Researchers reveal the origins of merging black holes

Artist’s impression of two black holes about to collide. Credit: Mark Myers, ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav).

Over the past five years, astronomy has been revolutionised as scientists have used ripples in the fabric of spacetime, called gravitational waves, to reveal the secrets of the previously hidden world of black holes. Gravitational waves are created when two black holes merge in a cataclysmic release of energy, but until now, there were few clues as to how and why black holes merge.

Today, researchers from the LIGO and Virgo Collaborations announced a series of discoveries providing some of the first hints as to the origin of black hole mergers. Researchers from Monash University––members of the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav)––helped lead the effort.

“We are announcing the discovery of 44 confirmed black hole mergers, which is a more than a four-fold increase in the number of previously known gravitational-wave signals,” explains Monash University School of Physics and Astronomy PhD student, Shanika Galaudage, who helped write one of the new LIGO papers. She adds: “With so many black holes to study, we can start to answer deep questions about how these systems came to merge.”

A key clue comes from the fact that black holes spin. The orientation of the black hole spins affects the gravitational-wave signal. Study author Dr Colm Talbot, also from the School of Physics and Astronomy, says : “There are two theories for how two black holes can get together. Sometimes, pairs of stars called binaries make pairs of black holes that merge, creating ripples in spacetime called gravitational waves. Alternatively, two black holes can stumble into each other.”

The verdict? “It seems there are multiple ways for two black holes to get together,” said OzGrav Chief Investigator Professor Eric Thrane from Monash University. “Some binary black holes are born from pairs of stars. Others wander the cosmos before finding a partner to merge with. Either way, a tremendous amount of energy is released in gravitational waves.”

FOR INTERVIEW

Ms Shanika Galaudage
Monash University
OzGrav Doctoral Student
Phone: 0408 093 669
Email: shanika.galaudage@monash.edu

Prof Eric Thrane Monash University
OzGrav Chief Investigator
Phone: 0450 765 993
Email: eric.thrane@monash.edu


Media enquiries:
Silvia Dropulich
Marketing, Media & Communications Manager, Monash Science
T: +61 3 9902 4513 M: +61 435 138 743
Email: silvia.dropulich@monash.edu




FURTHER INFORMATION

The ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) is funded by the Australian Government through the Australian Research Council Centres of Excellence funding scheme. OzGrav is a partnership between Swinburne University of Technology (host of OzGrav headquarters), the Australian National University, Monash University, University of Adelaide, University of Melbourne, and University of Western Australia, along with other collaborating organisations in Australia and overseas.

LIGO is funded by NSF and operated by Caltech and MIT, which conceived of LIGO and led the Initial and Advanced LIGO projects. Financial support for the Advanced LIGO project was led by the NSF with Germany (Max Planck Society), the U.K. (Science and Technology Facilities Council) and Australia (Australian Research Council-OzGrav) making significant commitments and contributions to the project. Nearly 1300 scientists from around the world participate in the effort through the LIGO Scientific Collaboration, which includes the GEO Collaboration. A list of additional partners is available at https://my.ligo.org/census.php.

The Virgo Collaboration is currently composed of approximately 350 scientists, engineers, and technicians from about 70 institutes from Belgium, France, Germany, Hungary, Italy, the Netherlands, Poland, and Spain. The European Gravitational Observatory (EGO) hosts the Virgo detector near Pisa in Italy and is funded by Centre National de la Recherche Scientifique (CNRS) in France, the Istituto Nazionale di Fisica Nucleare (INFN) in Italy, and Nikhef in the Netherlands. A list of the Virgo Collaboration members can be found at http://public.virgo-gw.eu/the-virgo-collaboration/.

The Kamioka Gravitational Wave Detector (KAGRA), formerly the Large Scale Cryogenic Gravitational Wave Telescope (LCGT), is a project of the gravitational wave studies group at the Institute for Cosmic Ray Research (ICRR) of the University of Tokyo. It will be the world's first gravitational wave observatory in Asia, built underground, and whose detector uses cryogenic mirrors. The design calls for an operational sensitivity equal to, or greater, than LIGO. The project is led by Nobelist Takaaki Kajita who had a major role in getting the project funded and constructed.