Cellulose nanofibres and nanofibre materials

From wood and agriculture residues, we are developing a series of nanocellulose materials: micro fibrillated cellulose (MFC), nano fibrillated cellulose (NFC) and nanocellulose crystals (NCC). These three types of nanocellulose can be combined with nanoparticles to develop recyclable composites that are very strong and flexible or provide gas and water vapour barriers. Applications are in food preservation and lighter packaging, low cost/disposable reverse osmosis membranes for water and food processing purification and industrial air filters. We are also exploring new technology and concepts to improve the production of cellulose nanofibers.

Our current projects focused on:

  • New barrier materials from cellulose nanofibers
  • New methods to rapidly make sheets from cellulose nanofibers for filter applications
  • New sources of cellulose for nanofiber production to reduce energy consumption
  • Methods to quantify cellulose nanofiber quality development

The development of nanocellulose based antimicrobial materials using bis(phosphinato) bismuth complex has also been explored. Morphological studies of the sheets revealed the overall distribution of the complex throughout the nanocellulose matrix. The composite sheets were able to inhibit the growth of bacteria and fungi, including strains of multi-drug resistant bacteria.


Figure 1A. SEM images of the Bi-MFC composite using secondary electron imaging


Figure 1B. SEM images of the Bi-MFC composite using EDX mapping of the selected area

Effect of bismuth complex loading on zone of inhibition

Figure 2. Effect of bismuth complex loading on zone of inhibition with different bacteria from disk diffusion assay and the top images show their picture representation against S. aureus

Selected Publications

Nadeem, H., Naseri, M., Kirubanandan, S., Dehghani, M., Browne, C., Miri, S., Batchelor, W. (2020). An energy efficient production of high moisture barrier nanocellulose/carboxymethyl cellulose films via spray-deposition techniqueCarbohydrate Polymers 250. 116911. https://doi.org/10.1016/j.carbpol.2020.116911

Naseri, M., Simon, G. P., Batchelor, W. (2020). Development of a Paper-Based Microfluidic System for a Continuous High-Flow-Rate Fluid ManipulationAnalytical Chemistry 92(10), 7307-7316. https://doi.org/10.1021/acs.analchem.0c01003

Miri, S., Raghuwanshi, V, S,, Andrews, P. C., Batchelor, W. (2020). Composites of mesoporous silica precipitated on nanofibrillated cellulose and microfibrillated cellulose: Effect of fibre diameter and reaction conditions on particle size and mesopore diameterMicroporous and Mesoporous Materials 311. 110701. https://doi.org/10.1016/j.micromeso.2020.110701

Dehghani, M., Nadeem, H., Raghuwanshi, V. S., Mahdavi, H., Banaszak Holl, M. M., Batchelor, W. (2020). ZnO/Cellulose Nanofiber Composites for Sustainable Sunlight-Driven Dye DegradationACS Applied Nano Materials 3(10), 10284-10295. https://doi.org/10.1021/acsanm.0c02199

Maliha, M., Herdman, M., Brammananth, R., McDonald, M., Coppel, R., Werrett, M., Andrews, P., & Batchelor, W. (2020). Bismuth phosphinate incorporated nanocellulose sheets with antimicrobial and barrier properties for packaging applicationsJournal of Cleaner Production246, [119016]. https://doi.org/10.1016/j.jclepro.2019.119016

Ang, S., Haritos, V., & Batchelor, W. (2020). Cellulose nanofibers from recycled and virgin wood pulp: a comparative study of fiber developmentCarbohydrate Polymers234, [115900]. https://doi.org/10.1016/j.carbpol.2020.115900

Shanmugam, K., Nadeem, H., Browne, C., Garnier, G., & Batchelor, W. (2020). Engineering surface roughness of nanocellulose film via spraying to produce smooth substratesColloids and Surfaces A: Physicochemical and Engineering Aspects589, [124396]. https://doi.org/10.1016/j.colsurfa.2019.124396

Onur, A., Shanmugam, K., Ng, A., Garnier, G., & Batchelor, W. (2019). Cellulose fibre- perlite depth filters with cellulose nanofibre top coating for improved filtration performanceColloids and Surfaces A: Physicochemical and Engineering Aspects583, [123997]. https://doi.org/10.1016/j.colsurfa.2019.123997

Mendoza, L., Hossain, L., Downey, E., Scales, C., Batchelor, W., & Garnier, G. (2019). Carboxylated nanocellulose foams as superabsorbentsJournal of Colloid and Interface Science538, 433-439. https://doi.org/10.1016/j.jcis.2018.11.112

Onur, A., Ng, A., Garnier, G., & Batchelor, W. (2019). The use of cellulose nanofibres to reduce the wet strength polymer quantity for development of cleaner filtersJournal of Cleaner Production215, 226-231. https://doi.org/10.1016/j.jclepro.2019.01.017

Varanasi, S., Garusinghe, U., Simon, G. P., Garnier, G., & Batchelor, W. (2018). Novel In-situ Precipitation Process to Engineer Low Permeability Porous CompositeScientific Reports8(1), [10747]. https://doi.org/10.1038/s41598-018-28786-z

Garusinghe, U. M., Raghuwanshi, V. S., Garvey, C. J., Varanasi, S., Hutchinson, C. R., Batchelor, W., & Garnier, G. (2017). Assembly of nanoparticles-polyelectrolyte complexes in nanofiber cellulose structuresColloids and Surfaces A: Physicochemical and Engineering Aspects513, 373-379. https://doi.org/10.1016/j.colsurfa.2016.10.068

Shanmugam, K., Varanasi, S., Garnier, G., & Batchelor, W. (2017). Rapid preparation of smooth nanocellulose films using spray coatingCellulose24(7), 2669-2676. https://doi.org/10.1007/s10570-017-1328-4

Raj, P., Mayahi, A., Gunawardhana, W. D. T. L., Varanasi, S., Garnier, G., Patti, A. F., Martin, D., & Batchelor, W. J. (2016). Development of cellulose nanofibre quality with mechanical energy: Effect of starting chemical composition. In Progress in Paper Physics Seminar 2016: Conference Proceedings (pp. 27-29). Technische Universitat Darmstadt. http://tuprints.ulb.tu-darmstadt.de/5636/.