, is outside the region

in Fig. 2, hence non-maximal differentiation in equilibrium. Nonetheless it is within

the region in Fig. 3, leading to the pure-strategy equilibria shown in Proposition 4. We

summarize these results below.

Observation 1: Equilibrium locations are a = 0 and b = 1 if and only if δf ≤ 0.4 and

δc ≤ δ̄c(δf ) where δ̄c(δf ) is implicitly defined by ã = 0, as shown in Fig. 2.

Observation 2: Location equilibria exist in pure strategies for all values of δc and δf

that satisfy ∂ΠB
∂b |b=1 ≥ 0, as shown in Fig. 3.

33We also need to show that firm B does not benefit by deviating to some b̂, at which the subgame
from Case (ii) becomes relevant, i.e., a(b = 1) + b̂ ≤ a+ b. It can be shown that firm B’s deviation in
this case leads to smaller profit than when b = 1. Thus b = 1 is indeed firm B’s global best response to
a(b = 1).
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The contrapositive of Observation 2 is that when location equilibria do not exist in

pure strategies, the range of (δc, δf ) is necessarily outside what was shown in Fig. 3.

Characterizing all such equilibria in this region is not possible as there could be pure-

or mixed-strategy equilibria depending on different values of (δc, δf ). Instead, we show

below that equilibria in pure strategies do not exist if δc = δf = 1.

Consider Case (i). If a pure-strategy equilibrium exists in this case, it is unique and

determined by the intersection of the relevant reaction functions. Given δc = δf = 1, the

first-order conditions become

∂ΠA

∂a
=

31(b− 3a)(a+ b)t

98
= 0,

∂ΠB

∂b
=

(196− 31a2 − (308− 62a)b+ 93b2)t

196
= 0.

Similarly we can derive the first-order conditions in Case (ii). Fig. 4 shows the reaction

functions where a(b) is firm A’s reaction function and b(a) is firm B’s. The blue lines

are the reaction functions in Case (i) and the red lines are the reaction functions in Case

(ii). The values of a and b at the intersection of the blue lines are

a∗ =
7(33−

√
97)

496
' 0.327, b∗ =

21(33−
√

97)

496
' 0.980,

and the values of a and b at the intersection of the red lines are

a∗∗ =
21
√

97− 197

496
' 0.020, b∗∗ =

265 + 7
√

97

496
' 0.673.
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a+b=a + b
a+b=a + b

Fig. 4: Reaction functions (δc = δf = 1)

We now show that the intersection of the blue lines cannot be equilibrium in Case

(i). Notice first that Case (i) requires a+ b ≥ a+ b = 2(−21+21
√

2)

−12+21
√

2
' 0.98296. Firm A’s

54



best response to b∗ is a∗ insofar as Case (i) is the subsequent subgame. Consider now

firm A’s deviation to a′ such that a′+b∗ < a+ b. This is possible since b∗ < a+ b. Given

the deviation, the subsequent subgame shifts to Case (ii) and firm A’s profit changes

accordingly. Below we draw firm A’s profit from the deviation.
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Fig. 5: Firm A’s profit when b = b∗

The figure on the right in Fig. 5 shows firm A’s profit when b = b∗. As long as

a + b∗ ≥ a+ b, firm A’s best response to b = b∗ is a = a∗ ' 0.327, which is a local

best response. However when firm A deviates to a′ such that a′ + b∗ < a+ b, there is a

discontinuous jump in firm A’s profit due to the subgame shifting from Case (i) to Case

(ii). The figure on the left shows the jump in profit more clearly. This shows that a∗

is not a global best response to b∗. Thus (a∗, b∗) cannot be equilibrium in Case (i). By

symmetry, one can show that (a∗∗, b∗∗) cannot be equilibrium in Case (ii). Summarizing,

we have

Observation 3: Pure-strategy equilibria do not exist if δc = δf = 1.
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Figure 1: Equilibrium of the second-period pricing game with 𝒛𝒛 ≤ 𝟏𝟏/𝟐𝟐 
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Figure 2: Equilibria of the first-period pricing game 
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Figure 3: Conditions for various equilibria
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Figure 4: Equilibrium with endogenous location choice (a = 0.2) 




