Monash Chemical Society
The Monash Chemical Society has been hosting seminars since its foundation in 1965. Invited local and international speakers cover a wide range of topics.
It is the University’s expectation that only those who are well and not presenting with COVID-19 symptoms attend a Monash campus or location. View our latest updates.
The Monash Chemical Society has been hosting seminars since its foundation in 1965. Invited local and international speakers cover a wide range of topics.
3 November 2020
Professor Ian D.Rae is from Melbourne University
Arsenic is a common and widespread constituent of rocks and minerals and arsenic trioxide is produced in mining and smelting operations involving them. Natural weathering releases it into the environment where it can contaminate groundwater and turn up in odd places like lobsters and Bogong moths. Despite its known toxicity, arsenic was used in 'well being' preparations like Fowler's Solution (potassium arsenite), and some Austrians were said to be regular users of arsenic trioxide. Early adventures in therapeutics (selective toxicity) involved arsenicals like Salvarsan for treatment of syphilis. Historically it was used to control weeds, rats and cattle ticks. Murderers, in real life and in fiction, found it was just what they needed. The mechanism of action probably involves binding to -SH groups. Chemically, this element is a metalloid, showing metallic and non-metallic properties that are exemplified in the applications described in this talk.
From ultrafast processes in solar cells to prediction of meat quality: using spectroscopy and computational methods to understand complex systems
14 November 2019
Professor Keith Gordon is from University of Otago, New Zealand
From ultrafast processes in solar cells to prediction of meat quality: using spectroscopy and computational methods to understand complex systems. Keith C. Gordon, University of Otago, Department of Chemistry, Union Place West, Dunedin, NEW ZEALAND. Vibrational spectroscopy is a potent method of analysing molecular structure within small volumes and at fast timescales. In this presentation I will try to cover off three related but distinct areas of interest. Firstly, I will discuss how using a suite of spectroscopic methods, and by studying a series of complexes (metal-based donor-acceptor systems) in which parameters are carefully controlled, it is possible to develop design principles for excited state properties such that one can enhance electronic absorption and increase excited state lifetimes. Useful properties in both solar cells and photocatalysis. The understanding of how these properties, both ground and excited state, are modulated by driving force and effective conjugation is not straightforward. Secondly, the use of computational chemistry in modelling properties of compounds has become ubiquitous in modern chemistry. However these do not always predict molecular behaviour effectively and unpicking the extent of deviation between theory and experiment reveals some interesting problems in our reliance on computational methods. Our studies on the spectroscopy of donor-acceptor and π, π* systems highlight these issues. Finally, our experimental development, originally aimed at understanding ground and excited state properties of metal complexes and other donor-acceptor systems, has provided us with tools that are amenable to analytical spectroscopy. We have used these tools in the study of primary produce and pharmaceuticals. More recently we have used low-frequency Raman spectroscopy to evaluate crystallinity (and order in general) in structures as varied as solar cell polymers to active pharmaceutical ingredients. Our studies in these areas will also be described.
Keith Gordon received his BSc Hons (I) in 1986 and PhD in 1989 in chemistry from Queens University, Belfast, UK. His PhD research, under the direction of Professor John J McGarvey, focused on laser spectroscopy of solar energy compounds. He was awarded a Director’s Fellowship at Los Alamos National Laboratories, USA, and worked with Professor W H Woodruff from 1989 – 1992 on ultrafast laser spectroscopy of biological systems and solar energy materials. In 1993 Keith took up a lecturing post in the Chemistry Department at the University of Otago, Dunedin, New Zealand, becoming Professor in 2009 in that department; he is currently Head of the Department. Keith was President of the New Zealand Institute of Chemistry in 2006 and is a founding Principal Investigator in the MacDiarmid Institute for Advanced Materials and Nanotechnology and the Dodd-Walls Centre for photonic and quantum technologies. Keith is a Fellow of the Royal Society of New Zealand, the Royal Society of Chemistry and the New Zealand Institute of Chemistry. Keith’s research interests focus on the understanding the properties of conducting polymers, nanostructured electromaterials, such as found in dye-sensitised solar cells, dairy products and pharmaceuticals using spectroscopy and computational chemistry.
30 October 2019
Dr Mike Mason is from the Oxford Martin School at the University of Oxford
The ultimate fate of all carbon extracted from underground is either the atmosphere, the oceans, or the plastosphere - that undegradable morass of plastic floating in our oceans, our soils and our landfills. All of these sinks are saturated, and according to the recent IPCC report society has to move to net negative CO2 - burying perhaps 10GT/year for the long term. This means zero carbon from underground can be extracted in the future. In this context, what happens to the industries that need carbon for products and processes? They currently use GT of carbon per year. Where will it come from, how will they use it, and where will it go to?
Mike is an engineer who founded ClimateCare, the world’s first carbon trading business. This was sold to JP Morgan where for three years he was a Managing Director. Thereafter he was appointed Energy Advisor to the President of Maldives (de facto Minister of Energy) where his brief was to create the world’s first fully renewable economy. This was interrupted by a coup d’état. He is currently an investor and director in a range of new technology companies working to solve climate change, and holds various research fellowships at the Universities of Oxford and Bath. His current interests centre on the challenges of deep decarbonisation of society and the transition to a negative carbon economy.