GNA5040 - Genomics and its Applications

General Unit Information

Recent technological advances in DNA analysis now allow the rapid and relatively cheap sequencing of entire genomes of individual organisms. These developments have the potential to revolutionize how we identify genes that control both simple and complex traits. Bioinformatic analysis of genomic data will also be highly influential in shaping our view of how organisms adapt to changes in their environment and how over a longer time-scale, traits such as body size and pattern and physiological and behavioural responses can evolve, leading to the rich diversity of life forms seen today. This unit will explore the use of whole-genome techniques to examine gene regulation, identify the genes controlling both simple and complex traits, determine how individuals and populations adapt to selective pressure and piece together the evolutionary changes that have given rise to complex multicellular life. Such information will increasingly be important in the 21st century for sustainable development of human civilisation in concert with a healthy planetary environment.

Students will acquire relevant laboratory and computer-based skills including genetic database analysis and bioinformatics, forward genetic approaches and mapping and identification of genes controlling complex quantitative traits.

Learning outcomes

On completion of this unit students will be able to:

  1. Evaluate recent advances in genetic knowledge gained from genomic analysis of species ranging from unicellular to multicellular organisms;
  2. Explain the philosophy of forward and reverse genetics including genome editing techniques;
  3. Critique applications of genomic techniques in the areas of medical research, agriculture, biotechnology and environmental management;
  4. Utilise and appraise bioinformatic tools to compare DNA and protein sequences, search for genetic variants controlling complex traits, analyse transcriptome data and search for genomic signatures for adaptation;
  5. Illustrate the processes required to map and identify genes controlling complex biological traits and articulate how forward genetics approaches can be used to determine gene function;
  6. Collect, analyse, interpret and present genetic data effectively in the preparation of scientific reports;
  7. Synthesise and critique new discoveries from the scientific literature in genomics;
  8. Develop biological hypotheses and justify experimental approaches to evaluate them using genomic techniques and bioinformatic tools.

Specific Unit Information

Names Prof John Bowman  (Clayton Campus)
Office location 18 Inn (Bld 17) - Rm 250
Office hours By appointment - please e-mail
Technical Coordinator
Names Nga Dang-Lien
Office location 18 Inn (Bld 17) - Rm 337 
Textbooks (Recommended)
M. F. Sanders and J. L. Bowman, Genetic Analysis 1st or 2nd edition
Handbook Entry GNA5040- Synopsis, Assessment & Prerequisites 
Schedule GNA5040 - Lecture & Laboratory Schedule for 2022
Important links
Science Faculty Information for Current Students        
University Information for Students - Timetables, Exam, Semester Dates, more.....