Ali Meghdadi

Improving the Security of the Electric Power System: Using Machine Learning to Predict Power System Stability and Security

3rd PhD candidate, Optimisation Lab, Faculty of Information Technology

Research interests: machine learning applied to stability and operation of power systems.

Ali Meghdadi was born in Iran. His interest for the energy sector started when he did his bachelor’s degree in Electrical Engineering at the IAU, Tehran, Iran. He then received a Master‘s degree in Electrical Engineering at the Memorial University, St. John’s, Canada. Afterwards, he went back home and worked as an Electrical Project Engineer for two years. “The energy sector has been growing very fast during the last decade. It was the beginning of the integration of large solar and wind farms, as well as other new ideas to transition away from fossil fuels when I was an undergraduate student. The energy sector is now changing even faster as we proceed to 100% renewable grids which makes it even more interesting to researchers all around the world to create new ways for handling the challenges that these changes bring”.

Ali started a PhD with the Optimisation Lab, Faculty of Information Technology at Monash University in February 2018, supervised by Associate Professor Ariel Liebman and Dr Guido Tack from Monash University and Dr Nicolas Langrene from CSIRO (data61).. “I wanted to discover more and create a fast and reliable tool that improves the power systems stability. The classical method of stability assessment is very time consuming and you cannot rely only on them to deal with the new challenges, such as inertia reduction. Having access to top-edge research facilities and academics has enabled me to develop new ideas and create new tools. What I like the most as a PhD student at Monash is the support I receive from my supervisors and the excellent collaborations with industry”.

Ali shifted from Electrical Engineering to IT to innovate; he is using IT approaches, not only focusing on the data, but also the understanding of power systems stability. Ali is particularly interested in how we can integrate more renewables effectively into the Grid for a smarter, cleaner and more sustainable future. To do so, we need to deal with stability issues as we are going away from fossil fuels. “With the current pace of integrating renewable energy sources to the grid and the retiring of synchronous generators (and the consequent inertia reduction), there is a dire need to assess the stability of the power system operational scenarios. Since the classical time-domain stability analysis are computationally expensive, there is a growing need for fast and reliable stability assessment tools. With the advent of advanced information technology, new methods with faster response time and higher accuracy were developed. As an alternative, data-driven approaches such as machine learning-based frameworks are exploited to detect stability status. My research exploits the understanding of power system dynamics to increase the performance of these data-driven approaches. My focus is in developing a power system dynamics based transfer learning scheme for security assessment of electrical grid operational scenarios.It drastically reduces the training effort of the machine learning tools to predict the stability status. This makes this approach ready to be used for real systems and be implemented rapidly”.

Poster - Data driven security assessment of the electric power systemIs Australia going to meet the 2030 targets in terms of integrating renewables into the grid? Ali is positive about the energy future in Australia! For him that energy future will be more multidisciplinary than ever.“I believe solar energy has a great potential in Australia, especially when supported by energy storage systems. We soon will observe grids reliably and securely operating with 100% renewable generators. I assume there will be tighter collaborations of electrical engineers and data science experts in the close future as the classical operation of the grid will not necessarily be able to guarantee the optimum operation of the power system, unless IT methods are incorporated”.

After his PhD, he is looking to apply the results of his PhD to the real world and collaborate with industry to create specific tools based on their needs.

For further information: